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ABSTRACT
Since the discovery of short-period exoplanets a decade ago, photometric surveys have been

recognized as a feasible method to detect transiting hot Jupiters. Many transit surveys are

now underway, with instruments ranging from 10-cm cameras to the Hubble Space Telescope.

However, the results of these surveys have been much below the expected capacity, estimated

in the dozens of detections per year.

One of the reasons is the presence of systematics (‘red noise’) in photometric time-series. In

general, yield predictions assume uncorrelated noise (‘white noise’). In this paper, we show that

the effect of red noise on the detection threshold and the expected yields cannot be neglected

in typical ground-based surveys. We develop a simple method to determine the effect of red

noise on photometric planetary transit detections. This method can be applied to determine

detection thresholds for transit surveys. We show that the detection threshold in the presence

of systematics can be much higher than that with the assumption of white noise, and obeys

a different dependence on magnitude, orbital period and the parameters of the survey. Our

method can also be used to estimate the significance level of a planetary transit candidate (to

select promising candidates for spectroscopic follow-up).

We apply our method to the OGLE planetary transit search, and show that it provides a

reliable description of the actual detection threshold with real correlated noise. We point out

in what way the presence of red noise could be at least partly responsible for the dearth of

transiting planet detections from existing surveys, and examine some possible adaptations in

survey planning and strategy. Finally, we estimate the photometric stability necessary to the

detection of transiting ‘hot Neptunes’.

Key words: methods: data analysis – methods: statistical – techniques: photometric – surveys

– planetary systems.

1 I N T RO D U C T I O N

Many photometric surveys for transiting exoplanets are now under-

way, with a wide variety of instrumentation and observation strate-

gies – from monitoring large areas of the sky with small telescopes

to deeper surveys on star clusters or the Galactic disc with 1–4 m

telescopes.1 Altogether, thousands of telescope nights have been in-

vested in these surveys, monitoring hundreds of thousands of target
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†Present address: Department of Geophysics and Planetary Sciences, Bev-

erly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv 69978, Israel.
1See, for example, Alonso et al. (2004), Bakos et al. (2004), Bramich et al.

(2005), Bruntt et al. (2003), Hidas et al. (2005), Hood et al. (2005), Kane

et al. (2005), Rauer et al. (2004) and Udalski et al. (2002a), for a description

of some planet transit surveys; see Charbonneau et al. (2006) for a recent

review of the results.

stars in the solar neighbourhood and in the Galactic disc. However,

even after years of operation, the results of these surveys failed to

meet the expectations, with only a slow trickle of detections instead

of the expected bounty.

Part of the mismatch between expectations and actual perfor-

mance can be attributed to the fact that these surveys were often

assuming that the first known transiting extrasolar planet and for

long the only one, HD209458b (Charbonneau et al. 2000), was typ-

ical of hot Jupiters. Its radius of ∼1.3 RJ creates a 2 per cent transit

signal on a solar-type star. Subsequently discovered transiting gas

giants showed the large radius of HD209458b to be an exception

rather than the rule (Alonso et al. 2004; Pont et al. 2004). The mode

of hot Jupiter radii is probably near 1.1RJ or lower (Gaudi 2005),

producing correspondingly shallower eclipses.

Still, even assuming smaller gas giants, transit surveys keep

predicting many more detections than they actually yield. Under-

standing this mismatch is essential both for interpreting the results

in terms of planetary statistical properties, and for improving the
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planning and strategy of the surveys. Indeed, if the statistical prop-

erties of hot Jupiters were not known from radial velocity surveys, it

is very likely that drastically different conclusions would have been

drawn from the results of the transit surveys. Upper limits would

have been put to the abundance of hot Jupiters one or two orders of

magnitude below those derived from Doppler surveys.

The ingredients in the prediction simulations seem solid: the

abundance of hot Jupiters is relatively well known from radial ve-

locity surveys, the statistics of targets are obtained from well-tested

models of Galactic stellar populations, and the rest comes from

simple orbital mechanics. The setting of the transit detection thresh-

old is often considered a minor component in the simulations. The

threshold is generally modelled as a minimum signal-to-noise ratio

(‘S/N’) of the transit detections assuming uncorrelated noise in the

photometric data.

In this paper, we show that, contrary to these assumptions, the

correlation of photometric data at the millimagnitude level cannot be

neglected when determining the detectability of planetary transits,

and that taking the correlation into account can strongly affect the

detection threshold, and consequently the estimates of the potential

of photometric surveys in terms of planet detection.

We develop a simple method to assess the significance of detected

transit candidates in the presence of such ‘red noise’. We propose a

method that is robust and gives realistic results, while at the same

time remains simple to use and to apply to any ground-based transit

survey.

Ongoing transit surveys have shown that detecting transiting sig-

nals was not the end of the story. For transit depths in the range

of a few per cents, by far the largest number of detections are due

to eclipsing binaries, either small transiting M dwarfs (e.g. Pont

et al. 2005) or eclipsing binaries diluted by the light of an unre-

solved companion (e.g. Mandushev et al. 2005). The identification

of true transiting planets among all identified transit candidates re-

quires a considerable investment in spectroscopic follow-up obser-

vations. For transit depths below ∼2 per cent, the odds become

more favourable to transiting planets (Brown 2003), but since such

transit depths are near the detection threshold of most ground-based

surveys, false positive detections start being a source of contamina-

tion. False positives require even more follow-up observations than

eclipsing binaries. Therefore, the assignment of reliable significance

levels to transit detections near the detection threshold, is another

motivation for a robust method to assess the significance of transit

candidates in the presence of systematics or ‘red noise’.

A third motivation is to derive realistic estimates for the uncer-

tainty on planetary parameters derived from transit light curves,

taking into account the effect of systematics.

In Section 2, we present our method to compute the significance

level of a transit detection. In Section 3, we examine the implications

for transit surveys. Section 4 summarizes the results of this paper

and points out some interesting consequences.

2 M O D I F I E D D E T E C T I O N S TAT I S T I C F O R
R E D N O I S E

2.1 White-noise statistics

The signal produced in a stellar light curve by a planetary transit

can be approximated by a strictly periodic step function (Fig. 1),

with a depth related to the radius ratio of the two bodies, and a du-

ration related to the orbital elements and the primary radius. Transit

detection algorithms usually work by fitting a step function to the

Figure 1. Light curve for a planetary transit candidate, with the step function

used in the detection procedure (OGLE-TR-132, Udalski et al. 2003). Top

panel: short excerpt of the light curve. Bottom panel: phase-folded light

curve around the detected transit.

phase-folded signal, or by detecting a step-like decrease and increase

in the flux.

Let us assume that a possible transit signal has been detected in a

light curve consisting of N flux measurements f i , with uncertainties

σ i . The flux is normalized so that the mean flux outside the transit

signal is 1, 〈f out
i 〉 = 1 .

For simplicity, we first assume that the measurement uncertainties

are equal for all data points, σ i ≡ σ 0 (Section 2.11 discusses the

generalization to unequal uncertainties). Let d be the best-fitting

transit depth, and n the number of data points in the transit. d will

then be the difference between the mean of the data points in the

transit and the flux level outside the transit:

d = 1 − 〈 f in〉 = 1 −
∑

f in
i

n
.

The uncertainty on d is the error on the mean of f in
i (since

n � N for planetary transits, we neglect the error on 〈f out
i 〉). Using

the expression for the uncertainty on the mean under the assumption

of uncorrelated noise gives

σd = σ
(〈

f in
i

〉) = σ0√
n

. (1)

The uncertainty on d decreases with the square root of the number

of points in the transit.

Intuitively, we can interpret d as the ‘signal’ in the transit detection

procedure, and σd as the noise. A natural statistic for the significance

of a transit detection is thus the S/N of d, which we write Sd :

Sd ≡ d

σd
= d

σ0

n1/2. (2)

This expression is the one most commonly used to evaluate the

significance of transit detections as well as to predict detection

thresholds from the characteristics of the observations. Statisticians

sometimes refer to Sd as the ‘Wald test’ statistic.

2.2 Correlated residuals and coloured noise

The derivation of equation (2) requires a crucial assumption: the

photometric errors were assumed to be uncorrelated, that is, purely
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Figure 2. Light curves with white noise only (top panel), red noise only

(middle panel) and white and red noise (bottom panel). Typical light curves

from a high-precision rapid time-series photometry for bright targets in tran-

sit surveys resemble portions of the bottom-panel curve.

white noise was assumed. In fact, the errors on ground-based milli-

magnitude photometry in rapid time-series are correlated. Trends, or

‘systematics’ are present, related to changing airmass, atmospheric

conditions, telescope tracking, flat-field errors (usually a combina-

tion of several of these factors). These effects introduce some covari-

ance between the light curve data points, with time-scales similar to

the duration of planetary transits. Typical transits for close-in plan-

ets last 2–3 h, which is also the time-scale of airmass, seeing and

tracking changes in ground-based photometric observations. In the

parlance of signal analysis, the noise on photometric observations

is quite red, with a low-frequency component. Fig. 2 illustrates the

difference between white noise and noise with a red component.

Fig. 3 gives a real-life example of a light curve from a planetary

transit search. Red noise is apparent at the millimagnitude level in

this time-series.

2.3 Transit depth uncertainty with covariance

The equivalent of equation (1) in the presence of correlated noise is

σ 2
d = 1

n2

∑
i, j

Ci j = σ 2
0

n
+ 1

n2

∑
i 	= j

Ci j (3)

where Ci j are the covariance coefficients between the ith and jth
measurements, where the i and j indices cover the measurements

taken during the transit. The diagonal of the matrix c contains

the individual errors σ 2
i (random uncertainty on the ith measure-

ment), and in equation (3) they are all assumed to be equal to

σ 0.

The first part of this expression is equation (1). Equation (2) is

therefore a valid approximation only when

Figure 3. Example of a real light curve from a planetary transit survey (the

OGLE survey). The intervals between different nights were compressed for

the display. The vertical range of the plot is 0.03 mag. Systematic trends are

visible on several time-scales to the level of a few millimagnitudes.

σ 2
0

n

 1

n2

∑
i 	= j

Ci j ,

but, in fact, in many cases relevant to planetary transit surveys, this

inequality is not satisfied. Quite the contrary, the covariance term

may even be larger than the white-noise term:

1

n2

∑
i 	= j

Ci j >
σ 2

0

n
,

so that the full expression in equation (3) should be used to estimate

the uncertainty on the transit depth.

Thus, equation (2) is no longer valid in the presence of red noise.

The uncertainty on the mean does not decrease as n1/2. Obviously,

if neighbouring points are correlated, having more points during the

transit does not increase the detection statistics as much as if they

were uncorrelated.

This can have a drastic effect on the transit detection threshold, as

illustrated in Fig. 2. The top curve is drawn with uncorrelated, nor-

mally distributed residuals, the middle curve with a red ‘1/f noise’,

and the bottom curve with a composite noise. All three curves have

identical dispersions. Curves like those in the bottom panel of Fig. 2

will look familiar to observers in the field, whereas curves like those

in the top panel of Fig. 2 will look either like the result of an in-

credibly good night or like measurements on rather faint objects

for which all other sources of noise are dominated by the statistical

photon noise, so that the residuals are uncorrelated and Gaussian.

The middle and bottom curves are much more likely to produce

false transit detections (and to hide a real transit signal) than the top

curve.

Let us assume a transit lasting 50 times the interval between two

points. The dispersion of the mean of 50 consecutive points in the

top curve is 0.14(= 1/
√

50). In the middle curve, this dispersion

is 0.40. Therefore, the middle curve produces a noise for transit

detections three times larger than that produced by the top curve,

even though both curves have the same overall dispersion of the

residuals.

Fig. 4 displays, for representative targets of the OGLE transit

survey2(Udalski et al. 2002a, c, 2003, 2004), the behaviour of the

scatter of individual points as a function of magnitude, and the

scatter of 10-adjacent-point averages (10 points span about 2.5 h,

a typical transit duration for hot Jupiters), compared with the ex-

pected scatter of 10-adjacent-point averages in the presence of un-

correlated white noise. The objects are those of the 2001 season

(Galactic bulge). The transit signals were removed beforehand and

only objects with negligible sinusoidal modulations in the light curve

were included. Fig. 4 shows how the n−1/2 decrease in the noise does

not apply for most of the survey objects. The actual dispersion of the

mean of 10 consecutive points is often much larger than σ0/
√

10,

except for the faintest targets in the survey. For the brightest object,

the 10-point scatter is even comparable to the one-point scatter,

showing that red noise dominates. Since the brightest targets are the

most favourable for the detection of transiting planets, Fig. 4 shows

that the white noise assumption is not justified and an account of

covariance must be introduced.

2The OGLE survey has been up to now the most successful survey for

transiting planets in terms of detections, five confirmed planets (Konacki

et al. 2003; Bouchy et al. 2004; Pont et al. 2004; Bouchy et al. 2005; Konacki

et al. 2005) and 177 published transit candidates. Throughout this paper, we

will draw illustrations from the OGLE candidates.
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Figure 4. Standard deviation as a function of magnitude for the published

candidates in the OGLE survey in the 2001 fields for individual points (filled

circles) and for 10-point averages (triangles). The stars represent the expected

position of the 10-point averages assuming pure white noise (σ/
√

n). The

solid line is the expected dispersion of individual points due to the white

photon noise, whereas the dashed line shows the corresponding dispersion

for 10-point averages. For most objects, the dispersion of 10-point averages

is much higher than that which is expected for white noise, especially for

brighter magnitudes. The dotted line shows the expected dispersion of the

10-point means according to the discussion in this paper, with an amplitude

of σ r = 3.6 mmag for the red noise.

2.4 Transit signal-to-noise ratio with covariance, Sr

If we plug equation (3) into equation (2), we get

Sr ≡ d

σd
= d√

σ 2
0

n + 1
n2

∑
i 	= j Ci j

. (4)

The subscript ‘r’ is used to denote the presence of red noise.

In the presence of red noise, Ci j for i 	= j is positive and causes the

significance of the transit to increase more slowly than the familiar

n1/2 from equation (1). In the limit when σ 0 is small and n is large,

the significance may even be totally dominated by the covariance

term.

2.5 Simple model of the covariance structure

In general, the full covariance matrix of the photometric data is

not known, but some reasonable assumptions can be made about

it. A satisfactory proxy to the effect of the covariance matrix is

proposed below, and it is shown to be sufficient to offer a large

improvement over the white-noise approximation both to assess the

confidence level of a given transit candidate and to estimate the

detection threshold of a given transit survey.

For the orbital periods of interest in planetary transit searches, the

duration of the transits, noted l, is small compared to the period, P.

Therefore, the data points in the transit will consist of a few stretches

of data of duration lower than or equal to the duration of the transit l,
taken multiples of P days apart. We make the plausible assumption

that the covariance is a monotonically decreasing function of the

time difference between two measurements. Because l � P, the

covariance term for points in different transits will be much smaller

than that for points during the same transit. This implies that to a

good approximation the matrix c will be block-diagonal. If N tr is the

number of transits sampled, and nk the number of points in the kth

transit, then the significant elements in the covariance matrix will

consist of blocks of size nk by nk :

∑
Ci j =

same night∑
Ci j +

different nights∑
Ci j︸ ︷︷ ︸

�0

�
Ntr∑

k=1

kth transit∑
Ci j .

The uncertainty of d in equation (3) will then be

σ 2
d = 1

n2

Ntr∑
k=1

kth transit∑
Ci j . (5)

If the sampling interval is constant, then the inner sums in equa-

tion (5) are functions of nk alone. Thus, in order to calculate the

transit significance, Sr, in the presence of red noise, it is sufficient

to estimate the function V defined as

V(n) ≡ 1

n2

n×n block∑
Ci j

without the need either to fully calculate the individual Ci j or to

make specific assumptions on the dependence of the covariance on

the time-separation between two points.

For a given light curve, equation (5) then becomes

σ 2
d = 1

n2

Ntr∑
k=1

V(nk)n2
k, (6)

and the detection S/N over all individual transits will be

S2
r = d2 n2∑Ntr

k=1
n2

kV(nk)
. (7)

The uncertainty on the depth of a single transit will simply be

σd = V1/2(n). (8)

2.6 Estimating V(n) for a given light curve

We can estimate the function V(n) for a given transit candidate

using the light curve data points themselves, f i , by relating V(n) to

the variance of the average of n points in a time-interval l outside

the transit signal, using the following procedure.

(i) Remove the points in the transits, as well as any a priori known

systematic effects in the signal;

(ii) calculate the mean of the flux, Fj , over a sliding interval of

duration l, equal to the duration of the detected transit, recording

the number of points nj in the interval. The interval slides along the

whole time-series, in steps smaller than the time-sampling interval;

(iii) group the means Fj into bins, according to the number of

points in the interval nj ; and

(iv) calculate the variance of Fj separately in each bin nj – that

serves as an estimate of the V(n) function.

This procedure has the considerable advantage of requiring no

external assumption on the covariance of the residuals. It estimates

V(n) directly from the data itself, preserving the exact covariance

structure of the data as sampled outside the transit. For instance,

photometric trends can be more important at higher airmass, near

the edge of each observing sequence. In that case, this effect will
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be reflected by an increase in V(n) for small n (i.e. for cases when

there are only few points in a transit-length interval, which can only

occur at the beginning or end of the observing sequence).

Note that for the simple case of pure white noise (i.e. a diago-

nal covariance matrix), we expect V(n) to scale as 1/n, while for

perfectly correlated samples V(n) will be independent of n.

2.7 Example from the OGLE planetary transit survey

We have applied the above method to some transit candidates pub-

lished by the OGLE survey. Fig. 5 displays, by three representative

examples, the behaviour of the V(n) function. We plot the more

familiar value V1/2 (corresponding to the standard deviation of the

average rather than the variance). On this plot, an uncorrelated signal

is expected to produce an n−1/2 relation, while entirely correlated

points will follow a flat relation. Fig. 5 shows that in the OGLE pho-

tometry, sometimes V(n) evolves quite nearly as n−1/2 as expected

for white noise, while in other cases it is almost flat. In general,

V(n) decreases less rapidly with n for faint objects than for bright

objects. This is obviously related to the fact that as the photon noise

becomes larger, it dominates the red noise (the ‘systematics’). For

the brightest objects, V(n) is asymptotically constant, which is ex-

pected if the points were perfectly correlated. Therefore, the noise is

completely dominated by low-frequency systematics, which means

that gathering more points in a given stretch of time does not add

much information.

It is interesting to note that the asymptotic lower limit, towards

whichV(n) seems to converge, is similar for all the objects regardless

of magnitude (see also Figs 4 and 8).

Note also that V(1) is not equal to the mean variance of all points

(indicated by empty diamonds in Fig. 5). This is because V(1) is

estimated only with data points that are isolated in a duration l, that

is, points situated at the beginning or end of a stretch of measure-

ments. It is quite likely that these points will tend to be measured

at higher airmass values and with atmospheric conditions varying

more rapidly, so that their scatter will be larger than average.

Figure 5. The V(n) function for three representative OGLE light curves,

with brightness increasing from top to bottom panel. V1/2 (corresponding

to the standard deviation of the average of n successive points) is plotted

as a function of n. In each panel, the empty diamond shows the standard

deviation of individual data points in the light curve. The dotted line shows

a σ/
√

n relation, as expected with uncorrelated noise. The solid line is a fit

of V(n) = σ 2
w/n + σ 2

r (equation 9).

2.8 Comparison of the Sr statistic with
the white-noise equivalent

Obviously, one goal in a transit survey is to detect as many transiting

planets as possible. In hypothesis testing jargon, we basically wish

to reduce the probability of type-I error (false negative). However,

this means reducing the detection threshold, which in turn implies

increasing the type-II error (false positive). The number of false

positives is the practical bottleneck, since it bears an immediate

implication on the amount of follow-up observations needed. We

therefore have to fix the threshold according to the amount of false

positives we are willing to tolerate, taking into account the size of

the survey.

In order to compare the performance of the Sr statistic to that of

white-noise statistic Sd , we produced two synthetic data sets: each

data set consisted of 1000 light curves with no transits, and 1000

light curves with transits of varying periods, phases, depths, and

noise levels. The simulated observations lasted for 50 nights, with a

sampling interval of 15 min. The two data sets differed by the way the

noise was generated – the first data set had a pure white noise, while

the second had a strongly covariant noise with an exponentially

decaying correlation – ρ(�t) = e−�t/τ , with a time constant of τ =
13 min. At the start and end of nights, the correlation was artificially

increased to simulate high airmass effects. No inter-night correlation

was introduced. We ran the box-fitting least sqaures (BLS) detection

algorithm (Kovács, Zucker & Mazeh 2002) on the two data sets

and computed Sd and Sr for all the light curves. A light curve for

which the true period was found by BLS (to reasonable accuracy)

was tagged as a detection. By varying the detection threshold, we

change the error rates of both types. Fig. 6 shows the behaviour of

the two error types for the two data sets. The dashed curve represents
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Figure 6. Type-I (false negative) and type-II (false positive) errors for the

two simulated data sets with pure white noise (upper panel) and extremely

red noise (lower panel). The curves are produced by varying the detection

threshold, which controls the two types of error rates. The dashed curve rep-

resents the performance of Sd , and the solid curve represents the performance

of Sr.
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the performance of Sd , while Sr is represented by the solid curve. In

the case of pure white noise (upper panel), the difference between

Sd and Sr is marginal. However, in the case of the red-noise data

set (lower panel), at each level of type-II error (false positive) rate

we can reach a considerably lower type-I error (false negative) rate

using Sr.

2.9 Single-parameter description of the covariance with σr

To model the behaviour of V(n) in the presence of red noise, let

us represent the red noise as a Fourier sum of sine curves. For a

sine signal, the dispersion of the mean of a set of points over a

duration l is a very strong function of the wavelength of the sine

signal. Fig. 7 gives this dispersion as a function of the wavelength.

This dispersion is the amplitude of the systematics that will remain

in the signal regardless of the number of points measured during

an interval of duration l. It is seen to peak at wavelengths slightly

above twice the duration of the transit. Schematically, the correlated

noise can be thought of as consisting of three components: short

frequencies that will tend to average out over the duration of the

transit, long frequencies that will not vary between the transit and

the neighbouring measurements, and frequencies around (2l)−1 that

will introduce strong transit-like residuals.

Let us assume then that the noise can be separated into a purely

white component, noted σ w, and a purely red component, noted

σ r (where ‘w’ and ‘r’ stand for ‘white’ and ‘red’, respectively),

expressing the power of the correlated noise at frequencies near

(2l)−1.

σ w results from several independent white noise components,

such as photon noise, sky noise and scintillation. In general, it is a

function of the target magnitude. σ r results from systematics (cor-

related noise). Both parameters, σ w and σ r, can be derived from a

given light curve from the behaviour ofV(n). For purely white noise,

the variance scales as V(n) = σ 2
w/n, while for purely red noise it

scales as V(n) = σ 2
r (see Section 2.6 and Fig. 5). In intermediate

cases, we can model it as V(n) = σ 2
w/n +σ 2

r , so that it is near σ 2
w/n

for individual points and approaches σ 2
r as n grows larger.

We have calculated the values of σ w and σ r for published candi-

dates in the case of the OGLE survey. The results are displayed in

Fig. 8. The amplitude of the white noise has a familiar dependence

Figure 7. Standard deviation of the average over a duration l for sine signals

of unit dispersion and different wavelengths. The wavelength is expressed

in units of l.

Figure 8. σw (white symbols) and σ r (black symbols) for OGLE candi-

dates from the 2001/2 fields. The amplitude of σ r is found to be of a few

millimagnitudes in almost all cases. In fact, given the uncertainty in the

determination of σ r itself (involving a quadratic subtraction), values of σ r

for the different targets are remarkably similar. It therefore seems that to a

fair approximation, all targets in the survey can be thought of as affected

by a similar red noise component, largely independent of magnitude. The

mean value is σ r = 3.6 mmag for the 2001/2002 targets (Galactic bulge) and

σ r = 3.1 mmag for the 2002/2003 targets (Carina).

on magnitude, with photon noise dominating except at the bright

end. The red noise shows no dependence on magnitude. Its mean

is 3.6 mmag for the 2001/2 season and 3.1 mmag for the 2002/3

season. The difference is probably due to a less-crowded field and

improvements in the reduction procedure for the second season.

Using published information, we infer that values near 3 mmag

for σ r are typical of some other surveys as well. For instance, in a

transit survey centred on NGC 2301 with a 2.2-m telescope, Tonry

et al. (2005) found a red noise of ∼3 mmag (see their figs 4 and 5).3

Assuming that red noise dominates for the brightest targets, similar

values of σ r are also inferred from the magnitude–dispersion plots

and transit candidate depths for several other surveys cited in the

Introduction section.

2.10 Parameter dependence of the Sr statistic

In order to estimate V(n) and Sr when the actual light curves are not

available, we use the expression of V(n) from the previous section:

V(n) = σ 2
w

n
+ σ 2

r . (9)

We can then write

σ 2
d = 1

n2

Ntr∑
k=1

n2
k

(
σ 2

w

nk
+ σ 2

r

)
, (10)

and express Sr as

S2
r = d2n2∑Ntr

k=1
n2

k

(
σ 2

w

nk
+ σ 2

r

) , (11)

3Note that intrinsic variability is also included in the red noise in addition

to systematics in the photometry. Tonry et al. (2005) found a very high

occurrence of variability at the millimagnitude level. This has the same

effect as systematics on the detection of transits.
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where N tr is the number of transits sampled, nk is the number of data

points in the kth transit.

To relate equation (11) to the transit detection threshold, we ex-

press it in terms of physical parameters. For simplicity, we assume

here a homogeneous distribution of data points in phase, so that

nk � n/N tr for all transits sampled. Equation (11) then becomes

S2
r = d2(

σ 2
w/n

) + (
σ 2

r /Ntr

) . (12)

If N is the total number of data points per star, and δt the typical

time-interval between two measurements, then the number of points

during the transit is n =βNR/πa (with a = cP2/3M1/3), and the mean

number of transits sampled is N tr = Nδt/P, where a is the orbital

semimajor axis (assuming a circular orbit), P the orbital period, M
and R the mass and radius of the primary, c is a constant equal to 1

in Sun–Earth units (M�, yr, au), and β is a correction factor due to

the latitude of the transit (β = 1 for a central transit).

Equation (10) then becomes

σ 2
d = cπ

σ 2
w P2/3 M1/3

βN R
+ σ 2

r P

Nδt
,

and equation (12)

S2
r = d2

σ 2
d

= α(r/R)4

σ 2
d

=

α

( r

R

)4
[

cπ
σ 2

w P2/3 M1/3

βN R
+ σ 2

r P

Nδt

]−1

(13)

is the detection significance in the presence of systematics, ex-

pressed as a function of the characteristics of the planetary system.

r is the radius of the planet and α a parameter dependent on limb

darkening, accounting for the fact that actual transit signals are a bit

deeper than (r/R)2 because of limb darkening: d = α(r/R)2.

The limit of this expression in the uncorrelated noise regime

(σw/
√

n 
 σr) is

Sr =
(

βα

πc

)1/2 (
r

R

)2

N 1/2 R1/2 P−1/3 M−1/6σ−1
w , (14)

which corresponds to the white-noise expression equation (2), while

the limit in the correlated regime is

Sr = α1/2

(
r

R

)2

N 1/2δ
1/2
t P−1/2σ−1

r . (15)

Numerically, expression (15) is very different from expression

(14). For typical parameters of transit surveys (e.g. R = 1 R�, M =
1 M�, N = 1000, δt = 15 min, α � 1, P = 3.5 d, r = 0.1 R�,

σ w = 0.003, σ r = 0.003), Sr is about three times larger than that

which is predicted by white noise alone. This has profound impli-

cations for the yield prediction and interpretation of transit surveys.

Equation (12) can be expressed in terms of its white-noise equiv-

alent. A bit of algebra gives

Sr = Sw

[
1 +

(
σr

σ0

)2

nk

]−1/2

,

where Sw ≡ d/σ0

√
n is the white-noise significance. When red

noise dominates, this reduces to

Sr � Swn−1/2
k ,

that is, the significance is reduced by the square root of the typical

number of points in an individual transit. For the parameters above,

nk ∼ 10. Hence the result that the detection threshold is about three

times higher for bright targets in the OGLE survey than that which

is indicated by the white-noise approach (see Section 3.1). Other

surveys typically have a smaller δt , so that the reduction factor is

even larger.

2.11 Generalizations

In many cases, the uncertainties of the individual data points are not

constant. An additional assumption is then needed about the rela-

tion between the white noise and the red noise. A simple way to

generalize our method is to assume that the red and white noise are

proportional. This is reasonable, for instance, if higher uncertainties

are due to a higher airmass or poor weather conditions, which are

expected to increase both the white and the red noise. In that case,

the equivalent of equation (7) can be computed from the variance

of the weighted mean of the flux in a transit-length interval. How-

ever, there may be situations when the red noise is not proportional

to the white noise. For instance, if the exposure time changes by a

significant factor, the photon noise will change, but the photometric

systematics may remain unaffected. In that case, a possible solu-

tion is to parametrize V as a combination of red and white noise

as in Section 2.9, and to determine σ r on the assumption that σ w is

proportional to the photon noise. In most cases, though, it may be

sufficient to assume a mean constant uncertainty to compute V even

if the real uncertainties somewhat vary.

Equation (7) can also be generalized to account for unequal depths

in the different transits sampled. Instead of using the same d for all

transits in equations (4) and (7), the S/N can be summed over all

the transits using the individual dk , the mean depths of the data in

individual transits.

Some transit detection algorithms look for single transits by

searching for sharp flux changes rather than by fitting a step function

to the phase-folded signal. Such methods can perform better when

photometric trends within and between nights are strong. In that

case, V(n) should be computed by using the variance of the mean

flux difference between two neighbouring stretches of data (as used

by the detection algorithm) rather than the variance of the mean flux

during the transit. This may also be a suitable approximation when

the detection is performed by visually inspecting the light curves.

3 A P P L I C AT I O N S

3.1 Selecting transit candidates in a survey

The Sr statistic is a significance indicator for potential transit sig-

nals that, as discussed in Section 2.8, is superior to the usual S/N

statistics in the presence of covariant noise. It can therefore be used

to estimate the significance of a transit candidate, that is, to estimate

the probability that the detected signal is due to random fluctuations

rather than real transits.

Existing surveys have shown that transiting planets produce sig-

nals that are near the detection threshold, and that it is important

to include candidates that are as near as possible to the spurious

detections. However, the presence of red noise makes this difficult.

Most surveys have tackled this problem by staying well clear of

the minimum threshold, and retaining only clear signals with high

S/N for subsequent follow-up and confirmation, but this comes at

the cost of missing potentially interesting candidates. The use of

the Sr statistic to evaluate the significance of the transit detections

should allow a lower detection threshold and better identification of

spurious signals. It is also useful for ranking the candidates before

the demanding follow-up efforts.
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Figure 9. Left-hand panel: Sr versus magnitude for the OGLE candidates

of the 2002/3 season. The filled circles indicate candidates confirmed by the

radial velocity or photometric follow-up as bona fide transits or eclipses, the

crosses stand for the possible false positives according to the spectroscopic

follow-up, and the squares mark the candidates showing obvious sinusoidal

modulations in the light curve. Right-hand panel: same axes and symbols,

with transit S/N calculated assuming uncorrelated noise. The dotted line

shows a threshold S/N value of 8.
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Figure 10. Phase-folded light curve of OGLE-TR-161 as an example of

detection with low Sr (Sr = 5.5). Note the structure outside the candidate

transit signal.

The OGLE survey has been striving to set the detection threshold

as low as possible, even at the risk of including a few spurious

detections. Here, we apply our formalism to the OGLE candidates

and show that it provides a more reliable definition of the effective

detection threshold and a better discrimination of false positives.

Using the V(n) function calculated for each OGLE transit candi-

date, we computed the Sr indicator with equation (7) for the pub-

lished OGLE transit candidates. The left-hand panel of Fig. 9 dis-

plays the results for the 2002/3 observing season (OGLE-TR-60

to OGLE-TR-132), for which the radial velocity follow-up is es-

sentially complete (Pont et al. 2005). For comparison, the right-

hand panel shows the white-noise detection S/N, Sd . The crosses

indicate suspected false positives according to the spectroscopic

follow-up, and the filled circles indicate the confirmed eclipsing

binaries and transiting planets. The apparent threshold in the Sr

plot, around Sr = 8, constitutes a much sharper detection crite-

rion than Sd . Of the nine objects with Sr < 9 among the candi-

dates of the first two seasons (OGLE-TR-48, TR-55, TR-58, TR-

89, TR-118, TR-124, TR-125, TR-127 and TR-131), seven were

shown by the spectroscopic follow-up and further photometric mea-

surements to be likely false positives (Bouchy et al. 2005; Pont

et al. 2005; A. Udalski, private communication). Only OGLE-

TR-55 and OGLE-TR-125 were confirmed as bona fide eclipsing

binaries.

The white-noise Sd offers a much poorer separation of the false

positives, especially for the brighter targets. As expected, the Sr

statistic eliminates the strong dependence of the threshold on mag-

nitude, since systematics become the dominant source of noise

for the brighter targets. The bright candidates most likely to be

false positives according to the radial velocity follow-up get a

much lower ranking, closer to the detection threshold near Sr =
8. At the bright end of the magnitude range, the significance de-

creases by a factor of ∼3 for OGLE targets compared to the white-

noise analysis, which is approximately the square root of the aver-

age number of data points in an individual transit, illustrating the

transition from the uncorrelated regime to the heavily correlated

regime.

These results confirm the value of Sr as a robust confidence in-

dicator, superseding white-noise S/N indicators. It also shows that

thresholding Sr is a very good model for the combination of white-

noise S/N, spectral signal detection efficiency (SDE) of the BLS

and by-eye selection performed by the OGLE team.

For the 2004 season (OGLE-TR-138 to TR-177, Udalski et al.

2004), the OGLE team lowered the acceptance threshold for the

published transiting candidates, in an attempt to detect more tran-

siting planets. The spectroscopic follow-up of these candidates

has not been completed to date. It is therefore useful to apply

our approach to these new candidates. We find that OGLE-TR-

143, TR-150, TR-152, TR-160, TR-161, TR-162, TR-166, TR-

168, TR-172, TR-173, and TR-174 have Sr < 8 and are therefore

highly likely to be false positives (Fig. 10). As a consequence, the

absence of a spectroscopic eclipsing binary signature for these ob-

jects will not be a compelling indication that they host a transiting

planet.

By examining published transit candidates and inferring plausi-

ble values of σ r from published information, we have found clear

indications that the Sr statistic also provides useful results when

applied to other surveys. For instance, the TrES-1 transiting planet

detected by the TrES network has Sd ∼ 35 and Sr ∼ 12. Its high

white-noise significance would make it difficult to understand why

such a deep transit was the only planet detected by the TrES survey

– given that shallower planetary transits are expected to be much

more abundant. However, the relatively low Sr indicates that it may

be situated near the actual detection threshold.

3.2 Improved error estimates

The expression of equation (6) for σd also gives an estimate of

the uncertainty on the depth of the transit, taking into account the

correlation in the noise. This expression can replace uncertainty

estimates based on white-noise χ 2 statistics that are likely to yield

underestimated error intervals. In turn, σd can be used to derive the

uncertainties on the stellar and planetary parameters.

This method is in essence similar to the ‘residual permutation’

method that we used in Bouchy et al. (2005) and Pont et al. (2005),

earlier suggested in Jenkins, Caldwell & Borucki (2002) under the

name ‘segmented bootstrap’.

This method can also be extended to compute realistic uncertain-

ties on other parameters than transit depth, such as the duration,

orbital inclination or central epoch. This can be done by using the V
function to estimate the expected variance of the difference between

the observed data and the actual value, using only the points that are

contributing to the determination of the parameter in question (for

instance, for the transit epoch, the points during the transit ingress

and egress). The value of the parameter can be moved away from the

best-fitting value until the sum-of-squares is equal to the variance

expected from equation (6).

We have used this method on the multicolour, multisite transit

photometry of HD189733 to show that the white-noise uncertain-

ties were underestimated and that correlated noise could account for

unexplained features in the results (Bakos et al. 2006).
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Figure 11. Histogram of Sr for 1000 simulated light curves without tran-

sit signals, with a time-sampling of 15 min over 50 nights. The solid line

represents red+white noise; the dotted line represents white noise.

3.3 Evaluating the potential of planetary transit surveys

In order to evaluate the potential of a given planetary transit survey

in terms of planet detection (e.g. at the planning stage), a model of

the transit detection threshold is required. In previous sections, we

showed why a threshold in the Sr statistic can provide a significant

improvement over the white-noise statistic generally used for this

purpose.

3.3.1 Numerical value of the Sr threshold

The numerical value of the detection threshold in terms of Sr will

depend on the time-sampling of the light curve and on the desired

rate of false alarms considered acceptable. In the OGLE survey in

Carina, for instance, we find that false alarms become predominant

over positive detections for Sr < 9 (see Section 3.1). The lowest

confirmed planetary transit has Sr = 11.6, and the lowest confirmed

eclipsing binary has Sr = 8.8. In our simulations for 50 consecutive

nights with white, red and entirely correlated noise, the threshold

Sr values for false positives are very rarely larger than 7 (see Fig. 11),

although correlated light curves do produce false positives up to

Sr = 12 at rates of a few per thousand. The white-noise values are

consistent with threshold values estimated by Jenkins et al. (2002)

between 5.5 and 7.5 for surveys spanning 1 week to 4 yr, using the

white-noise analogous to Sr. Published information about transit

candidates from other surveys than OGLE also imply similar values

of the threshold.

In summary, the effective detection threshold in actual cases will

depend on the time-sampling, desired false alarm rate and the de-

tection algorithm used. It will typically be in the range 7–9.

3.3.2 Behaviour of an Sr threshold

An Sr threshold has a different behaviour from that of the white-noise

Sd , which is generally used. Sr is not proportional to the dispersion of

individual points σ 0; it ‘saturates’ before σ 0 leaves the photon-noise

regime towards the systematic-dominated regime. For values ofσ r in

the range of a few millimagnitudes, this implies that most planetary

Figure 12. Detection threshold in terms of transit depth as a function of

magnitude, with a white noise dominated by photon-noise and scintillation

and a red noise characterized by σ r = 3 mmag (solid line) and white noise

only (dotted line) for a typical planetary transit signal with P = 3.5 d. m1 is

the magnitude for which the photon noise is 0.015 mag.

transits will stay below the detection threshold regardless of the

magnitude, with important implications for the detection potential

of transit surveys.

Fig. 12 plots the detection threshold in terms of transit depth

(from equations 13–15) with a photon noise of 0.01 mag at the m1

magnitude, a scintillation noise of 2 mmag and no sky background

noise. The dotted line shows the equivalent relation if the noise

is assumed to be white. Fig. 12 shows that taking red noise into

account makes an enormous difference in the detection threshold.

The difference is largest for the brighter targets, which are also the

most important targets for planet detection. Since most hot Jupiters

produce transits of depth 1 per cent or shallower, and have periods of

3–4 d or higher, one conclusion of Fig. 12 is that red noise will make

transit surveys much less efficient in terms of planetary detection

than indicated by white-noise estimates. The loss of efficiency will

be even higher than that which is suggested by a simple comparison

of the detection threshold, since the presence of red noise causes

the detectability zone to stay constantly above the typical depth

of hot Jupiter transits even for the brightest stars in the survey.

Therefore, detections will be confined to peculiar cases such as

exceptionally deep transits or favourable periods (see Fig. 13) –

precisely as observed in the characteristics of the nine transiting

planets detected to date by transit surveys.

The introduction of red noise in equation (13) has another inter-

esting consequence: it introduces a somewhat steeper dependence

of detectability on period than that in the case of white noise. The

reason is that for short periods, an equivalent number of data points

during the transit will be distributed over a larger number of tran-

sits, mitigating the effect of the covariance. Fig. 13 shows the results

of Monte Carlo simulations computing the proportion of detected

transits as a function of periods, with the set-up of the OGLE survey

(1100 points over about 60 nights), at the bright limit (σ 0 � σ r), with

σ r = 3.1 mmag and a threshold for detection ST = 8. The presence

of red noise introduces a sharp decline in the detectability above a

rather short period. For instance, for a solar-type primary, the de-

tectability is negligible above P = 2 d. This contributes to explain

the apparent inconsistencies in the results of the OGLE survey (three

very hot Jupiters with P = 1–2 d, for two hot Jupiters) compared

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 231–242



240 F. Pont, S. Zucker and D. Queloz

Figure 13. Detection probability as a function of period, with σ r =
3.1 mmag (solid curves) and σ r = 0 (dotted curves) for a primary radius

of 1.0 R� and a survey duration of ∼50 nights. The secondary radius is

fixed to 0.11 R�; σw is set to 3 mmag. The detection criteria are Sr > 8 and

the presence of data in at least three different transits.

to radial velocity surveys (more than two dozens hot Jupiters and

no P < 2 d planet). The period dependence of detectability in the

OGLE survey is even steeper than that which is modelled by Gaudi

(2005) with a white-noise approximation (see the next section for

quantitative estimates).

In our simulations as well as in the OGLE data, we also found

a residual dependence of the effective Sr detection threshold on

period. This is due to the fact that detection algorithms have more

difficulty in finding low-S/N transits at longer periods, at a given

Sr level, because with less transits sampled there are more possible

‘foldings’ of real transits with systematic fluctuations to produce

false detections.

3.3.3 Detection potential of transit surveys with an Sr threshold

The potential of a planetary transit survey will depend not only on

the detection threshold but also on the observed target populations.

These will be specific to each case and require specific simulations.

Without going into the details of any specific survey, it is interest-

ing here to examine the effect of the amplitude of the red noise,

expressed by σ r, on the potential of a transit survey with typical

parameters. We have run a simulation for a ‘typical’ survey con-

sisting of 50 nights of observations of 10 000 targets with photon

noise lower than 0.01 mag. We assumed that 1 per cent of the tar-

gets have a hot Jupiter, with a log-flat distribution of periods be-

tween 3 and 10 d, that half of the targets are binary or blended, and

used star/planet radius ratios drawn from a lognormal distribution

centred on −1.15 with dispersion 0.18, and a sampling interval of

5 min.

(i) Effect of systematics on the total yield. Fig. 14 shows the re-

sults in terms of expected number of transiting hot Jupiter detections

as a function of the value of the σ r parameter, assumed to be iden-

tical for all targets. It illustrates the drastic effect of the amplitude

of σ r on the potential of ground-based surveys. For values of 2–

3 mmag, the expected yield is reduced by a factor of 2–4 compared

to the white-noise expression. Photometry with red noise above a

few millimagnitudes cannot be expected to provide a significant

contribution to the detection of transiting planets.

(ii) Hot Jupiters versus very hot Jupiters. We examined the effect

of changing the period distribution of the transiting planets. We con-

sidered the case of ‘very hot Jupiters’, with periods between 1.2 and

Figure 14. Number of transiting hot Jupiters (top curve) and hot Neptunes

(bottom curve) found in our ‘typical’ ground-based transit survey simulation,

as a function of the σ r red-noise parameter. Hot Neptunes are assumed here

to be 10 times more abundant than hot Jupiters, and to have radii around

0.3RJ.

2 d. Assuming white noise, such planets are more easily detected,

because their transits occur more frequently and also because the

geometric probability of a transit configuration is higher (see Gaudi

2005). We find that with σ r = 3 mmag, the detectability of very hot

Jupiters compared to 3–4 d hot Jupiters is further increased by a

factor of ∼2, and by a factor of ∼3 with σ r = 5 mmag. This helps

to explain the marginal mismatch between the period distributions

of hot Jupiters detected with radial velocities and with photometric

transit surveys.

(iii) Total survey duration. We also considered the effect of modi-

fying the total duration of the transit survey. The simulations indicate

that the presence of red noise lengthens the duration of the survey

necessary before the number of detections starts to saturate (see

Fig. 15). With purely white noise, the number of detections starts

to saturate after about 50 nights, but with σ r = 3–5 mmag it keeps

Figure 15. Expected number of transiting hot Jupiter detections in our ‘typ-

ical’ survey as a function of the total number of nights of observation, for

purely white noise (dotted line), and two different levels of red noise: σ r =
3 mmag (solid line) and σ r = 5 mmag (dashed line).
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rising almost linearly beyond 100 nights. This indicates that cor-

related noise moves the optimal length of a transit survey towards

longer campaigns on the same target fields. Whereas white-noise es-

timates may indicate that 30–50 nights of measurements on a field

before moving to another one is the optimal strategy, taking red

noise into account moves the optimum towards larger campaigns.

The basic reason behind this result is that, because of the trends

in the photometry, a higher number of individual transits may be

required to achieve the necessary S/N for a secure detection. For

instance, for the five detected OGLE transiting planets, the number

of individual transits sampled is 7, 12, 9, 10 and 11 – whereas sim-

ulations indicate that most detections should be based on three to

five transits. The expected yield of a survey therefore keeps rising

until the most common hot Jupiters, with periods of 3–4 d, can be

sampled enough number of times.

(iv) Hot Neptunes. Several claims have been made about the ca-

pacity of ground-based surveys with big telescopes to detect ‘hot

Neptunes’, that is, close-in planets with sizes around 0.3RJ, all based

on the white-noise approximation (e.g. Gillon et al. 2005; Hartman

et al. 2005). To examine what value of σ r such detections would

require, we repeated the same simulation with planets of Neptune’s

size (∼0.3RJ). We assumed that such planets are 10 times more

abundant than hot Jupiters. Fig. 14 shows that extremely small val-

ues of σ r would be required to attain a significant efficiency in

the detection of hot Neptunes, σ r < 0.3 mmag. This would be ex-

ceedingly difficult to achieve in wide-field photometry over long

time-scales. Therefore, the photometric detection of transiting hot

Neptunes from the ground requires an unlikely leap in the treatment

of systematic effects on the photometry.

4 S U M M A RY A N D I M P L I C AT I O N S

This study shows that in ground-based surveys for planetary transits,

the systematics in the photometry have a very important effect on

the capacity to detect planetary transits, and that estimates of detec-

tion significance and detection threshold based on the assumption

of white Gaussian noise are not appropriate. We propose a simple

formalism to assess the significance level of detected transits, and

to predict the detection threshold of an observing campaign.

We find that the uncertainty on the depth d of a transit candidate

is

σ 2
d = 1

n2

Ntr∑
k=1

n2
kV(nk), (16)

where N tr is the number of transits sampled, nk the number of data

points in the kth transit.V is a function that can be calculated through

the curve itself from the variance of the average flux over transit-

length intervals outside the transit.

Consequently, the significance (S/N) of a transit signal candidate

in the presence of real photometric noise can be calculated by

S2
r = d2 n2∑Ntr

k=1
n2

kV(nk)
. (17)

Introducing the σ r factor to parametrize the red noise, the thresh-

old for detection is:

d2n2∑Ntr

k=1
n2

k

(
σ 2

w

nk
+ σ 2

r

) > S2
T,

where σ w is the uncorrelated (white) noise in the photometry. Typi-

cal values of σ r are of a few millimagnitudes (3 mmag in the OGLE

survey), and typical values of ST are 9 or higher in realistic settings.

In terms of physical parameters, the threshold is

S2
r = α

(
r

R

)4 [
cπ

σ 2
w P2/3 M1/3

βN R
+ σ 2

r P

Nδt

]−1

> S2
T.

Our approach bears similarities with that of Jenkins et al. (2002),

Kovács et al. (2002) and Sirko & Paczyński (2003), in accounting

for the systematics in the noise by studying the properties of the pho-

tometric time-series over longer time-intervals. We tried to devise

a method that is easy to apply, does not require long computation,

and can be extrapolated to ongoing or future surveys with minimal

extra assumptions.

In general, accounting for the effect of systematics results in much

lower yield estimates for ground-based transit surveys. We believe

that these estimates are more realistic than white-noise estimates.

They are also in much better agreement with the low actual detec-

tion rate. These more realistic estimates can help in the design of

transit surveys. Including the red noise modifies the dependence of

the yield estimates on the survey parameters. Thus, survey design

can be affected not only quantitatively by lowering the predicted

yields, but also qualitatively. The presence of systematics has sev-

eral important effects: (1) it reduces the premium placed on the

brightest end of a survey for detection, (2) it steepens the period

dependence of detectability, and (3) it reduces the importance of

denser time-sampling.

These elements may, for instance, weigh a survey strategy towards

including more fields with a longer separation between individual

measurements, and spending more time on a given field.

In the case of surveys targetting stellar systems, red noise modi-

fies the conclusions of Gaudi (2005) that if the detection threshold

reaches a hot Jupiter transit in front of a target of any magnitude,

such transits will be detected for targets of all magnitudes. Red noise

will hamper the detection for the brightest magnitudes.

Our study also underlines the crucial importance of beating down

the hour-time-scale systematics in the photometry of transit sur-

veys. This, of course, is well realized by all groups conducting such

surveys, and considerable effort has been invested in removing the

systematics. For instance, for the OGLE survey, two schemes have

been developed to remove the systematics by using the correlation

among all the light curves (Kruszewski & Semeniuk 2003; Tamuz,

Mazeh & Zucker 2005).

However, for a given facility there may be a lower limit below

which it will be practically impossible to reduce σ r. Since transit

surveys need as large a time coverage as they can get, they are com-

pelled to use all clear nights whether perfectly photometric or not.

At the millimagnitude level, interactions between airmass, colour,

absorption, tracking, flat-fielding and seeing all have the potential to

introduce systematic trends. For instance, systematic residuals can

be caused by the interaction of seeing with a close unseen compan-

ion, or by the tracking drift moving part of an object across pixels

with flat-field errors.

Sub-millimagnitude accuracy has been reported in some occa-

sions, for instance, by Hartman et al. (2005). This can be attained

with a very good sampling of the point spread function on a large

number of pixels, as possible with a large telescope on small fields.

However, the reported results concern only a few nights, probably

of above-average quality. It remains to be seen if such accuracy can

be maintained over a period of time long enough for an efficient

planetary transit survey. Moreover, the use of a large telescope on

a small field implies that the detected transit candidates will be too

faint for spectroscopic confirmation, limiting their usefulness. As

shown by the existing surveys, most transit candidates are actually
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eclipsing binaries, so that spectroscopic follow-up is indispensable

in order to confirm the planetary nature of the transiting companion.

An obvious solution to the problem of photometric systematics

is to move into space, as was indeed done soon after the discovery

of 51 Peg with the Hubble Space Telescope (HST) in the globular

cluster 47 Tuc (Gilliland et al. 2000). More recently, Sahu, and col-

laborators (HST programme ID GO-9750) have carried out an HST
survey for transits in the Galactic plane. The problem, however, is

that the detected transit candidates are again too faint for spectro-

scopic follow-up, so that planets cannot be told apart from stellar

eclipses.

In the coming years, two space-borne planetary transit missions

are scheduled, CoRoT and Kepler. They will be free from syste-

matics caused by the atmosphere. The approach of this paper, how-

ever, also applies to space-borne data. The transit detection threshold

for CoRoT and Kepler will also be set by the characteristics of the

red noise, both due to instrumental and due to stellar variability,

because transit-length intervals will be sufficient for the white noise

to average out. The most relevant factor will be the stability of the

hour-time-scale average of the measured fluxes.

In summary, this work offers a practical way, both conceptually

and computationally, to empirically deal with the complex prob-

lem of covariant noise in extrasolar planetary transit surveys, both

ground-based and space-borne.
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