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0. Introduction

Let A be a regular local ring with quotient field K. Assume that 2 is invertible in

A. Let W(A)MNW(K ) be the homomorphism induced by the inclusion A9K,

where W( ) denotes the Witt group of quadratic forms. If dimA% 4, it is known that

this map is injective [6, 7]. A natural question is to characterize the image of W(A) in

W(K ). Let Spec"(A) be the set of prime ideals of A of height 1. For P `Spec"(A),

let π
P

be a parameter of the discrete valuation ring A
P

and k(P)¯A
P
}PA

P
.

For this choice of a parameter π
P
, one has the second residue homomorphism

¦
P
:W(K )MNW(k(P)) [9, p. 209]. Though the homomorphism ¦

P
depends on the

choice of the parameter π
P
, its kernel and cokernel do not. We have a homomorphism

¦¯ (¦
P
) :W(K )MN G

P`Spec"(A)

W(k(P)).

A part of the so-called Gersten conjecture is the following question on ‘purity ’. Is the

sequence

W(A)MNW(K )MN
¦

G
P`Spec"(A)

W(k(P))

exact? This question has an affirmative answer for dim(A)% 2 [1 ; 3, p. 277]. There

have been speculations by Pardon and Barge-Sansuc-Vogel on the question of purity.

However, in the literature, there is no proof for purity even for dim(A)¯ 3. One of

the consequences of the main result of this paper is an affirmative answer to the purity

question for dim(A)¯ 3.

We briefly outline our main result. For any scheme X let W ε(X ) denote the Witt

group of ε-symmetric spaces on X, ε¯³1 (W+"(X )¯W(X ) being the usual Witt

group of symmetric spaces over X ). Let A be a regular local ring of dimension 3 with

maximal ideal m and Y¯Spec(A)c²m´. We associate (§3) to an ε-symmetric space

over Y a (®ε)-symmetric space over a finite-length A-module. This assignment leads

to a homomorphism W ε(Y )MNW−ε

fl
(A), where W ε

fl
(A) is the Witt group of

ε-symmetric spaces of finite-length A-modules (cf. §1). Then we prove (§4) that the

sequence
0MNW ε(A)MNW ε(Y )MNW−ε

fl
(A)MN 0

is exact, where the map W ε(A)MNW ε(Y ) is induced by the restriction. Since

W ε

fl
(A)DW ε(A}m), it follows that W−"

fl
(A)¯ 0. Thus the map W(A)MNW(Y ) is an

isomorphism. This leads to the purity theorem for the Witt groups. On the other

hand, since every skew-symmetric space over A is hyperbolic, W−"(A)¯ 0 and we get

an isomorphism W−"(Y )DW(A}m). We observe the curious fact that if A is

complete, W³
"(Y ) is isomorphic to W(A}m).
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A crucial result used in our proof of the main theorem is a theorem of Horrocks

[2] on vector bundles on the punctured spectrum Y¯Spec(A)c²m´, where A is a

regular local ring of dimension 3 and m is its maximal ideal. We use his theorem on

the equivalence of the category of ‘Φ-equivalence’ classes of vector bundles on Y with

the category of finite-length A-modules.

We would like to remark parenthetically that purity for dimension 3 was used

in [8] while establishing the equivalence of the finite generation of Witt groups of

affine real 3-folds and the finite generation of Chow groups of codimension 2 cycles

modulo 2.

1. ε-symmetric spaces reminisced

Let A be a regular local ring of dimension 3 in which 2 is invertible. We recall the

definition of ε-symmetric spaces on finite-length A-modules and their Witt groups.

For A-modules M, N and i& 0, let Exti(M,N ) denote the group of congruence classes

of i-fold extensions of N by M [4, p. 84]. For any homomorphism f :MMNM « of A-

modules, let Exti(N, f ) : Exti(N,M )MNExti(N,M «) be the induced homomorphisms

defined as follows. Let

ζ¯ 0MNMMN
α

Z
i
MN
¦
i Z

i−"
MNIMNZ

#
MN
¦
# Z

"
MN

β
NMN 0

be an i-fold extension of N by M. Let Z¯ (Z
i
GM «)}(²(α(x), f(x)) rx `M ´) be the

push-out of Figure 1 [4].

αM

M !

f

Zi

F 1.

Then

Exti(N, f ) (ζ )¯ 0MNM «MN
α«

ZMN
¦«

Z
i−"

MN
¦
i−" IMNZ

#
MN
¦
# Z

"
MN

β
NMN 0

where α« and ¦« are the natural homomorphisms induced by the push-out. Similarly,

we define Exti( f,N ) as the pull-back under f of an i-fold extension of N by M «. Let

M be a finite-length A-module and Mh ¯Ext$(M,A). If M, M « are two finite-length

A-modules and f :MMNM « is an A-linear map, then we denote Ext$( f,A) by f h. Let

0¯ 0MNP
$
MN
¦
$ P

#
MN
¦
# P

"
MN
¦
" P

!
MN

θ
MMN 0

be a projective resolution of M. Since Exti(M,A)¯ 0 for i¯ 0, 1, 2 [5, Theorem 18.1],

by dualizing the above exact sequence we see that

0*¯ 0MNP$

!
MN
¦$

" P$

"
MN
¦$

# P$

#
MN
¦$

$ P$

$
MN
θ«

Mh MN 0

is a projective resolution of Mh, where P$
i
¯Hom

A
(P

i
,A), ¦$

i
is induced by ¦

i
and for

any f `P$

$
,

θ«( f )¯Ext$( f,M ) (0) `Mh.
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Throughout this paper, for any surjection θ :P
!
MNM as above, θ« denotes the map

defined as above. We define a canonical homomorphism # :MMNMhh as follows.

Let x `M. Choose y `P
!

such that θ(y)¯x. We define

#(x)¯Ext$(®e
y
,Mh) (0*) `Mhh,

where, for f `P$

!
, e

y
( f )¯ f(y). Then it is easy to see that #(x) is independent of the

choice of y and Figure 2 is commutative, where # :P
i
MNP$$

i
are the canonical

isomorphisms.

P3
**

#

P30

0 P2
**

#

∂3 ∂2

∂2
**∂3

**

P 0
**

#

∂1 θ

∂1
**

P2

P1
**

P1 P0

#

θ !!

M∨∨

M

– #

0

0

F 2.

Thus # :MMNMhh is an isomorphism and it is obvious that it is independent of the

choice of the projective resolution. We use this isomorphism to identify M with

Mhh. The choice of the negative sign at e
y

in the definition of # is explained in the

following. Let m¯ (x
"
,x

#
,x

$
) be the maximal ideal of A and

ζ¯ 0MNAMN
δ
$ A$MN

δ
# A$MN

δ
" AMN

η
A}mMN 0

be the Koszul resolution of A}m with respect to (x
"
,x

#
,x

$
). With respect to the

standard basis ²e
"
, e

#
, e

$
´ of A$, we have

δ
"
¯ (x

"
x
#

x
$
), δ

#
¯
I

J
x
"

®x
#

0

0

®x
$

x
"

®x
$

0

x
#

K

L
, δ

$
¯
I

J
®x

#

x
$

x
"

K

L
and η :AMNA}m is the natural homomorphism. Let M be a finite-dimensional

vector space over A}m. Then M is a finite-length A-module. Let Mh ¯Hom(M,A}m).

The assignment f*Ext$( f,A) (ζ ) `Mh induces a homomorphism

Φ
M

: Mh MNMh.

The following lemmas are well known, but for the sake of completeness we give their

proofs here.

L 1.1. The homomorphism Φ
M

is an isomorphism and Figure 3 is com-

mutati�e, where ι :MMNMhh is the canonical isomorphism.

M

M # M∨∨

E C
(M )∨

ι ΦM
∨

ΦM
C

F 3.
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Proof. Since MDGn

"
A}m, Mh DGn

"
(A}m)h and Mh DGn

"
A a}m, it is enough

to prove the lemma in the case when M¯A}m. In this case it is easy to see that

Φ
M

1 0. Since Mh DA}m [5, Theorem 18.1] and Mh DA}m, Φ
M

is an isomor-

phism. We now prove the commutativity of Figure 3. For all x `M and f `Mh we have

ι(x) ( f )¯ f (x) and

Φ
M
h (ι(x))¯ 0MNAMN

δ
$ A$MN

δ
# A$MN

δ
" AMMN

ι(x)−"η
A}mMN 0.

Let y `A be such that η(y)¯x. Then we have

#(x)¯ 0MNA MMN
®δ$

"
e−"
y A$*MN

δ$

# A$*MN
δ$

$ A*MN
η«

(A}m)h MN 0.

Since Φ
M

is an isomorphism, we have

Φh
M
(#(x))¯ 0MNA MMN

®δ$

"
e−"
y A$*MN

δ$

# A$*MN
δ$

$ A*MMN
Φ−"

M
η«

(A}m)h MN 0.

Let ²e$
"
, e$

#
, e$

$
´ be the dual basis of A$*. For i¯ 1, 2, let θ

i
:A$MNA$* be given by the

following matrices, with respect to the bases ²e
"
, e

#
, e

$
) and ²e$

"
, e$

#
, e$

$
´.

θ
"
¯
I

J
0

0

®y−"

y−"

0

0

0

®y−"

0

K

L
, θ

#
¯
I

J
0

0

y−"

®y−"

0

0

0

y−"

0

K

L
.

Let θ
$
:AMNA* be the homomorphism defined by θ

$
(1)¯ l

y
, where l

y
(a)¯ ay for all

a `A. It is easy to see that Figure 4 is commutative. Thus Φ
M
h ι¯Φh

M
#.

id

A0

0 A3*

δ3

A*

θ1

A3

A3*

A3 A (A/m)∨ 0

0A
–δ1

* ey
–1

δ2

δ2
*

θ2

δ1

δ3
*

θ3 id

(A/m)∨

ι (x)–1η

ΦM
–1η!

F 4. *

L 1.2. Let ψ :MMNMh be a homomorphism and ψh :Mhh MNMh be the

induced homomorphism. Then Figure 5 is commutati�e.

M

ψ ψ
∨

E

C

M
C

(M )∨

M∨

C

ΦM

CΦM

F 5.
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Proof. Let f `Mhh . Then Φ
M

h
( f ) is the pull-back of the Koszul resolution ζ under

f :Mh MNA}m and ψh(Φ
M
h ( f )) is the pull-back of the extension Φ

M
h ( f ) under ψ. Thus

ψh(Φ
M
h ( f )) is the pull-back of the Koszul resolution under the homomorphism

fψ :MMNA}m. Since ψh ( f )¯ fψ, Φ
M
(ψh ) ( f ) is the pull-back of the Koszul

resolution under fψ. Thus Φ
M

ψh ¯ψhΦ
M
h . *

Lemmas 1.1 and 1.2 enable us to embed the category of ε-symmetric spaces on

finite-dimensional A}m-vector spaces into the category of ε-symmetric spaces on

finite-length A-modules (cf. Corollary 1.3)).

Let ε¯³1. An ε-symmetric space of finite length is a pair (M,ψ) where M is

a finite-length A-module and ψ :MMNMh ¯Ext$(M,A) is an isomorphism with

ψh #¯ εψ. Let ψ
"
and ψ

#
be two ε-symmetric spaces on finite-length A-modules M

"

and M
#
respectively. We say that ψ

"
is isometric to ψ

#
if there exists a homomorphism

θ :M
"
MNM

#
such that ψ

"
¯ θhψ

#
θ. An ε-symmetric space ψ on M is called

metabolic if there exists a submodule N of M such that

0MNNMN
i

MMN
ihψ

Nh MN 0

is exact, where i :NMNM is the inclusion. The Witt group of ε-symmetric spaces of

finite-length A-modules is defined as the quotient of the Grothendieck group of

isometry classes of ε-symmetric spaces with the orthogonal sum as addition, modulo

the subgroup generated by metabolic spaces. It is denoted by W ε

fl
(A).

C 1.3. Let M be a finite-dimensional �ector space o�er A}m. Let

ψ :MMNM be an ε-symmetric space, that is, ψh ι¯ψ and ψ is an isomorphism. Then

Φ
M

ψ :MMNMh is an ε-symmetric space.

Proof. By Lemma 1.1, we have (Φ
M

ψ)h#¯ψhΦh
M
#¯ψhΦ

M
h ι. Using Lemma

1.2, we get that (Φ
M

ψ)h#¯Φ
M

ψh ι¯ εΦ
M

ψ. Thus Φ
M

ψ is an ε-symmetric

space. *

We need the following lemma.

L 1.4. Let M be a finite-length A-module and ψ :MMNMh be an

ε-symmetric space. If (M,ψ) is stably metabolic, then it is metabolic.

Proof. If M is an A}m-module, then the result follows from the corresponding

result for ε-symmetric spaces over the field A}m. We reduce the general case to the

above case by induction on the length of M. Assume that the length of M is at least

2. Let V be a maximal submodule of M which is an A}m-module. Suppose that ψ

restricted to V is singular. Then there exists a non-zero submodule L of V such that

LZLv ¯ker(MMNi
hψ

Lh)

and ψ induces an ε-symmetric form ψa on Lv}L which is Witt equivalent to

(M,ψ). Suppose that (M,ψ) is stably metabolic. Then (Lv}L,ψa ) is stably metabolic.

By induction there exists a submodule N
"

of Lv}L such that

0MNN
"
MN

i
Lv}LMN

ihψa
Nh

"
MN 0
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is exact. Let N be the submodule of M containing L such that N}L¯N
"
. Then it is

easy to see that the sequence

0MNNMN
i

MMN
ihψ

Nh MN 0

is exact and (M,ψ) is metabolic. We may therefore assume that ψ restricted to V is

non-singular. Then (M,ψ)D (V,ψ r
V
)v(M

"
,ψ

"
). If M

"
1 0, then M

"
contains a non-

zero submodule which is an A}m-module, contradicting the maximality of V. Thus

M
"
¯ 0 and M¯V is an A}m-module. This completes the proof of the lemma. *

Let X be a scheme such that 2 is invertible in Γ(X ). Let % be a vector bundle over

X of finite rank. An ε-symmetric space on % is an isomorphism q :%MN%*¯
Hom(%,/

X
) such that q*#¯ εq, where # :%MN%** is the canonical identification.

Let W ε(X ) be the Witt group of ε-symmetric spaces on vector bundles over X

[3, p. 144]. If X¯Spec(A), then we denote W ε(X ) by W ε(A).

Throughout this paper, by an A-module we mean a finitely generated A-module.

We call an ε-symmetric space simply a quadratic space if ε¯­1 and a symplectic

space if ε¯®1. We also denote W+"(X ) by W(X ). For a vector bundle % over X,

we denote the hyperbolic space on % by ((% ) [3, p. 130].

2. Reflexi�e modules

Let A be a regular local ring of dimension 3 with 2 invertible. An A-module E is

said to be reflexi�e if it is finitely generated and the canonical homomorphism

EMNE** is an isomorphism. For a reflexive A-module E we use the canonical

isomorphism to identify E** with E. It is well known that a reflexive module over a

regular ring of dimension 3 has projective dimension at most 1. Let E be a reflexive

A-module and M¯Ext"(E*,A), where E*¯Hom
A
(E,A). Since reflexive modules

over regular rings of dimension at most 2 are projective, M is a finite-length A-module.

We define a homomorphism β
E
: Ext"(E,A)MNMh ¯Ext$(M,A) as follows. Let

0MNP
"
MN
¦
" P

!
MN
¦
! E*MN 0 (2.1)

be a projective resolution of E*. Then by dualizing, we get an exact sequence

0MNEMN
¦$

! P$

!
MN
¦$

" P$

"
MN

δ
Ext"(E*,A)¯MMN 0

where δ is defined by push-outs. We have the following lemma.

L 2.1. The Yoneda composition [4, p. 82] β
E
: Ext"(E,A)MNMh gi�en by

β
E
(0MNAMN

η
ZMN

η«
EMN 0)¯ (0MNAMN

η
ZMN

¦$

!
η«

P$

!
MN
¦$

" P$

"
MN

δ
MMN 0)

is an isomorphism and is independent of the choice of the projecti�e resolution (2.1)

of E*.

Proof. Consider the long exact sequence of cohomology associated to the short

exact sequences

0MNEMN
¦$

! P$

!
MN
¦$

" ker (δ)MN 0 and 0MNker (δ):NP$

"
MN

δ
MMN 0.
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Since Exti(M,A)¯ 0 for i% 2 and P$

"
is a projective module, Ext"(ker (δ),A)¯ 0 and

the connecting homomorphisms

Ext"(E,A)MNExt#(ker (δ),A) and Ext#(ker (δ),A)MNExt$(M,A)

induced by the above short exact sequences are isomorphisms. Since β
E
, up to sign,

is the composition of these two connecting homomorphisms [4, Theorem 9.1, p. 97],

β is an isomorphism.

Suppose that

0MNF
"
MN
¦!

" F
!
MN
¦!

! E*MN 0

is another projective resolution of E*. Then by lifting the identity map on E*, we get

homomorphisms P
i
MNF

i
, i¯ 0, 1, such that Figure 6 is commutative.

id

P10

0

∂1 E* 0

0F1

∂0

∂1! ∂0!F0 E*

P0

F 6.

By dualizing this diagram we get a commutative diagram (Figure 7) where δ« is

defined by push-outs.

id

E0

0

F1
* M

δ
E

∂ !
*

0

P*
0

∂ !
*

1F*
0

∂*
0 P1

*

δ !

0

0

id

M
∂*

1

F 7.

This implies that

(0MNEMN
¦!$

! F$

!
MN
¦!$

" F$

"
MN
δ«

MMN 0)¯ (0MNEMN
¦$

! P$

!
MN
¦$

" P$

"
MN

δ
MMN 0)

in Ext#(M,E ). Thus the homomorphism β
E

is independent of the choice of the

projective resolution of E*. *

L 2.2. (i) For any reflexi�e A-module E we ha�e

β
E* ¯®βh

E
#.

(ii) Let E and E « be reflexi�e A-modules. Then, for any isomorphism f :EMNE «,
we ha�e

Ext"( f *)hβ
E « ¯ β

E
Ext"( f ).

Proof. Let 0MNP
"
MN

¦
" P

!
MN

¦
! E*MN 0 and 0MNF

"
MN

¦!
" F

!
MN

¦!
! EMN 0 be

projective resolutions of E* and E respectively. By dualizing these exact sequences,

we get exact sequences
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0MNEMN
¦$

! P$

!
MN
¦$

" P$

"
MN

δ
Ext"(E*,A)MN 0

and

0MNE*MN
¦!$

! F$

!
MN
¦!$

" F$

"
MN
δ
" Ext"(E,A)MN 0.

Let ζ¯ (0MNAMN
α

ZMN
β

E*MN 0) `Ext"(E*,A). Since P
!
and P

"
are projective,

there exist homomorphisms f :P
"
MNA and g :P

!
MNZ such that Figure 8 is

commutative.

f

Z

0

0

E*

A

∂1 P0P1 0

0

idg

α β

∂0

E*

F 8.

By the definition of δ we have δ( f )¯ ζ. Since

0MNF
"
MN
¦!

" F
!
MMN
¦$

!
¦!

! P$

!
MN
¦$

" P$

"
MN

δ
Ext"(E*,A)MN 0

is a projective resolution of Ext"(E*,A), by dualizing it we get an exact sequence

0MNP
"
MN
¦
" P

!
MMN
¦!$

!
¦
! F$

!
MN
¦!$

" F$

"
MN
δ!

" Ext"(E*,A)h MN 0.

Thus #(ζ )¯®ξ, where

ξ¯ (0MNAMN
α

ZMMN
¦!$

!
β

F$

!
MN
¦!$

" F$

"
MN
δ!

" Ext"(E*,A)h MN 0).

From the definitions of δ, δ« and β
E
, it follows that Figure 9 is commutative.

0

0

E*
∂0!

*

F0
* 0

0

id βE

δ1

E*

id id

∂0!
*

F0
*

∂1!
*

∂1!
*

F1
*

F1
*

δ1!

Ext1 (E, A)

Ext1 (E*, A)∨

F 9.

It follows from the definition of βh
E

that

βh
E
(ξ )¯ (0MNAMN

α
ZMMN

¦!$

!
β

F$

!
MN
¦!$

" F$

"
MN
δ
" Ext"(E,A)MN 0).

On the other hand, we have

β
E*(ζ )¯ (0MNAMN

α
ZMMN

¦!$

!
β

F$

!
MN
¦!$

" F$

"
MN
δ
" Ext"(E,A)MN 0)¯ βh

E
(ξ ).
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Thus ®βh
E

#¯ β
E*.

Let f :EMNE « be an isomorphism. Then 0MNP
"
MN

¦
" P

!
MMN
f *−"¦

! E «*MN 0 is a

projective resolution of E «*. By dualizing it we get an exact sequence

0MNE « MN
¦$

!
f −"

P$

!
MN
¦$

" P$

"
MN
δ
# Ext"(E «*,A)MN 0

with δ
#
¯Ext"( f *) δ. Let ζ¯ (0MNAMN

α

ZMN
β

E «MN 0) `Ext"(E «,A). Then

β
E «(ζ )¯ (0MNAMN

α
ZMMN

¦$

!
f −"β

P$

!
MN
¦$

" P$

"
MN
δ
# Ext"(E «*,A)MN 0)

and

Ext"( f *)hβ
E «(ζ)¯ (0MNAMN

α
ZMMN

¦$

!
f −"β

P$

!
MN
¦$

" P$

"
MN

δ
Ext"(E*,A)MN 0)

since δ¯Ext"( f *)−"δ
#
. On the other hand, we have

Ext"( f ) (ζ )¯ (0MNAMN
α

ZMN
f −"β

EMN 0)

and

β
E
Ext"( f ) (ζ )¯ (0MNAMN

α
ZMMN

¦$

!
f −"β

P$

!
MN
¦$

" P$

"
MN

δ
Ext"(E*,A)MN 0)

¯Ext"( f *)hβ
E «(ζ ).

This proves the lemma. *

Let A be any local ring in which 2 is invertible and let m be its maximal ideal. Let

E be a reflexive A-module. By an ε-symmetric space on E we mean an isomorphism

q :EMNE* such that q*#¯ εq, where # :EMNE** is the canonical isomorphism.

Let V be an A-module. By a unimodular element of V we mean an element x `V

such that f(x)¯ 1 for some A-linear map f :VMNA. For example, an element

(a
"
,…, a

n
) `An is unimodular if and only if a

i
am for some i. Thus, if an A-module V

has no unimodular elements and η :VMNAn is an A-linear map, then η(V )ZmAn.

L 2.3. Let E be a reflexi�e A-module and q be an ε-symmetric space on E.

Suppose that E¯E
!
GAn with E

!
ha�ing no unimodular elements. Then there exist

ε-symmetric spaces q
"

and q
#

o�er E
!

and An respecti�ely such that

(E, q)D (E
!,
q
"
)v(An, q

#
).

Proof. Let E¯E
!
GAn be such that E

!
has no unimodular elements. Then

q¯ 0 q
"

εη*

η

q!

"

1
for some q

"
:E

!
MNE$

!
, q!

"
:An MNAn* and η :An MNE$

!
. Since E

!
has no

unimodular elements, η*(E
!
)ZmAn* and hence η(An)ZmE$

!
. This implies that

q3 0q"

0

0

q!

"

1modmE*.
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Since q is an isomorphism, q
"

and q!

"
are isomorphisms. We have

0 1

®εη*q−"

"

0

11 0
q
"

εη*

η

q!

"

1 010
®q−"

"
η

1 1¯ 0q"

0

0

®η*q−"

"
η­q!

"

1 .
Let q

#
¯®η*q−"

"
η­q!

"
:An MNAn*. Since q$

"
¯ εq

"
, (E, q)D (E

!
, q

"
)v(An, q

#
). *

3. Spaces o�er the punctured spectrum and on finite-length modules

We begin by recalling from a paper of Horrocks [2] an equivalence between the

categories Φ0 of Φ-equivalence classes of vector bundles on the punctured spectrum

of a regular local ring A of dimension 3 and the category - of finite-length

A-modules. Let m be the maximal ideal of A and Y¯Spec(A)c²m´. Let % be a vector

bundle over Y and E¯Γ(% ) be the module of sections of %. Then E is a reflexive

A-module [2, Theorem 4.1] and M¯Ext"(E*,A), which is isomorphic to H "(Y,% )

[2, §5], is a finite-lengthA-module [2, Corollary 7.2.5]. The functorT :Φ0MN- given

by T(% )¯Ext"(E*,A) is an equivalence of categories [2, Corollary 7.2.5]. Let M be

a finite-length A-module. The construction below gives a vector bundle % on Y such

that T(% )¯M. Let, in fact,

0MNP
$
MN
¦
$ P

#
MN
¦
# P

"
MN
¦
" P

!
MN

η
MMN 0

be a projective resolution of M. Let E¯ker (¦
"
). Then E is an A-module of projective

dimension at most 1 and Ext"(E*,A)¯M. Since M is a finite-length module, for any

prime ideal p of A, p1m,M
p
¯ 0 and hence E

p
is free. Thus E¯Γ(% ) for some

vector bundle % on Y [2, Theorem 4.1].

Let A be a regular local ring of dimension 3 in which 2 is invertible. Let % be a

vector bundle over Y and q be an ε-symmetric space on %. We associate to (%, q) a

(®ε)-symmetric space ρ(q) of finite length. The ε-symmetric space q on % gives rise

to an ε-symmetric space (E, q), where E¯Γ(% ). Then M¯Ext"(E*,A) is a finite-

length A-module. The isomorphism q :EMNE* induces an isomorphism

Ext"(q) :M¯Ext"(E*,A)MNExt"(E,A). Let ρ(q)¯ β
E
Ext"(q). We have the follow-

ing lemma.

L 3.1. ρ(q) :MMNMh is a (®ε)-symmetric space.

Proof. In Figure 10, clearly, all the squares except perhaps the top left one

commute.

βE*

M = Ext1(E*, A) Ext1(E*, A)∨ = M∨βE

id

Ext1(E*, A)∨Ext1(E, A)∨

Ext1(E*, A)∨∨

Ext1(E, A)

Ext1(E*, A)∨

Ext1(E, A)∨

εExt1(q)∨–1

εExt1(q)∨

id

id

Ext1(E*, A)∨

βE

εExt1(q)∨

Ext1(q)

βE
∨

βE
∨–1

F 10.



      531

Since q*¯ εq, by Lemma 2.2 this square also commutes. By Lemma 2.2, the

composition of maps on the first column is equal to ®#. Thus

ρ(q)h#¯Ext"(q)hβh
E

#¯®εβ
E
Ext"(q)¯®ερ(q). *

L 3.2. Let M be a finite-length A-module and ψ be an ε-symmetric form on

M. Suppose that there exists an exact sequence

NMMN
f

MMMN
f hψ

Nh

of finite-length A-modules. Then (M,ψ) is metabolic.

Proof. Since the map f factors as NMNN}ker( f )MN
f
a

M, we have an exact

sequence

0MMNN}ker( f )MMN
f a

MMMN
f ahψ

(N}ker( f ))h.

Since, the dimension of A being 3, Ext%(L,A)¯ 0, the map f ahψ is surjective and hence

(M,ψ) is metabolic. *

L 3.3. If (%, q) is metabolic, then (M, ρ(q)) is metabolic.

Proof. Suppose that (%, q) is metabolic. Let & be a subbundle of % such that the

sequence

0MN&MN
i

%MN
i*q

&*MN 0

is exact, where &MN
i

% is the inclusion. By taking global sections and then applying

the Ext functor to the following exact sequence of bundles

0MN&MN
qi

%*MN
i*

&*MN 0

we get an exact sequence

Ext"(F*,A)MNExt"(E*,A)MNExt"(F,A)

of finite-length modules, where F¯Γ(& ). Let N¯Ext"(F*,A). Then the canonical

identification of Ext"(F,A) with Nh gives an exact sequence

NMN
f

MMMN
f hρ(q)

Nh.

Now the lemma follows from Lemma 3.2. *

L 3.4. The assignment (%, q)* (M, ρ(q)) induces a homomorphism

ρ :W ε(Y )MNW−ε

fl
(A).

Proof. Since ρ is clearly additive, it is enough to show that ρ takes stably

metabolic spaces to metabolic spaces. Let (%, q) be an ε-symmetric space over Y which

is stably metabolic. Then there exists a metabolic space (%
"
, q

"
) such that (%, q)v(%

"
, q

"
)

is metabolic. By Lemma 3.3, ρ(q
"
) and ρ(qvq

"
)¯ ρ(q)vρ(q

"
) are metabolic. Thus

ρ(q) is stably metabolic. *
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We note that if % is a trivial bundle then M¯ 0. Thus, if (%, q) comes from an

ε-symmetric space on A, then ρ(q)¯ 0.

The proof of the following lemma is by straightforward verification; hence we

omit it.

L 3.5. Let R be a ring. Let 0MNNMN
i

MMN
j

N «MN 0 be an exact

sequence of R-modules. Assume that the projecti�e dimensions of N and N « are finite.

Let

0MNP
n
MN
¦
n P

n−"
MN
¦
n−" IP

"
MN
¦
" P

!
MN

α
NMN 0

and

0MNQ
n
MN
¦!
n Q

n−"
MN
¦!
n−" IMNQ

"
MN
¦!

" Q
!
MN

β
N «MN 0

be projecti�e resolutions of N and N « respecti�ely. Let, for l& 1, φ
l
:Q

l
MNP

l−"
and

θ :Q
!
MNM be R-linear homomorphisms. Let

δ
l
¯ 0¦l

0

(®1)lφ
l

¦!
l

1 .

Then Figure 11 is commutati�e if and only if Figure 12 is commutati�e.

β

0 Pn

Pn ⊕ Qn

Qn

0

0

Pn–1

Pn–1 ⊕ Qn–1

Qn–1

P1

P1 ⊕ Q1

Q1

. . .

. . .

. . .

P0

P0 ⊕ Q0

Q0

N

M

N !

0

0

0

∂n

∂ !n

δn

∂1

∂ !1

δ1

α

(iα, θ)

i

j

F 11.

β

Pn0 Pn–1

Qn

P1

Q2
. . .

. . . P0

j

id

M

N !

0

0

∂n

∂ !2

iα

θ

0

φn

Pn–2

Qn–1

φn–1

∂n–2

φ2

Q1

φ1

Q0

N !

∂ !n–1

∂1

∂ !1

∂n–1

∂ !n

F 12.

P 3.6. Let (%, q) be an ε-symmetric space o�er Y. Suppose that E¯
Γ(% ) has no unimodular elements and that ρ(q) is metabolic. Then there exist

ε-symmetric spaces q
"
and q

#
on % and /n

Y
respecti�ely such that q

"
vq

#
is metabolic and

ρ(q)D ρ(q
"
).
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Proof. Let M¯Ext"(E*,A) and ρ(q) be the ε-symmetric space on M. Since ρ(q)

is metabolic, there exists an exact sequence

0MNNMN
i

MMMN
ihρ(q)

Nh MN 0.

Let

0MNQ
$
MN
¦
$ Q

#
MN
¦
# Q

"
MN
¦
" Q

!
MN

η
NMN 0

be a projective resolution of N. By dualizing this resolution, we get a projective

resolution

0MNQ$

!
MN
¦$

" Q$

"
MN
¦$

# Q$

#
MN
¦$

$ Q$

$
MN
η«

Nh MN 0

of Nh. By lifting the identity map of Nh, we obtain a commutative diagram

(Figure 13).

Q0
*

Q3

id

M

N∨

0

0

∂3

∂3
*

iη

θ

0

φ3 φ2

∂1
* η !

Q2

Q1
*

Q1

∂2

∂2
*

∂1

φ1

Q2
*

Q0

Q3
*

N∨i∨ρ(q)

F 13.

Let

δ
"
¯ 0¦"

0

®φ
"

¦$

$

1 , δ
#
¯ 0¦#

0

φ
#

¦$

#

1 , δ
$
¯ 0¦$

0

®φ
$

¦$

"

1 .
By Lemma 3.5, Figure 14 is commutative.

Q0
*

N

N∨

∂3

η !

Q3

∂2
*

i∨ρ (q)

0

0

0

0

0

0

0

0

0

0

0

Q3 ⊕ Q0
*

Q1
*

Q2

Q2 ⊕ Q1
*

Q2
*

Q1

Q3
*

Q0

Q1 ⊕ Q2
* Q0 ⊕ Q3

*

0

0

0

0

0

η

i

δ3

∂1
*

∂2

δ2 M
(iη,θ)

∂3
*

∂1

δ1

F 14.
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Since the first row, the last rows and all the columns in Figure 14 are exact

and the diagram is commutative, from the long exact homology sequence [4,

Theorem 4.1, p. 45] we get that the middle row is also exact. By dualizing Figure 14,

we get the commutative diagram in Figure 15, with exact rows and columns.

Q0
*

N∨∨

N∨

∂3

η !

Q3

∂2
*

i∨

0

0

0

0

0

0

0

0

0

0

0

Q3 ⊕ Q0
*

Q1
*

Q2

Q2 ⊕ Q1
*

Q2
*

Q1

Q3
*

Q0

Q1 ⊕ Q2
* Q0 ⊕ Q3

*

0

0

0

0

0

η!!

δ1
*

∂1
*

∂2

δ2
*

M∨(µ,ν )

∂3
*

∂1

δ3
*

ρ (q)∨i∨∨

F 15.

Q0
* N∨

∂3

η ′

Q2
i∨

0

Q1 Q0

Q1
* Q2

* Q3
* 0

0

φ1
*

∂2 M∨

∂1
*

ρ(q)∨i∨∨η″
Q3

φ2
* φ3

*

∂1

∂2
* ∂3

*

ν

N∨

id

F 16.

By Lemma 3.5, Figure 16 is commutative. From the definition of η§ and # :NMNNhh

(cf. Figure 2) it follows that #η¯®η§. Since ρ(q)h#¯®ερ(q), we have the

commutative diagram in Figure 17, where ν«¯ ερ(q)−"ν.

Q0
* N∨

∂3

η !

Q2

i∨ ρ(q)

0

Q1 Q0

Q1
* Q2

* Q3
* 0

0

φ1
*

∂2 M

∂1
*

iη
Q3

φ2
* φ3

*

∂1

∂2
* ∂3

*

ν!

N∨

εid

F 17.
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From Figure 13 and Figure 17 we get maps s
"
:Q$

#
MNQ

"
and s

#
:Q$

"
MNQ

#
such

that φ
#
®εφ$

#
¯ ¦

#
s
#
®s

"
¦$

#
. Let φ¯φ

#
®ε¦

#
s$
"
. Then we have

¦
"
φ¯ ¦

"
φ
#

¯ ¦
"
(φ

#
®εφ$

#
)­ε¦

"
φ$

#

¯ ¦
"
(¦

#
s
#
®s

"
¦$

#
)­ε¦

"
φ$

#

¯ ε¦
"
(φ$

#
®εs

"
¦$

#
)

¯ ε¦
"
φ*.

Let

δ¯
I

J

¦
#

0

φ­εφ*

2

ε¦$

#

K

L

.

It is easy to see that Figure 18 commutes.

Q0
*

N

N∨

∂3

η !

Q3

ε∂2
*

i∨ρ (q)

0

0

0

0

0

0

0

0

0

0

0

Q3 ⊕ Q0
*

Q1
*

Q2

Q2 ⊕ Q1
*

Q2
*

Q1

Q3
*

Q0

Q1 ⊕ Q2
* Q0 ⊕ Q3

*

0

0

0

0

0

η

i

δ1
*

∂1
*

∂2

δ
M

(η,θ )

∂3
*

∂1

δ1

F 18.

Since the first row, the last row and all the columns are exact, the middle row

is also exact. Let E «¯ker (δ
"
). Since δ*#¯ εδ, from the middle row of Figure

18 it is easy to see that δ induces an ε-symmetric isomorphism q« :E «MNE «*. Let

(% «, q«) be the ε-symmetric space over Y with Γ(% «)¯E « and Γ(q«)¯ q«. Since

Ext"(E «,A)DM¯Ext"(E*,A) and E has no unimodular elements, by [2, Corollary

7.2.5, Lemma 7.1] we have E «¯EGAn. Then by Lemma 2.3, (E «, q«)D
(E, q

"
)v(An, q

#
) for some ε-symmetric spaces q

"
and q

#
on E and An respectively. Let

q
"
be the ε-symmetric space on % such that Γ(q

"
)¯ q

"
. Let F¯ker (¦

"
) and & be the

vector bundle over Y with Γ(& )¯F. Then using Figure 18, it is easy to see that &
is a Lagrangian for (% «, q«)D (%, q

"
)v(/n

Y
, q

#
), where Γ(q

#
)¯ q

#
. Since the map

E «MNF* induced by Figure 18 induces ihρ(q) :MMNNh, we have ihρ(q)¯ ihρ(q
"
).

Thus, by Lemma 3.7 below, we have ρ(q)D ρ(q
"
). *
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L 3.7. Let ψ
"
and ψ

#
be two ε-symmetric spaces on M. Suppose there exists

a submodule N such that

0MMNNMMN
i

MMMN
ihψ

" Nh MMN 0

is exact and ihψ
"
¯ ihψ

#
. Then ψ

"
Dψ

#
.

Proof. Since ihψ
"
¯ ihψ

#
, there exists a map θ :MMNN such that ψ−"

"
ψ

#
®1¯

iθ, that is, ψ
"
iθ¯ψ

#
®ψ

"
¯ θhihψ

"
. We have

(1­θhih)

2
ψ

"

(1­iθ)

2
¯

(ψ
"
­θhihψ

"
)

2

(1­iθ)

2

¯ψ
"
­ψ

"

iθ

2
­

θhih

2
ψ

"
­

θhih

2
ψ

"

iθ

2

¯ψ
"
­

ψ
#
®ψ

"

2
­

ψ
#
®ψ

"

2

¯ψ
#
. *

4. The Witt groups of the punctured spectrum and purity

Let A be a regular local ring of dimension 3 with 2 invertible. Let Y¯
Spec(A)c²m´, where m is the maximal ideal of A.

P 4.1. Let % be a �ector bundle on Y and q :%MN%* be an ε-symmetric

isomorphism. Suppose that Γ(% ) has no unimodular elements. If ρ(q) is isomorphic to

a hyperbolic space, then q is in the image of W ε(A).

Proof. Let N be a finite-length A-module such that (M, ρ(q)) is isomorphic to the

hyperbolic space ((N ). Let & be the vector bundle on Y with Γ(& ) having no

unimodular elements and such that H "(Y,& )DN (cf. §3). Since

H "(Y,% )DNGNh DH "(Y,&G& *)

with Γ(% ) and Γ(&G& *) admitting no unimodular elements, by [2, Lemma

7.1, Corollary 7.2.5] we can and do identify % with &G& *. Let ψh be an isometry of

ρ(q) with

ρ000ε
1

011 .
Then by [2, Corollary 7.2.5] there exists an automorphism ψ of % such that

H "(ψ)¯ψh . By the definition of ρ we have

ρ(ψ*qψ)¯ β
E
Ext"(Γ(ψ*)qΓ(ψ))

¯ β
E
Ext"(Γ(ψ*))Ext"(q) Ext"(Γ(ψ))

where E¯Γ(% ) and q¯Γ(q). By Lemma 2.2(ii), we have β
E
Ext"(Γ(ψ*))¯

Ext"(Γ(ψ))hβ
E
, so that

ρ(ψ*qψ)¯Ext"(Γ(ψ))hβ
E
Ext"(q) Ext"(Γ(ψ))

¯Ext"(Γ(ψ))hρ(q) Ext"(Γ(ψ))

¯H "(ψ)hρ(q)H"(ψ)

¯ψh ρ(q)ψ4 .

We replace q by ψ*qψ and assume that
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ρ(q)¯ 00ε
1

01 .
Let

q¯ 0 α

εδ*

δ

β1
with α :&MN& *, β :& *MN&, δ :& *MN& * maps such that α*¯ εα, β*¯ εβ.

Since

ρ(q)¯ 00ε
1

01 ,
H "(α)¯ 0 and H "(β)¯ 0. Therefore, by [2, Corollary 7.2.5], there exist

f
"
:&MN/n

Y
, f

#
:& *MN/n

Y
, g

"
:/n

Y
MN& * and g

#
:/n

Y
MN&

such that α¯ g
"
f
"

and β¯ g
#

f
#
. Let us consider the automorphism

ψ¯

I

J

0

1

0

0

1

0

0

0

®g
#
}2

®g
"
}2

1

0

f $
#

f $
"

0

1

K

L

of &G& *G/n

Y
G/n$

Y
. We have

q«¯ψ

I

J

εδ*

α

0

0

β

δ

0

0

0

0

0

ε

0

0

1

0

K

L

ψ*¯

I

J

εX*

0

f
"

®εg$

"
}2

0

X

f
#

®εg$

#
}2

εf $
#

εf $
"

0

ε

®g
#
}2

®g
"
}2

1

0

K

L

where X¯ δ®εf $
"
g$

#
}2®g

"
f
#
}2. Since Γ(& ) and Γ(& *) admit no unimodular

elements, f
"
3 f

#
3 0modm. Hence X is an isomorphism. Since q« restricted to

&G & * is

0 0

εX*

X

0 1
with X an isomorphism, q« splits as

0 0

εX*

X

0 1vq§

for some q§ supported on a bundle % §. Since %G/n

Y
G/n*

Y
D%G%§, by [2, Corollary

7.2.5], %§ is a trivial bundle and hence q§ is in the image of W ε(A). Since

qvH(/n

Y
)D q«D 0 0

εX*

X

0 1vq§

it follows that q is in the image of W ε(A). *

L 4.2. Let M be a finite-length A-module and ψ :MMNMh be an

ε-symmetric isomorphism. Then there exists a �ector bundle % o�er Y with a

(®ε)-symmetric isomorphism q :%MN%* such that ρ(q)¯ψ.
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Proof. Let % be a vector bundle on Y such that H "(Y,% )¯M (cf. §3) and E¯
Γ(% ) has no unimodular elements. Then (cf. §3) the projective dimension of E is less

than or equal to 1 and Ext"(E*,A)DM. Let

0MNP
"
MNP

!
MNEMN 0

and

0MNQ
"
MNQ

!
MNE*MN 0

be projective resolutions of E and E* respectively. By dualizing the projective

resolution of E* we get an exact sequence

0MNEMNQ$

!
MNQ$

"
MNMMN 0.

By taking the Yoneda composition of this exact sequence with the projective

resolution of E we get a projective resolution

0MNP
"
MNP

!
MNQ$

!
MNQ$

"
MNMMN 0

of M. By dualizing this we get a projective resolution

0MNQ
"
MNQ

!
MNP$

!
MNP$

"
MNMh MN 0

of Mh. By lifting the ε-symmetric isomorphism ψ :MMNMh, we get a commutative

diagram of exact sequences (Figure 19).

P1 M

Q1

0

Q0 P0
*

P0 Q0
* Q1

* 0

0

3

M∨0

2 1 0

P1
*

F 19.

Since E has no unimodular elements it is easy to see, as in the proof of Proposition 3.6,

that Figure 19 induces a (®ε)-symmetric space q on % such that ρ(q)¯ψ. *

T 4.3. Let A be a regular local ring of dimension 3 and let m be its maximal

ideal. Assume that 2 is in�ertible in A. Let Y¯Spec(A)c²m´. Then the complex

0MNW ε(A)MN
ι

W ε(Y )MN
ρ

W -ε

fl
(A)MN 0

is exact, where ι is induced by the restriction.

Proof. If ε¯ 1, then the injectivity of ι follows from the injectivity of the

canonical homomorphism W(A)MNW(K ) [6, Theorem 23], where K is the quotient

field of A. If ε¯®1, ι is injective because W−"(A)¯ 0.

We now prove the exactness in the middle. As we remarked in §3, ρι¯ 0. Let

(%, q) be an ε-symmetric space over Y such that ρ(q) is zero in W−ε

fl
(A). Then, by Lemma

1.4, ρ(q) is metabolic. We show that (%, q) is in the image of ι. In view of Lemma 2.3,

we assume that Γ(% ) has no unimodular elements. Then, by Proposition 3.6, there

exist ε-symmetric spaces q
"

and q
#

supported respectively on % and /n

Y
for some

integer n, such that q
"
v q

#
is metabolic and ρ(q)D ρ(q

"
). Thus ρ(qv®q

"
) is

isomorphic to a hyperbolic space. Since Γ(%G% ) has no unimodular elements, it
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follows from Proposition 4.1 that qv®q
"
is in the image of ι. Since q

#
is in the image

of ι and q
"
vq

#
is metabolic, q

"
and hence q is in the image of ι.

The surjectivity of ρ follows from Lemma 4.2. *

Let A be any regular ring. Let Spec"(A) denote the set of prime ideals of A of

height 1. Then for any P `Spec"(A), the local ring A
P

is a discrete valuation ring. Let

¦
P
:W(K )MNW(A

P
}PA

P
) denote the second residue homomorphism with respect to

some choice of a parameter of PA
P
, where K is the quotient field of A.

C 4.4. Let A be a regular local ring of dimension 3, m be its maximal

ideal and K be its quotient field. Assume that 2 is in�ertible in A. The sequence

0MNW(A)MNW(K )MN
G¦

P G
P`Spec"(A)

W(A
P
}PA

P
)

is exact.

Proof. The injectivity of W(A)MNW(K ) is proved in [6, Theorem 23]. Since

W−"
fl

(A)DW−"(A}m)¯ 0, by Theorem 4.3 we have W(A)DW(Y ). Thus it is enough

to prove that the complex

W(Y )MNW(K )MMN
G¦

P G
P`Spec"(A)

W(A
P
}PA

P
)

is exact. Let q be a quadratic space over K such that ¦
P
(q)¯ 0 for all height 1 prime

ideals P of A. Since Y is a regular scheme of dimension 2, by [1, 2.5, p. 112], there

exists a quadratic space (%, q) over Y¯Spec(A)c²m´, such that its image in W(K )

under the restriction map is equal to q. This completes the proof. *

Using Corollary 4.4, one can prove the following theorem (cf. [8, Proposition

2.1]).

C 4.5. Let A be a regular ring of dimension 3 and K be its quotient field.

Assume that 2 is in�ertible in A. The sequence

0MNW(A)MNW(K)MMN
G¦

P G
P`Spec"(A)

W(A
P
}PA

P
)

is exact.

We end this paper by giving a computation of W−"(Y ) using Theorem 4.3.

C 4.6. Let A be a regular local ring of dimension 3 and m be its maximal

ideal. Assume that 2 is in�ertible in A. Let Y¯Spec(A)c²m´. Then W−"(Y )DW(A}m).

Proof. Since W−"(A)¯ 0 and W
fl
(A)DW(A}m), the result follows from

Theorem 4.3. *
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