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This editorial refers to ‘Inhibition of miR-92a improves
re-endothelialization and prevents neointima formation fol-
lowing vascular injury’ by J.-M. Daniel et al., pp. 564–572, this
issue.

The adverse consequences of procedure-associated endovascular
injury may limit the long-term benefits of coronary interventions like
angioplasty and stent insertion. Damage to the artery’s endothelium
and impaired re-endothelialization, also caused by the use of non-
selective anti-proliferative drugs, may promote the development of re-
stenosis—a pathological condition characterized by smooth muscle cell
(SMC) hyperplasia, vessel thickening and lumen narrowing, and impaired
blood flow—in a significant proportion of the patients. Reducing the
occurrence of restenosis after coronary interventions thus remains an
important medical need.1 In this issue of Cardiovascular Research,
Daniel et al. 2 report that both genetic and molecular (therapeutic)
approaches to inhibit microRNA (miRNA)-92a facilitate arterial re-
endothelialization and prevent restenosis in a mouse model of femoral
artery injury.

miRNAs are a class of small non-coding RNAs that fine-tune gene ex-
pression at the post-transcriptional level. Several miRNAs, including
miR-126, miR-132, miR-222, and miR-92a, have been implicated in the
regulation of endothelial cell (EC) biology.3 miR-92a is a member of
the miR-17-92 cluster, which encodes six distinct miRNAs broadly
involved in physiological and pathological processes such as cell prolifer-
ation, development, immunity, and tumorigenesis.4 While being deregu-
lated in several leukaemias and solid tumours, miR-92a also functions as a
negative regulator of EC proliferation, angiogenesis, and vascular repair.
Therapeutic modulation of miR-92a activity in ECs may, therefore,
rescue the damaged endothelium after coronary interventions.5– 8

Daniel et al.2 employed a mouse model of wire-induced injury of the
femoral artery to analyse the temporal and cellular expression of
miR-92a after vascular damage. They found that miR-92a levels
increased post-injury and peaked at Day 10, a time-point when SMC
hyperplasia was already evident in the injured artery. The analysis of cul-
tured ECs and SMCs, as well as intact or endothelium-denudated arter-
ies, suggested thatECsandnotSMCs were themain sourceofmiR-92a in
the injured arteries. Moreover, transfection of miR-92a inhibited

vascular endothelial growth factor-A (VEGFA)-induced EC proliferation
and migration, but did not affect platelet-derived growth factor-BB
(PDGFB)-induced SMC proliferation or migration, indicating that the
functions of miR-92a are largely EC-autonomous. The authors then
used two loss-of-function strategies to attenuate miR-92a activity in
the damaged arteries. Both the systemic delivery of locked nucleic
acid (LNA)-modified anti-miR-92a oligonucleotides9 and the condition-
al knockout of miR-92a in TIE2+ ECs stimulated re-endothelialization
and decreased SMC hyperplasia and inflammatory–macrophage infiltra-
tion in the femoral artery after wire-induced injury (Figure 1). These data
suggest that suppression of endothelial miR-92a activity promotes arter-
ial re-endothelialization and limits SMC hyperplasia, at least in part,
through direct pro-proliferative effects on ECs.2 Consistent with these
findings, previous studies showed that inhibition of miR-92a enhances
VEGFA-induced EC proliferation by activating mitogenic ERK and JNK
signalling.6

Besides direct pro-proliferative effects on ECs, inhibition of miR-92a
may attenuate experimental restenosis through additional mechanisms.
Among the validated targets of miR-92a are the deacetylase sirtuin-1
(Sirt1) and integrin-a5 (Itga5). SIRT1 is highlyexpressed in the angiogenic
vasculature and promotes sprouting angiogenesis, whereas ITGA5
enables migration, pro-angiogenic signalling, and angiogenesis of ECs
by modulating their interactions with the extra-cellular matrix.10

Daniel et al.2 observed increased expression of both SIRT1 and
ITGA5 in the arterial ECs of anti-miR-92a–treated mice 2 weeks
post-injury, suggesting that therapeutic inhibition of miR-92a stimulates
re-endothelialization, at least in part, by de-repressing both pro-
angiogenic factors. miR-92a also targets the transcription factors
Krüppel-like factor-2 (KLF2) and 4,11 which confer anti-inflammatory
and atheroprotective properties to the endothelium. De-repressed
KLF2 and 4 may operate to down-regulate the expression of leucocyte
adhesion molecules on ECs, hence limiting inflammatory cell infiltration,
and to enhance endothelial nitric oxide (NO) synthetase (NOS3/
eNOS) activity, which inhibits SMC proliferation through NO pro-
duction.6,11,12 Thus, therapeutic inhibition of miR-92a may initiate an
anti-atherosclerotic programme in ECs that limits inflammatory cell
infiltration and SMC proliferation in the healing arteries.5 –8

Daniel et al.2 andprevious studies5 –8 employedanti-miR-92a oligonu-
cleotides delivered systemically in animal models of vascular injury.
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Because systemic anti-miR oligonucleotides target multiple organs and
cell types,9,13 this approach may have altered miR-92a activity also in
non-ECs. Furthermore, anti-miR-92a oligonucleotides may potentially
target several mature miRNAs. Indeed, miR-92a, miR-92b, and miR-25
belong to the same miRNA family and thus share the seed-sequence
used to design anti-miR oligonucleotides. Moreover, two mature
miR-92a sequences exist that are expressed from two distinct genetic
loci, miR-17-92 (encoding miR-92a-1) and miR-106-363 (encoding
miR-92a-2). Based on the above, non-EC autonomous effects and po-
tential co-targeting of distinct miRNA species could not be formally
excluded in previous studies.5– 8 To address these issues, Daniel et al.2

employed conditional knockout strategies either targeting the
miR-92a-1 gene broadly in haematopoietic cells or specifically in TIE2-
lineage cells, which comprise both ECs and haematopoietic cells.14 By
this comparative analysis, the authors unequivocally showed that the

miR-92a sequence encoded by the miR-17-92 locus is functionally im-
portant in the endothelial, but not in the haematopoietic, lineage.

Although not yetbroadly tested in theclinic, anti-miR therapeutics are
being successfully used in animal models to experimentally suppress miR
activity.9,13 For example, systemic anti-miR-33 therapy holds promise
for the treatment of dyslipidaemias and associated vascular/cardiac dis-
eases, as shown by preclinical studies in animal models.13 Remarkably, a
phase II clinical study recently demonstrated the efficacy of a LNA-
modified anti-miR-122 for the inhibition of hepatitis C virus (HCV) rep-
lication in patients.15 It should be noted that both the pharmacokinetic
properties and the intravenous route of administration of anti-miRs fa-
cilitate targeting of the liver, which may explain the reported success
of anti-miR-122/33–based treatments in animal models and patients.13

On the other hand, it is currently unclear whether systemic administra-
tion of anti-miR-92a therapeutics would efficiently target the arterial

Figure 1 Inhibition of restenosis by therapeutic or genetic miR-92a targeting. Endothelial damage consequent to coronary interventions (A) up-regulates
the expression of miR-92a, which directly targets the pro-angiogenic and anti-inflammatory factors Sirt1, Itga5, and Klf2/4 (B), inhibits EC proliferation, and
promotes the development of restenosis (C). Systemic treatment with anti-miR-92a oligonucleotides (D), or the genetic deletion of miR-92a in ECs (E),
restores Sirt1, Itga5, and Klf2/4 levels in the healing endothelium, stimulates re-endothelialization, decreases SMC hyperplasia (via increased eNOS activity
and NO production), and ultimately limits the development of restenosis (F ). Please see text for references.
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endothelium of patients undergoing coronary interventions. Also, po-
tential toxicities associated with the systemic down-regulation of
miR-92a, particularly in non-ECs, should be considered. Although
miR-92a knockout mice are viable and fertile, they show increased em-
bryonic lethality as well as growth and skeletal defects.16 To alleviate
these concerns, drug-eluting stents1 that deliver anti-miR-92a locally
to the healing endothelium should be tested in large animal models to
explore the advantages and disadvantages of this approach compared
with systemic administration.
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