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INTRODUCTION 

Essentiality of inorganic elements is not always easy to prove (Underwood & Mertz, 1987), 
but those considered to be essential for normal body functions include (i) the major 
elements, sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), 
and chloride (Cl), (ii) the trace elements, cobalt (Co), chromium (Cr), copper (Cu), iron 
(Fe), iodine (I), manganese (Mn), molydenum (Mo), selenium (Se) and zinc (Zn), and (iii) 
the ‘newer’ trace elements, arsenic (As), lead (Pb), lithium (Li), nickel (Ni), silicon (Si), 
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vanadium (V), and possibly fluorine (F) and tin (Sn). Well defined dietary deficiencies have 
been described in humans for Ca, Fe, I,  Se and Zn, and, under special dietary circumstances 
such as total parenteral nutrition, for Mg, Cr, Cu and Mn. Deficiencies in Co may also 
occur but only in relation to deficiencies in vitamin B,, of which Co is an integral part. 

The bioavailability of a mineral or trace element is defined as the fraction of the ingested 
nutrient that is absorbed and subsequently utilized for normal physiological functions. For 
some of the elements this is the incorporation into various metalloproteins, such as Fe in 
haemoglobin. In addition, some elements, such as Ca and Mg, have a structural role in 
bones and teeth. Most elements are an integral part of a wide range of enzyme systems, for 
example Se in glutathione peroxidase. Earlier work suggesting that Cr (as glucose tolerance 
factor) potentiates the action of insulin has yet to be confirmed. 

Physiological requirements for different inorganic nutrients vary widely, depending upon 
age, sex, stage of growth, pregnancy, and lactation. Dietary requirements are calculated 
from physiological requirements and efficiency of absorption from the diet, which ranges 
from less than 1 YO to almost 100%. The variation depends on dietary and host-related 
factors, including the amount of the element consumed. 

Some inorganic nutrients, including Ca, Mg, Cu, I and Se, are relatively well absorbed, 
with reported fractional absorption values from mixed diets in man varying from 30 YO for 
Ca to almost 100 YO for I .  Homeostatic mechanisms operate whereby absorption is up- or 
down-regulated when the supply of an element is limiting or excessive. When the amount 
of element absorbed is greater than immediate requirements, the excess is either stored in 
the body (e.g. iron in the liver), excreted in the urine (e.g. Ca) or excreted via 
gastrointestinal secretions or intestinal mucosal cells (e.g. Zn, Cu). Less well absorbed trace 
elements include Fe, Zn, Mn and Cr, with absorption varying widely according to the 
nutritional status (including body stores) of the individual and the composition of the diet. 
Typical mean values for absorption from individual foods for Zn are 10-50%, and for Fe 
< 1-30 YO. The fractional absorption of Mn and Cr may be less than 5 YO. 

Dietary components greatly influence the absorption of most of the nutritionally 
important trace elements and minerals, with the exception perhaps of Se and I. The 
utilization of I by the thyroid, however, can be impeded by goitrogenic substances such as 
thiocyanate. Minor plant constituents, such as phytic acid and phenolics, can have a 
strongly inhibitory effect on absorption, peptide digestion products from dietary proteins 
can enhance or inhibit absorption depending on their nature, and there are several 
mineral-mineral interactions. Dietary components appear to have the greatest effect on the 
absorption of Fe and Zn, and consequently many human bioavailability studies have been 
made on these elements. Some elements, such as Mg, Cu, I and Se, are less well studied in 
man and clearly need further investigation. 

In this review a brief summary will be given of the food sources, absorptive mechanism 
and subsequent metabolism of the nine minerals and trace elements identified as being 
nutritionally important. Physiological and dietary factors which influence their bio- 
availability in man are then discussed in more detail, and animal studies referred to only 
in the absence of data from human studies. 

S U S A N  F A I R W E A T H E R - T A I T  A N D  R. F. H U R R E L L  

CALCIUM 

FOOD S O U R C E S  
Milk and milk products are the most important dietary sources of Ca followed by cereal 
products and fruits and vegetables (British Nutrition Foundation, 1989 ; National Research 
Council, 1989). Tinned fish, such as sardines, are rich sources of Ca but do not make a 
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significant contribution to intake for most people. Foods of plant origin are not 
particularly good sources of Ca, but the growing number of Ca fortified products is leading 
to a wider range of rich dietary sources of Ca. 

ABSORPTION A N D  METABOLISM 
Ca is absorbed in the intestine by two routes, transcellular and paracellular (Bronner, 
1987). The transcellular route is saturable and subject to physiological and nutritional 
regulation via vitamin D while the paracellular route is non-saturable, essentially 
independent of nutritional and physiological regulation, and is concentration dependent. 
Most Ca absorption in humans occurs in the small intestine, but there is some evidence 
(Barger-Lux et al. 1989) for a small colonic component. 

Plasma Ca concentration is maintained within narrow limits by the complex and 
integrated hormonal regulation of intestinal Ca absorption, urinary Ca excretion and bone 
turnover. A reduction in plasma Ca concentration evokes a parathyroid hormone mediated 
increase in plasma 1,25-dihydroxyvitamin D,, which stimulates increased intestinal Ca 
absorption via the active transcellular route. 

Efficiency of absorption is influenced by a variety of physiological factors (Allen, 1982). 
In general it falls with increasing age, menopause, vitamin D deficiency and disease states 
such as malabsorption syndromes, coeliac disease, Crohn’s disease, chronic renal failure, 
diabetes, hypoparathyroidism and primary biliary cirrhosis. Increased efficiency of 
absorption is observed with vitamin D excess, Ca deficiency, phosphorus deficiency, 
pregnancy, lactation and certain disease states such as hyperparathyroidism, sarcoidosis 
and idiopathic hypercalciuria. Faecal excretion (incomplete absorption, desquamation and 
losses in digestive secretions) may account for up to 80 YO of the overall dietary Ca intake 
while urinary excretion is lower, between 10 and 35 YO of the intake (Davis et al. 1970). 

D I E T A R Y  F A C T O R S  A F F E C T I N G  C A L C I U M  ABSORPTION 

Habitual calcium intake 
The time period and physiological state of individuals are important determinants of the 

adaptive response. Ireland & Fordtran (1973) reported that the efficiency of Ca absorption 
was greater in human subjects adapted to a low Ca diet (300 mg/d) than a high Ca diet 
(2000 mg/d). Similarly, Fairweather-Tait et al. (1995b) found a higher efficiency of 
absorption in lactating Gambian mothers adapted to a low Ca diet (283 mg/d) than UK 
mothers on higher Ca intakes (1 168 mg/d). Ca supplementation (300 mg/d) for 6 months 
resulted in a small reduction in fractional Ca absorption from a standard meal in Chinese 
children (Lee et al. 1995). Heaney (1991) concluded that absorption from a meal is 
influenced more by variations in Ca content than habitual Ca intake. 

Calcium loud 
Ca absorption is dose dependent (Heaney, 1991). Fractional Ca absorption from Ca 

gluconate solution, administered to human subjects through an intestinal perfusion system, 
decreased with increasing Ca load but absolute Ca absorption increased (Ireland & 
Fordtran, 1973). 

Milk and milk products 
Ca in milk and milk products has a relatively high bioavailability. Mean Ca absorption 

from cows’ milk in healthy human adults ranges from 20 to 45% (Heaney et al. 1988; 
Fairweather-Tait et al. 1989a; Griessen et al. 1989; Heaney & Weaver, 1990). 
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Plant ,foods 
Ca absorption from a meal containing Ca oxalate is less than from a meal containing Ca 

carbonate (Heaney et al. 1990). Thus vegetables which are rich in oxalate may have low 
Ca bioavailability, e.g. 5.1 YO from spinach compared to 27-6 YO for milk, at an equivalent Ca 
load (Heaney et al. 1988), whereas Ca absorption is higher from low oxalate vegetables, 
kale (41 YO), and watercress (27%) (Fairweather-Tait et al. 1 9 8 9 ~ ;  Heaney & Weaver, 
1990). 

Phytate reduces Ca absorption (McCance & Widdowson, 1942; Reinhold et al. 1973; 
Morris & Ellis, 1985). Ca absorption from high phytate soyabeans (31 YO) is lower than that 
from low phytate soyabeans (41 YO) (Heaney et al. 1991), but wheat products, with the 
exception of high phytate wheat bran, do not have a negative effect on Ca absorption from 
the diet (Weaver et al. 1991). 

Fat 
In the healthy adult, the amount of fat in the diet does not affect Ca absorption (Allen, 

1982), but with fat malabsorption Ca absorption is reduced (Agnew & Holdsworth, 1971), 
probably owing to the formation of insoluble soaps in the intestinal lumen. 

Calcium supplements 
Differences in chemical solubility between Ca supplement preparations do not affect Ca 

absorption apart from highly insoluble salts (Sheikh et al. 1987; Heaney et al. 1990). 
However, there is some evidence of enhanced absorbability of Ca citrate malate (CCM) 
(Smith et al. 1987; Miller et al. 1988). Salts that require acid for solubilization may be poor 
sources of Ca for individuals with impaired gastric acid secretion unless ingested with a 
meal (Bo-Linn et al. 1984; Recker, 1985). Co-ingestion of a light meal increases Ca 
absorption, which may be due to slower gastric emptying, and thus a slower presentation 
of Ca to intestinal absorption sites (Heaney et al. 1989). 

D I E T A R Y  F A C T O R S  A F F E C T I N G  U R I N A R Y  EXCRETION 
Urinary Ca excretion is influenced by a number of dietary factors, of which protein and 
sodium are the most important. Zemel (1988) has estimated that doubling protein intake 
will increase urinary Ca excretion by 50% when dietary Ca and phosphorus are held 
constant. The effect of protein is more marked when purified proteins (casein, lactalbumin, 
gelatin or egg white) are administered in controlled experiments than when high protein 
foods are consumed since the concomitant intake of phosphate partly offsets the calciuric 
action of dietary protein (Spencer et al. 1988). 

Increasing dietary sodium intake as sodium chloride has been shown. to increase urinary 
excretion of Ca in humans (Castenmiller et al. 1985; Shortt et al. 1988). Healthy individuals 
who have adequate Ca and vitamin D intakes and who absorb dietary Ca efficiently adapt 
to high salt intakes by increasing Ca absorption to compensate for the increased urinary 
Ca loss (Fujita et al. 1984). However, the increase in Ca absorption may not be sufficient 
to balance the increase in urinary Ca excretion (Breslau et al. 1982). 

CONCLUSION 
Ca absorption may be influenced by a number of dietary factors. Further studies in humans 
using radio- or stable isotopes are needed to quantify their influence on Ca bioavailability 
and to evaluate the extent to which physiological adaptation can compensate for differences 
in Ca bioavailability in foods. 
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CHROMIUM 

F O O D  S O U R C E S  A N D  E F F E C T S  O F  PROCESSING 
Richest dietary sources of Cr are spices such as black pepper, brewer’s yeast, mushrooms, 
prunes, raisins, nuts, asparagus, beer and wine. Refining of cereals and sugar removes most 
of the native Cr, but stainless steel vessels in contact with acidic foods may contribute 
additional Cr. Beverages, including milk, may provide up to one-third of the daily intake 
of Cr. However, the insulin potentiating activity of foods (see below) may not correlate 
with total Cr content (Khan et al. 1990). 

ABSORPTION,  T R A N S P O R T  A N D  METABOLISM 
Intestinal absorption of inorganic trivalent Cr is less than 3 %, irrespective of dose, but 
hexavalent Cr from industrial compounds, which is considered highly toxic, is better 
absorbed. There is no evidence that natural complexes of Cr (e.g. as found in brewer’s 
yeast) are better absorbed than simple Cr salts. Cr is absorbed in the small intestine, 
primarily in the jejunum in humans (Doisy et al. 1976). The mechanism is not well 
understood, but a non-saturable passive diffusion process seems likely (Anderson & 
Kozlovsky, 1985). Absorption is reported to be higher in women than in men, and higher 
urinary Cr values are reported for the elderly, suggesting that Cr retention changes with age 
(Offenbacher, 1992). Elevated urinary Cr levels are also present during various forms of 
stress, such as strenuous exercise, physical trauma and infection. 

Glucose loading tests have been performed in human subjects to examine the link 
between Cr deficiency and carbohydrate metabolism. The disappearance of plasma Cr after 
an oral glucose tolerance test cannot be explained by increased urinary loss but might be 
due to transient changes between Cr and insulin-sensitive tissues (Morris et al. 1992). 

D E F I C I E N C Y  
Glucose intolerance is one of the principal signs of Cr deficiency. Cr acts by increasing the 
activity of insulin and consequently less insulin is required to control glycaemia. These 
aspects are reviewed by Mertz (1993). 

D I E T A R Y  F A C T O R S  A F F E C T I N G  ABSORPTION A N D  
U T I L I Z A T I O N  

Amino acids 
At neutral or basic pH, hydrated Cr polymerizes and forms an inert precipitate. Ligands, 

such as amino acids and keto acids, compete with the hydroxide ions in biological 
solutions, prevent precipitation, and form rapidly diffusing Cr complexes of low molecular 
weight. In rats, Cr absorption is facilitated by certain amino acids, such as histidine which 
chelates Cr in the small intestine (Dowling et al. 1990). 

Vitamins 
An acute dose of ascorbic acid enhanced ’lCr absorption in rats and ascorbate-depleted 

guineapigs (Seaborn & Stoecker, 1992). A combination of nicotinic acid and Cr is required 
to optimize human glucose metabolism (Urberg & Zemel, 1987). 
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Carbohydrates 

high in simple sugars increase urinary Cr excretion in humans (Kozlovsky et a1 1986). 

Metals 
In animals, interactions with Cr have been noted for Zn, Fe, V and Ca. An oral dose of 

zinc decreased the absorption of 51Cr in Zn deficient rats, and it is possible that Cr and Zn 
are being absorbed by a common mechanism. Similarly the administration of Fe inhibits 
the absorption of Cr, indicating that Cr and Fe also share a common gastrointestinal 
transport mechanism. Antacid (CaCO,) reduces Cr uptake and retention in rats (Seaborn 
& Stoecker, 1990). 

Chelating substances 
Chelating substances such as oxalate have been reported to increase Cr absorption 

whereas citrate and EDTA are apparently without effect. Conversely, phytates have been 
shown to decrease Cr transport through the rat intestine (Chen et al. 1973). 

There is little or no evidence that carbohydrates can affect Cr bioavailability but diets 

CONCLUSIONS 
Animal studies suggest that some amino acids and nicotinic acid increase Cr absorption 
whereas Zn and Fe reduce it. There are few studies on Cr bioavailability in man but the use 
of stable isotopes offers a possibility of investigating this further. 

COPPER 

F O O D  SOURCES 
The Cu content of food reflects its geographical origin and the processing conditions it 
undergoes prior to consumption. Foods high in copper include liver, kidney, shellfish, 
wholegrain cereals and nuts. Soft or acidic water passing through copper pipes can also 
contribute copper to the diet. 

ABSORPTION, T R A N S P O R T  A N D  METABOLISM 
Cu absorption in humans ranges from 25 to 70 %, the major site being the small intestine. 
Intestinal absorption (active and passive) is regulated by nutritional status, the chemical 
form of the element, and interactions with dietary components (Johnson et al. 1988). There 
appears to be no effect of age or sex on net Cu absorption (Johnson et al. 1992). 

Newly absorbed Cu is transported in the plasma loosely bound to albumin and 
incorporated into caeruloplasmin in the liver (Davis & Mertz, 1987). Approximately 
0.5-1.5 mg absorbed Cu is re-excreted in the bile and hence lost in faeces. Very small 
amounts are excreted in the urine, sweat and skin. Genetic defects in Cu metabolism result 
in Cu deficiency (Menkes’ syndrome) or toxicity (Wilson’s disease). 

D E F I C I E N C Y  
Cu deficiency has been observed in premature infants, infants exclusively fed on cows’ milk, 
infants with Menkes’ syndrome, malabsorption conditions, and patients given inadequate 
Cu in parenteral nutrition fluids (Mills, 1992). 
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D I E T A R Y  F A C T O R S  A F F E C T I N G  ABSORPTION 
Bioavailability has been reviewed by Sandstead (1982) and Turnlund (1988). 

Level of intake 
Turnlund et al. (1989) demonstrated that Cu absorption is strongly dependent on dietary 

intake, and that most young men can achieve Cu balance from a diet of 0.8 mg Cu/d, by 
adaptive changes in Cu absorption and endogenous faecal losses. Neither urinary Cu nor 
salivary Cu are affected by dietary Cu levels (Turnlund et al. 1990), and as skin and 
menstrual losses contribute little to overall Cu losses, they have only a minor effect on Cu 
balance (Turnlund et al. 1991). 

Dietary protein 
Significantly more Cu is retained from a high protein than a low protein diet (Greger & 

Snedeker, 1980). Cu balance is more positive with animal than plant protein diets, because 
endogenous Cu losses are lower (Turnlund et al. 1991). 

Dietary jibre 
Although Cu can form complexes in vitro with phytate, hemicellulose and lignin fractions 

of dietary fibre (Cheryan, 1980), there is no evidence that fibre or phytate affects Cu 
absorption in man, but cc-cellulose and/or phytate may affect Cu utilization or endogenous 
losses (Turnlund et al. 1985). 

Ascorbic acid 
Results from animal experiments suggest that high dietary levels of ascorbic acid can 

have a negative affect on Cu bioavailability, but in humans the situation is less clear. Finley 
& Cerklewski (1983) reported that supplementation with 1500 mg ascorbic acid/d for 2 
months produced a significant drop in serum caeruloplasmin activity. Jacob et al. (1987) 
found that 600 mg ascorbic acidjd did not depress intestinal Cu absorption but it reduced 
caeruloplasmin oxidase activity. 

Influence of fructose on copper balance 
A comparison made by Reiser et al. (1985) of the effects of isoenergetic levels of fructose 

and cornstarch on Cu metabolism in men showed that superoxide dismutase was lower and 
Cu retention higher in the group fed fructose, although serum Cu and caeruloplasmin were 
similar. In a similar study, Holbrook et al. (1989) observed that the group consuming a low 
Cu fructose diet had significantly more positive balances and a greater apparent absorption 
for Cu, Zn, Fe, Mn, Ca and Mg than the group on the low Cu corn starch diet, suggesting 
that fructose increases the absorption of these minerals. 

Interactions with other elements 
Fe-Cu: The fact that serum Cu has been found to be low in some cases of iron deficiency 

anaemia suggests that iron status has an effect on Cu metabolism. Interaction between Fe 
and Cu seems to be due to impaired utilization of one in the absence of the other (Turnlund, 
1988). 

Zn-Cu : A reduction in Cu absorption has been reported in the presence of excessive Zn. 
The level necessary to impair bioavailability is unknown but results from balance studies 
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indicate that it must exceed normal dietary intakes; therapeutic levels (150 mg/d) of Zn 
supplements over extended periods of time (Turnlund, 1988) produce symptoms of Cu 
deficiency, but the effect of a Zn-Cu ratio of 15 : 1 is less than that of Cu restriction (August 
et al. 1989). The interaction may be reciprocal because low plasma Zn is often accompanied 
by high plasma Cu. 

Mo-Cu: Dietary Mo slightly above the recommended intake increased urinary Cu 
significantly in one balance study in human beings (Doesthale & Gopalan, 1974). High 
dietary Mo may mobilize Cu stores and could have the potential to induce Cu deficiency 
in men. 

Cd-Cu: Cd affects Cu status adversely, but human diets are not likely to contain enough 
Cd to be toxic (Sandstead, 1982). 

SUSAN F A I R W E A T H E R - T A I T  A N D  R. F. H U R R E L L  

Drugs 
Penicillamine is used to reduce the toxic levels of endogenous Cu in Wilson’s disease 

(Mason, 1979). Cu deficiency may occur when large quantities of antacids are taken 
(Turnlund, 1988). 

C O N C L U S I O N S  
Cu absorption in humans ranges from 25 to 70 %. The efficiency of intestinal absorption 
depends on dietary Cu level and nutritional status. Dietary components that can influence 
Cu bioavailability include amino acids and proteins, carbohydrates (fructose), dietary fibre 
and phytate, ascorbic acid and other mineral elements (Fe, Zn, Mo) that can interact with 
Cu. Amino acids, protein and fructose increase Cu absorption, while ascorbic acid and 
phytate decrease it. Drugs, such as antacids, can also negatively affect Cu absorption. 

IODINE 

F O O D  S O U R C E S  
The concentration of I in plants and animals is greatly influenced by the soil. In the Western 
world, milk and its products are good sources of I (Lamand & Tressol, 1992), especially 
where cattle feed iodinization occurs (e.g. Finland, Norway and the UK). Seafood also 
contains large amounts of I from seawater. Bread, which contains iodate products as dough 
strengtheners, and processed foods containing iodized salt are also good sources of 
inorganic iodide. In countries where I prophylaxis exists, iodized salt has been the main 
source, and in this form absorption approaches 100% (Delange & Biirgi, 1989). 

Excess I intake can result in hyperthyroidism (Pennington, 1988) when the thyroid gland 
is overstimulated. 

ABSORPTION A N D  METABOLISM 
In  food, I is present mainly as inorganic iodide, which is almost completely absorbed by the 
gastrointestinal tract. Other forms of I are converted to inorganic iodide prior to 
absorption (Pennington, 1988). I is transported in the plasma, loosely attached to the 
plasma proteins. In the thyroid gland, the iodide ions are oxidized to iodine and react with 
the tyrosine components of thyroglobulin to produce the organic components mono- and 
di-iodotyrosine which form the thyroid hormones thyroxine (T4) and triiodothyronine 
(7.3). 
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Excess I (inorganic form) is excreted in the urine (85-90 YO), with smaller amounts in the 
faeces and in sweat (Lamberg, 1993). Both organic and inorganic I are secreted into the 
gastric juice and saliva; inorganic I is completely reabsorbed but the organic I is excreted 
in the faeces (Alexander et al. 1967; Pennington, 1988). 

D E F I C I E N C Y  
Dietary I deficiency in man results in goitre, hypothyroidism, cretinism and other iodine 
deficiency disorders (IDD) (Dunn, 1993 ; Lamberg, 1993). I deficiency stimulates an 
increase in the production of thyroid stimulating hormone which causes the thyroid to 
increase the uptake of I and results in thyroid gland enlargement. 

D I E T A R Y  F A C T O R S  I N F L U E N C I N G  BIOAVAILABILITY 

Goitrogens 
The most studied factors relating to I bioavailability are the goitrogens, but these only 

have a significant impact on IDD when the usual dietary intake of I is low. Goitrogens can 
reduce the levels of I uptake by the thyroid, or impair its metabolism (Pennington, 1988; 
McDowell, 1992~).  Thioglucosides are the most common goitrogens, as found in brassica 
vegetables, e.g. cabbage, cauliflower, broccoli and turnip. On hydrolysis thioglucosides 
yield thiocyanates and isothiocyanates (Pennington, 1988) which inhibit the selective 
concentration of I by the thyroid (McDowell, 1992~). Thiocyanates are also formed by 
hydrolysis in foods such as nuts, cassava, maize and sweet potatoes (Pennington, 1988). 

Different .foods 
Few data have been produced on the absorption of I from specific foodstuffs since the 

balance studies of von Fellenberg (1926). From faecal and urinary monitoring, I 
absorption, estimated from balance studies, was 93 'YO for cod liver oil, 65 YO for cress and 
89% for KI (von Fellenberg, 1926); there was a strong correlation between I intake and 
urinary excretion. High I absorption (approximately l00Y0) was found from eggs and a 
seaweed, but a much lower absorption (10 YO) from a second seaweed, possibly owing to the 
physical structure of the seaweed preventing the release of I on digestion (Katamine et al. 
1987). Another exception to the high bioavailability of I is erythrosine, a red food 
colourant, which has high I content (58% w/w) but low absorption (2-5%), most 
erythrosine being excreted directly in the faeces (Pennington, 1988). Absorption is 
increased when erythrosine is used in foods which are processed at very high temperatures 
(Katamine et al. 1987). 

Minerals and trace elements 

affect I bioavailability (McDowell, 1992~). 
High dietary As, F or Ca, very low or high Co levels, high K and low Mn levels adversely 

Selenium cleJiciency 
Recent studies in northern Zai're (Vanderpas et al. 1990, 1992) and northwestern China 

(Ma et al. 1993) have shown that Se deficiency is an important factor in these IDD-endemic 
areas. The biochemical basis for these observations is suggested to be the fact that Se is a 
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co-factor in two enzyme systems involved in the synthesis and metabolism of thyroid 
hormones, namely : Se-containing glutathione peroxidase (Se-GPX) and type I iodo- 
thyronine 5’-deiodinase (ID-1). It is thought that the lack of Se-GPX causes a decrease in 
the functional activity of the thyroid gland owing to a build up of cytotoxic levels of H,O,, 
whereas a lack of ID-] decreases the conversion of serum T4 into the more biologically 
active T3 (Arthur er al. 1993; Vanderpas et al. 1993). 

SUSAN F A I R W E A T H E R - T A I T  AND R. F. H U R R E L L  

C O N C L U S I O N  
The amount of bioavailable I in a diet depends mainly on level of I and not so much on 
chemical form/dietary constituents ; however, some factors such as goitrogens and Se 
deficiency play a secondary role. Few measurements have been made on the bioavailability 
of I from food. It is assumed to be high but there are some exceptions. 

IRON 

F O O D  S O U R C E S  
Fe is widely distributed in meat (30-70% is haem iron), vegetables and cereals, but the 
concentration in milk and fruits and vegetable is low (Thompson, 1988). Fe in the water 
supply is also low; the maximum permitted level in drinking water in the US is 0 3  mg/l 
(Thompson, 1988). The Fe content per se of individual foods has little meaning since Fe 
bioavailability varies considerably. 

ABSORPTION,  T R A N S P O R T  A N D  METABOLISM 
Fe is absorbed into the mucosal cells of the small intestine, primarily in the duodenum, by 
an active, saturable process (Charlton & Bothwell, 1983). Efficiency of absorption is 
increased with iron deficiency and reduced when erythropoiesis is depressed. Some 
absorbed Fe is stored temporarily as ferritin in the mucosal cell either to be mobilized later 
or to be excreted when the cell is exfoliated. The haem iron molecule is taken up intact into 
the mucosal cell, where the Fe is released and enters the non-haem Fe pool. The adult male 
loses about 1 mg Fe/d via epithelial cells, gut secretions, urine and skin; in menstruating 
women, additional losses when averaged over 28 d can be a further 1.4 mg/d (Hercberg et 
af. 1987). 

Fe is transported in the plasma bound to transferrin which delivers it to the cells or to 
the bone marrow. In the adult male, 95 YO of the Fe required for haemoglobin synthesis is 
derived from degraded red blood cells (Dallman er al. 1980). The body has no active 
mechanism for excreting Fe and any in excess of needs is stored as ferritin or haemosiderin, 
principally in the liver and spleen. 

D E F I C I E N C Y  
Iron deficiency occurs when stores are depleted, and anaemia when the haemoglobin level 
in blood falls below the normal level for the individual (British Nutrition Foundation, 
1995) Anaemia is most common in infants, preschool children, adolescents and women of 
child bearing age, particularly in developing countries. Anaemia can have an adverse effect 
on psychomotor and mental development in children, mortality and morbidity of mother 
and infant during pregnancy, work performance and resistance to infection (Hercberg et al. 
1987). 
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D I E T A R Y  F A C T O R S  I N F L U E N C I N G  BIOAVAILABILITY 

Non-haem iron 
Non-haem Fe bioavailability is strongly influenced by dietary components mainly as a 

result of luminal interactions (reviewed by Hallberg, 198 1 ; British Nutrition Foundation, 
1995). Since Fe is not excreted, Fe bioavailability and Fe absorption are synonymous, and 
vary from less than 1 % in the most inhibitory meals to more than 90% for the most 
bioavailable forms of Fe, e.g. ferrous sulphate together with ascorbic acid given to Fe 
deficient individuals in the fasting state (Bezwoda et al. 1979). 

Haem iron 
Haem Fe is always relatively well absorbed (15-35 YO) and is little influenced by 

physiological or dietary factors (Monsen et al. 1978). It has been used to fortify foods 
(MacPhail et al. 1985) but is severely limited by its intense colour and low Fe concentration. 
Haemoglobin is better absorbed than haem Fe administered without the globin and is 
further enhanced by the presence of meat, possibly because protein digestion products 
prevent polymerization of haem in the lumen (MacPhail et al. 1985). Recently, the addition 
of Ca (165 mg) to a hamburger meal was shown to reduce the haem Fe absorption 
(Hallberg et al. 1992). 

Phytic acid 
Phytic acid (myoinositol hexaphosphate) is found in cereal grains and legume seeds and 

is a major determinant of the low Fe bioavailability in these foods. It is thought to form 
an insoluble complex with Fe, other minerals and peptide degradation products in the 
intestinal lumen, from which the Fe cannot be absorbed (Hurrell et al. 1992). The 
degradation of phytic acid in wheat bran almost completely removes the inhibitory effect 
of wheat bran on Fe absorption (Hallberg et al. 1987) and adding phytic acid to wheat rolls 
inhibits iron absorption dose dependently (Hallberg et al. 1989). Phytic acid is a major 
inhibitory factor in isolated soya protein. Fe absorption increased significantly when phytic 
acid free soya protein isolates were fed to adults in a liquid formula meal (Hurrell et al. 
1992) or to infants in infant formula (Davidsson et al. 1994~).  Some traditional food 
processes such as fermentation, germination or soaking can activate native phytases in 
cereal grains which then degrade phytic acid and improve Fe absorption. The results from 
human studies with pure fibre fractions, such as cellulose and pectin, indicate that fibre per 
se does not influence Fe absorption (Rossander et al. 1992). The inhibitory effect of bran 
can be attributed almost entirely to its high phytate level (Hallberg et at. 1987). 

Poiyphenols 
The phenolic compounds present in plant foods include tannic acids, phenolic acids, 

flavonoids and polymerization products. They are particularly high in beverages such as 
tea, coffee, herb teas, cocoa and red wine. Hydrolysable tannins of black tea have been 
shown to be a most potent inhibitor of iron absorption. Disler et al. (1975) found a four- 
fold reduction in Fe absorption from a meal with tea. Chlorogenic acid, the phenolic 
compound in coffee, is also inhibitory (Brune et a/. 1989) and coffee also reduces Fe 
absorption (Morck et al. 1983). The monomeric flavonoids of herb teas (Brown et al. 1990) 
and the polymeric flavonoids of red wine (Cook et al. 1995) also inhibit Fe absorption but 
are less potent than black tea. A glass of red wine reduced Fe absorption from a small bread 
meal by 75 YO (Cook et al. 1995) but had no inhibitory effect when consumed with a meal 
of string beans, potatoes and hamburger (Hallberg & Rossander, 1982), presumably 
because other components in the meal offset the inhibitory effect of red wine. Phenolics in 
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vegetables can also strongly inhibit Fe absorption (Tuntawiroon et al. 1991) and there is 
a strong inverse relationship between their polyphenol content and Fe absorption in man 
(Gillooly et al. 1983). 

Calcium 
Ca can inhibit Fe absorption but its effect depends on quantity and on the size and 

composition of the meals, being more pronounced in small, simple meals such as bread rolls 
or a hamburger but absent in larger more complex meals. In a small bread meal, inhibition 
of Fe absorption was dose-related up to 300 mg Ca added as Ca chloride, and was similarly 
inhibited with 165 mg Ca added as the inorganic Ca compound or as 150 ml milk (Hallberg 
et al. 1991), or when 200 ml milk or a milkshake was consumed with a simple hamburger 
meal (Hallberg et al. 1992). With more complex meals 15CL250 ml milk did not elicit a 
significant reduction (Hallberg & Rossander, 1982; Galan et al. 1991), presumably because 
of the combined effect of all the modifiers of iron absorption present in the meal. 

Protein 
Peptides can both inhibit or enhance Fe absorption, depending on their nature. Fe 

absorption from liquid meals containing soya protein, whey protein, casein and egg white 
were lower than from bovine serum albumin or muscle tissue (Hurrell et al. 1989b). The 
inhibitory effect of soya protein isolate was only partly removed by degrading the phytic 
acid (Hurrell et al. 1992) which may be due to inhibitory peptides binding Fe (Lynch et al. 
1994). Other legume proteins are similarly inhibitory (Macfarlane et al. 1988). The 
inhibitory effect of commercial whey protein concentrate is due to its high Ca content and 
not to whey per se (Hurrell et al. 1990), whereas the effect of casein is probably due to 
casein phosphopeptides, formed on digestion, chelating Fe in an insoluble complex. 
Complete hydrolysis of casein (Hurrell et al. 1989 b) or enzymic removal of the phosphorus 
groups from serine phosphate side chains largely removes its inhibitory effect (Hurrell et al. 
1990). 

Lactoferrin has often been suggested as the facilitator of Fe absorption in breast milk, 
but there is no evidence to support this hypothesis (Davidsson et al. 1994b). However, 
many studies have confirmed the enhancing effect of muscle tissue on Fe absorption 
(Layrisse et a1 1968), which may be related to the high level of cysteine (Martinez-Torres 
& Layrisse, 1970) since at equivalent quantities of cysteine, free cysteine, glutathione or 
beef similarly increased Fe absorption from a maize meal (Layrisse et al. 1984). The 
facilitating effect of an enzymically digested beef extract on Fe absorption was removed by 
oxidizing the cysteine residues before feeding (Taylor et al. 1986). Their potential to chelate 
Fe and to reduce ferric Fe to the more soluble ferrous Fe could explain the enhancing effect 
of cysteine-containing peptides on Fe absorption. 

Ascorbic acid 
Ascorbic acid is the best known and most potent enhancer of Fe absorption both in its 

natural form in fruit and vegetables (Ballot et al. 1987) and when added as the free 
compound (Cook & Monsen, 1977). The enhancing effect is dose-related over the range 
25-1000 mg (Cook & Monsen, 1977). At high enough concentrations, ascorbic acid can 
overcome the inhibitory effect of phytic acid in cereals (Hallberg et al. 1989) and in soya 
formula (Davidsson et al. 1994a), and it can partly overcome the effect of polyphenols from 
tea (Disler et al. 1975). Ascorbic acid increases the bioavailability of all Fe fortification 
compounds (Hurrell, 1992) but is sensitive to losses during storage and cooking. Its 
facilitating effect is thought to be due to its ability to convert ferric to ferrous Fe at low pH 
and to its chelating properties. 

S U S A N  F A I R W E A T H E R - T A I T  AND R. F. H U R R E L L  
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Fortijication iron 
As reviewed recently by Hurrell (1992), Fe compounds used in food fortification vary 

considerably in bioavailability owing to their different solubility in the gastrointestinal 
tract. Freely water-soluble compounds such as ferrous sulphate dissolve instantaneously 
and have the highest relative bioavailability, but insoluble compounds such as elemental 
Fe, ferric pyrophosphate and ferric orthophosphate never dissolve completely in gastric 
juice and have low and varying absorption. Since freely water-soluble compounds often 
cause unacceptable colour and flavour changes in many foods, insoluble compounds which 
are organoleptically inert are often used in food fortification, particularly in cereal 
products. Ferrous fumarate and ferrous succinate are poorly soluble in water and cause 
fewer organoleptic problems, but are readily soluble in dilute acid and are similarly 
absorbed to ferrous sulphate (Hurrell et a/. 1989~).  

The International Nutrition Anemia Consultative Group (INACG) has recently 
recommended the use of NaFeEDTA as an iron fortificant in developing countries 
(INACG, 1993). The EDTA moiety in this compound protects Fe from reacting with 
phytic acid and Fe absorption from cereal and legume products is 2-3-fold greater than 
with ferrous sulphate. 

Contamination iron 
Food can be ‘contaminated’ with Fe either from soil (Hallberg et a/. 1983) or by the 

cooking equipment used industrially or at home (Brittin & Nossaman, 1986). Con- 
tamination Fe from soil is of limited bioavailability (Hallberg et a/. 1983), but Fe from 
cooking equipment may be readily absorbed, such as beer brewed in Fe containers 
(Derman et a/. 1980) or food cooked in Fe pots (Martinez & Vannucchi, 1986; 
Fairweather-Tait et a/. 1995a). 

C O N C L U S I O N S  
Food Fe is present as haem Fe and non-haem Fe. Haem Fe absorption is relatively 
unaffected by diet composition, but it is increased by muscle protein and decreased by Ca. 
On the other hand, non-haem Fe absorption is very sensitive to dietary components, being 
facilitated in the presence of ascorbic acid or muscle protein and inhibited by phenolic 
compounds, phytic acid, Ca and certain proteins. With the possible exception of Ca, the 
effects take place in the intestinal lumen where the facilitators and inhibitors compete to 
bind Fe in soluble or insoluble forms. 

MAGNESIUM 

F O O D  S O U R C E S  
Mg is widely distributed in plant and animal foods, especially nuts, legumes, green 
vegetables (present as the inorganic ion of chlorophyll), cereals, and chocolate. Hard 
drinking water may also be an important source of dietary Mg. 

A B S 0 RPTION,  T R A N S  P O R T  A N D  METABOLISM 
Mg is absorbed primarily in the small intestine, both by a facilitated process and by passive 
diffusion. Absorption increases but fractional absorption falls with increasing dose (Fine et 
a/ .  1991). There is a wide range in efficiency of absorption, ranging from 10 YO on high Mg 
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diets to 75 YO on Mg restricted diets. Endogenous faecal excretion from Mg secreted into 
the gastrointestinal tract secretions is about 25-50 mg/d. Absorbed Mg is retained either 
for tissue growth or replacement, with the skeleton acting as a store, and the remainder is 
excreted in the urine. When intake decreases, the kidney is very efficient at conserving Mg 
in order to maintain homeostasis. 

S U S A N  F A I R W E A T H E R - T A I T  A N D  R. F. H U R R E L L  

D E F I C I E N C Y  
Clinical Mg deficiency in humans is rare. First described by Hirschfelder & Haury (1934), 
it has been reported in alcoholics, and in patients on Mg-free intravenous solutions (Shils, 
1988). Hypomagnesaemia, generally accompanied by hypocalcaemia, is also induced by 
starvation, malabsorption syndromes, acute pancreatitis, alcoholism, and prolonged 
diarrhoea or vomiting (Foy, 1980), and is treated with intravenous Mg. Lack of Mg has 
also been implicated in certain chronic diseases (e.g. coronary heart disease, hypertension, 
a id  premenstrual syndrome). 

F A C T O R S  A F F E C T I N G  BIOAVAILABILITY 
Very little is known about the absorption of Mg from different foods, and research on Mg 
bioavailability has been impeded by the lack of a satisfactory isot0p.e. The short half-life 
of the radioisotope '*Mg (21.3 h) has restricted its use in absorption studies where faecal 
collections need to be carried out for longer periods than those optimal for "Mg detection 
by methods other than whole body counting. However, enriched sources of the stable 
iwtope 26Mg can be used in conjunction with "Mg to measure true absorption from plasma 
or urine collected shortly after dosing (Schwartz, 1984), applying a double-label stable 
isc;tope technique. Apparent Mg absorption can be measured from the determination of 
faecal and urinary "Mg excretion following oral administration of 26Mg-labelled foods. 
However, in practice, the high natural abundance of 26Mg (1 1.01 YO) blunts the sensitivity 
with which the isotope can be measured in body fluids and excreta, and it can only be 
accurately measured for 2 4  d after administration, depending upon the size of the dose 
(Schwartz et al. 1984). 

Animal studies indicate that Mg is better absorbed from milk than from cereals, legumes 
and meat (Hazell, 1985). The proportion of soluble Mg differs between milks; in human 
milk 92 YO of the total Mg is in the soluble fraction, in whey-predominant infant formula 
it i n  83 % and in casein-predominant formulas it ranges from 70 to 91 % (Lonnerdal et al. 
1993). The remainder of the Mg is found with the casein and fat fractions. 

Most Mg in cereals is present in the aleurone layer, probably in the form of phytin 
(Ca jMg phytate) or as potassium-magnesium-phytate, and the rest is found as phosphates 
and sulphates. In plant cell walls Mg may be bound by lignin but not by pectin. The Mg 
in  green vegetables is primarily found within chlorophyll, and the tetrapyrrole ring of 
chlorophyll may offer Mg some protection from dietary inhibitors. However, hydrogen can 
replace Mg during food processing, leading to the formation of pheophytin and hence a 
significant loss of green colour. Schwartz et al. (1984) intrinsically labelled leafy vegetables 
(collards, turnip greens, lettuce and spinach) with "jMg and measured net absorption (by 
faecal and urinary balance) from muffins in which the bran was replaced with the vegetables 
in adult male volunteers. In addition, an i.v. dose of 28Mg was given in order to calculate 
true absorption of 26Mg from measured plasma isotope ratios. True absorption ranged 
from 52 YO for bran to 62 Y for lettuce, with intermediary values for the other vegetables. 
Net absorption was, as expected, significantly lower, ranging from 42 YO for bran to 54 YO 
for collards and turnip greens. The lower absorption of Mg in bran is probably due to its 
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higher phytate content, since phytic acid has been found to bind Mg and reduce its 
bioavailability (Roberts & Yudkin, 1960; Seelig, 1980). 

Several dietary constituents have been suggested to have an influence on Mg 
bioavailability. Enhancers include protein and amino acids (Schwartz, 1988), and inhibitors 
include phosphate, phytate and dietary fibre (Reinhold et al. 1976; Kelsay et al. 1979). 
However, much of the human research on dietary Mg bioavailability was performed a 
number of years ago using balance techniques. The experimental design generally involved 
the addition or substitution of fibre or phytate in diets, which introduced other changes in 
dietary factors apart from those of primary interest. Thus the individual effect of enhancers 
and inhibitors of Mg absorption is not clear. 

The bioavailability of Mg salts has been studied fairly extensively in recent years, usually 
by comparing Mg elimination in 24-h urine during placebo and treatment periods. Mg 
oxide has a lower bioavailability than citrate (Lindberg et al. 1990) or Mg-L-aspartate-HC1 
(Muhlbauer et al. 1991). There are no significant differences between Mg lactate, citrate and 
hydroxide (Bohmer et al. 1990) but Mg orotate has a higher bioavailability than Mg 
hydroxycarbonate (Schlebusch et al. 1992). Mg from almonds, a high-Mg food, is as 
bioavailable as soluble Mg acetate, but enteric-coated Mg chloride is much lower (Fine et 
al. 1991). 

C O N C L U S I O N  
Mg absorption and bioavailability is one of the least well understood aspects of Mg 
metabolism. The Mg content of Western diets that include a substantial amount of refined 
foods is relatively low and increased intakes of alcoholic beverages may, in some instances, 
lead to a reduction in Mg utilization and hence a depletion in body levels. The substitution 
of whole grain for refined cereal products can significantly increase dietary Mg intake, but 
high intakes of dietary fibre and phytate may reduce its bioavailability. 

MANGANESE 

FOOD S O U R C E S  
Relatively high concentrations of Mn have been reported in cereals (20-30 mg/kg), brown 
bread (100-1 50 mg/kg), nuts (10 - 20 mg/kg), ginger (280 mg/kg) and tea (350-900 mg/kg 
dry tea) (Wenlock et al. 1979). Concentrations of Mn in crops are dependent on soil factors 
such as pH whereby increasing soil pH decreases plant uptake of Mn (Xilinas, 1983). 
Animal tissues contain very low amounts of Mn. 

ABSORPTION,  METABOLISM A N D  F U N C T I O N  
Mn absorption, probably as Mn”, is relatively inefficient, generally less than 5 % .  
Homeostatic regulation of Mn is brought about primarily through excretion (mainly via 
bile) rather than through regulation of absorption (Korc, 1988 ; Keen & Zidenberg-Cherr, 
1990). Most absorbed Mn is transported via cc-2-macroglobulin (as Mn2+) and transferrin 
(as Mn3+). The Mn-containing enzyme arginase is responsible for urea formation, pyruvate 
carboxylase catalyses the first step of carbohydrate synthesis from pyruvate, and Mn- 
superoxide dismutase catalyses the transformation of the superoxide radical to hydrogen 
peroxide. Other roles of manganese in carbohydrate and lipid metabolism have been 
described (Leach & Lilburn, 1978; Korc 1988; Keen & Zidenberg-Cherr, 1990), and it 
appears to play an important role in brain function in which biogenic amines are probably 
involved (Leach & Lilburn, 1978). 
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D E F I C I E N C Y  
Signs of Mn deficiency have been demonstrated in several animal species, including 
impaired growth, skeletal abnormalities, depressed reproductive function and defects in 
lipid and carbohydrate metabolism (McDowell, 1992b). The frequently cited single case of 
Mn deficiency in man is a male subject who was fed a purified diet deficient in vitamin K 
which was accidentally also deficient in manganese, causing weight loss, dermatitis, growth 
retardation of hair and nails, reddening of black hair, and a decline in levels of blood lipids 
(Doisy, 1972). Mn deficiency may be more frequent in infants owing to the low 
concentration of Mn in human breast milk and varying levels in infant formulas (Korc, 
1988). 

D I E T A R Y  F A C T O R S  A F F E C T I N G  BIOAVAILABILITY 
Mn absorption and bioavailability have not been studied extensively in humans. In 
animals, high amounts of Ca, P, fibre and phytate increase the requirement of Mn, 
probably via the formation of insoluble Mn complexes, resulting in reduction of the soluble 
fraction available for absorption (Keen & Zidenberg-Cherr, 1990). Most of the Mn in tea 
infusions is in a soluble form and therefore likely to be well absorbed (HaLell, 1985). Mn 
from soya protein was found to be better absorbed than from casein protein (Lee & 
Johnson, 1989). Fe-Mn interactions have been demonstrated whereby Fe deficiency 
increases Mn absorption, and high amounts of dietary Fe inhibit Mn absorption (Davis 
et al. 1992), possibly by competition for similar binding and absorption sites of (non-heme) 
Fe and Mn. 

Mn absorption is higher from human milk than from cows’ milk (Lonnerdal et al. 1983; 
Davidsson et al. 1989). The difference may be due to high bioavailability of lactoferrin 
bound Mn, the low bioavailability of casein bound Mn, or the higher Ca content of cows’ 
milk (Lonnerdal et al. 1983; Davidsson et al. 1991). Mn absorption in adults is higher from 
lettuce and spinach than from wheat and sunflower seeds, possibly because of the influence 
of fibre and phytate (Johnson et al. 1991). However, Davidsson et al. (1991) observed no 
effect of phytate, phosphate or ascorbic acid on Mn absorption in adults from infant 
formulas. Addition of Fe and Mg to wheat bread did not affect Mn absorption in adults 
(Davidsson et al. 1991). 

C O N C L U S I O N S  
Mn deficiency in man is rare; homeostatic regulation is primarily brought about through 
excretion of manganese via bile, rather than through changes in the efficiency of Mn 
absorption. High amounts of Ca, P, fibre and phytate appear to inhibit Mn absorption, and 
Mn-Fe interactions have been demonstrated. Mn absorption from human milk is higher 
than from cows’ milk. 

SELENIUM 

F O O D  S O U R C E S  
Se is present in food from both animal and vegetable origin. The Se concentration in food 
varies between different food items and reflects soil Se content (Combs, 1988); thus animal 
tissues show smaller variations in their Se than vegetable products owing to homeostatic 
regulation (Behne, 1989). 

Cereals, seafood and meat products are the richest sources of Se and are the main 
contributors to the daily Se intake, whereas vegetables, fruits and beverages are generally 
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low in Se (Combs, 1988). Low dietary Se intake levels have been reported for people living 
in low Se areas (Combs, 1988) and for population groups with special or restricted feeding 
regimes (Roekens et al. 1986). 

Only limited information is available on the Se species in food. Selenomethionine (Se- 
Met) has been identified as a major Se compound in wheat (Olson et al. 1970), soyabeans 
(Yasumoto et al. 1988) and high Se-yeast (Korhola et al. 1986), while selenocysteine 
(Se-Cys) has been identified in several mammalian proteins (Sunde, 1990). Inorganic Se 
forms have been identified in drinking water (Robberecht & Van Grieken, 1982). 

ABSORPTION,  T R A N S P O R T  A N D  METABOLISM 
The efficiency of absorption of Se is fairly high (50-95 YO) and depends on the dietary form 
(Robinson & Thomson, 1983). SeMet is absorbed by an active mechanism similar to that 
of its S-analogue methionine (Wolffram et al. 1989). Compared with inorganic forms, it is 
absorbed very rapidly throughout the small intestine (Vendeland et al. 1992~). The 
absorption is further enhanced at low methionine (Met) intake levels (McConnell & Cho, 
1965). Se-Cys absorption has not yet been fully clarified, but some evidence exists that it 
shares a common active transport mechanism with basic amino acids (Wolffram et al. 
1989). Selenite is absorbed from the small intestine by diffusion, stimulated, in the presence 
of certain thiols and selenate by a carrier mediated system shared with sulphate. Both 
inorganic forms are most readily absorbed in the ileum (Ardiiser et al. 1986; Vendeland 
et al. 1992~). 

Se metabolism has not yet been elucidated but the liver appears to play a central role in 
metabolism and homeostasis, and plasma is the transport medium for absorbed and 
metabolized Se components (Kato et al. 1992; Patterson et al. 1993). Retained Se can be 
incorporated into tissue proteins as Se-Met or into specific Se proteins as Se-Cys. 
Glutathione peroxidase (GSH-Px), type I-iodothyronine deiodinase and selenoprotein P 
have been identified as specified Se proteins containing Se-Cys as their Se moiety (Sunde, 
1990). Several other, not yet fully characterized, Se proteins have been isolated during the 
last decade (Sunde, 1990; Zachara, 1992). Skeletal muscle is reported to be the major Se 
body pool accounting for approximately half of total body Se (Oster et al. 1988). 

Excretion of absorbed Se as methylated Se compounds, e.g. trimethylselenonium, occurs 
mainly through urine (Robinson & Thomson, 1983). The composition of the urine has been 
reported to depend on the level of dietary Se (Zeisel et al. 1987). 

D E F I C I E N C Y  
Keshan disease, a fatal cardiomyopathy, occurs in certain low Se areas in China and affects 
mostly young children and pregnant women (Neve et al. 1985). Low Se states have also 
been reported for population subgroups with very specific dietary habits, such as infants, 
in particular preterm and very-low-birthweight infants (Lockitch et al. 1989), and patients 
on total parenteral nutrition (Rannem et al. 1993). 

D I E T A R Y  F A C T O R S  A F F E C T I N G  BIOAVAILABILITY 
Absorption studies, responsiveness of indices of Se status and the prevention of nutritional 
deficiency diseases have been used to assess Se bioavailability (Levander, 1983). Absorption 
studies measure the retention of dietary Se, but neglect its utilization, whereas status 
assessment relates to a functional parameter, but does not give information on the 
absorption or retention of administered Se. 
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Intake 

excretion and in increased body retention of Se (Martin et al. 1989a). 

Chemical form 
Se bioavailability depends to a great extent on the Se compound. Se-Met is readily 

absorbed, and results in higher blood Se concentration than inorganic Se, whereas GSH- 
Px activity seems to be unaffected by the chemical form of dietary Se (Xia et al. 1992). 

Fish and mushrooms, although containing high concentrations of Se, have relatively low 
bioavailability (Mutanen, 1986; Meltzer et al. 1993), whereas meat, wheat and high Se yeast 
are reported to contain highly bioavailable Se (Levander et al. 1983; Van der Torre et al. 
1991). This is almost certainly the result of differences in chemical form of Se in the foods. 
High Se yeast and wheat both contain Se-Met which, as a discrete component, is readily 
available, whereas fish and mushrooms must contain a chemical form of lower availability. 

Retention of Se is inversely related to intake; low Se intake results in lower urinary 

Dietary factors 
The main dietary factors which influence Se bioavailability are Met, thiols, heavy metals 

and vitamin C. Dietary Met influences the absorption of Se-Met owing to the identical 
absorption mechanism for both amino acids (McConnell & Cho, 1965; Waschulewski & 
Sunde, 1988). With a Met deficient diet, Se-Met will be used to replace Met in protein 
synthesis, which will result in increased tissue Se levels and a decreased incorporation into 
specific Se enzymes such as GSH-Px. Conversely, increased dietary Met can compete with 
the intestinal absorption of Se-Met and lead to a lower Se nutritional status. 

Certain thiols in the gastrointestinal tract enhance selenite absorption (Scharrer et al. 
1992), probably owing to formation of selenocomplexes with thiol compounds which are 
more rapidly absorbed by the intestinal epithelium through various Na+-dependent and 
independent mechanisms (Scharrer et al. 1992; Vendeland et al. 1992b). 

The influence of vitamin C on Se bioavailability depends on the ingested form of Se. The 
bioavailability of natural food Se is enhanced, whereas that of selenate is unaffected in the 
presence of vitamin C (Mutanen & Mykkanen, 1985). A high vitamin C consumption 
(1 g/d) resulted in higher fractional and apparent absorption as well as enhanced retention 
of selenite, which might be due to the protection by vitamin C of critical sulphydryl groups 
involved in gastrointestinal selenite uptake (Martin et al. 1989 b). The well documented 
interaction of Se with heavy metals is reported to decrease the utilization of Se in certain 
foods through the formation of bonds between the heavy metals and Se (Whanger, 1981). 

There is some evidence that dietary protein and phosphorus levels affect Se retention 
(Greger & Marcus, 1981). Faecal losses were highest and urinary excretion lowest in adult 
men with low protein diets, regardless of the phosphate content. The lowest apparent Se 
retention was observed on a low protein, high phosphorus diet. 

The soluble fibre, guar gum, was reported to increase faecal Se excretion in human 
subjects and to decrease Se balance, due to decreased Se absorption from the 
gastrointestinal tract (Choe & Kies, 1989). 

CONCLUSIONS 
Se can be present in different organic and/or inorganic forms in human diets. The 
absorption, retention and metabolism of dietary Se are largely dependent on its chemical 
forms, which are responsible for differences in the overall utilization or bioavailability of 
different Se food sources. In addition to the dietary forms, the bioavailability of Se is 
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influenced by the presence of certain dietary constituents (e.g. Met concentration, thiols, 
heavy metals, vitamin C) which may enhance or decrease the utilization of dietary Se. 

Z I N C  

F O O D  S O U R C E S  
The Zn content of foods varies from up to 2000 mg/kg fresh weight in oysters to below 
5 mg/kg in refined foods or foods with a high fat content. In legumes and animal products 
Zn is associated with protein components. In meat products the Zn content to some extent 
follows the colour of the meat, so that the highest content, approximately 50 mg/kg, is 
found in lean red meat, at least twice that in chicken. In cereals, most of the Zn is found 
in the outer fibre-rich part of the kernel, thus the degree of refinement determines the total 
Zn content. Wholegrain products provide 30-50 mg/kg while a low extraction rate wheat 
flour contains 8-10 mg/kg. The major dietary determinants for the total Zn intake are the 
amount of animal protein, the extraction rate of the cereals and the fat content of the diet. 

ABSORPTION,  T R A N S P O R T  A N D  METABOLISM 
Zn in foods is absorbed via a carrier mediated transport process (Lee et al. 1989), which 
under normal physiological conditions appears not to be saturated (Sandstrom, 1992). Zn 
is transported in plasma by albumin and a-2-macroglobulin, and is present in all organs, 
tissues and fluids of the body. It is primarily an intracellular ion and only approximately 
0.1 % of body Zn is found in plasma. Bone and skeletal muscle account for more than 80 % 
of body Zn. Body Zn content is regulated by homeostatic mechanisms over a wide range 
of intakes by changes in fractional absorption (normally 2040  YO) and urinary (0.5 mg/d) 
and intestinal (1-3 mg/d) excretion. 

D E F I C I E N C Y  
The clinical manifestations of severe Zn deficiency in man are growth retardation, a delay 
in sexual and skeletal maturation, dermatitis, alopecia, loss of appetite and behavioural 
changes (Hambidge, 1986). Mild Zn deficiency is more difficult to diagnose. Reduced 
growth rate in children and impaired immune function are regarded as early signs of Zn 
deficiency. 

D I E T A R Y  F A C T O R S  A F F E C T I N G  BIOAVAILABILITY 
The bioavailability of dietary Zn depends on dietary enhancers and inhibitors and host- 
related factors. Soluble, low molecular weight organic substances such as amino acids and 
organic acids act as Zn binding ligands and facilitate absorption. Other organic compounds 
forming stable complexes with Zn at intestinal pH reduce its absorption, and ions with 
physicochemical properties similar to Zn compete for binding sites. The effects of several 
of these factors on Zn absorption have been identified in single meal studies. 

Intake 
A dose relationship has been shown both in single meal studies with radioisotopes 

(Sandstrom, 1992) and in studies of single meals or total diets using stable isotopes (Istfan 
et al. 1983; Wada et al. 1985; August et al. 1989; Taylor et al. 1991; Sian et al. 1993). At 
low Zn intakes, in the absence of phytate, more than 50 'YO of dietary Zn can be absorbed. 
This increased absorption at low intakes is, however, not obvious for high phytate diets 
where absorption seldom exceeds 20 %. 
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Phytate 
In plant food based diets, the content of phytate present in whole grain cereals and 

legumes is probably the single most important factor for Zn absorption as it is a potent 
inhibitor of Zn absorption. With high phytate meals (e.g. wheat bran), absorption is only 
5-10 YO (Rossander et al. 1992). The effect of phytate seems to be significant in single meals 
at molar ratios of phytate:Zn above 10. Fermentation of wholemeal bread reduces the 
phytate content and improves Zn absorption (Navert et al. 1985). During fermentation and 
other food processes the hexaphosphate form of inositol is gradually degraded. The penta 
form seems to have a similar Zn absorption depressing effect as the hexa form whereas 
lower inositol phosphates have less or no effect (Sandstrom & Sandberg, 1992). Animal 
protein improves Zn absorption from phytate-rich meals (Sandstrom et al. 1980) which 
could explain why substitution of wholemeal bread for white bread did not reduce Zn 
absorption from a meat based sandwich (Fairweather-Tait et al. 1992). Isolated dietary 
fibre preparations with no phytate do not affect Zn absorption (Rossander et al. 1992). 

Metals 
In aqueous solutions Fe impairs Zn absorption (Valberg et al. 1984; Sandstrom et al. 

1985), but this interaction does not take place when Fe is added to an animal protein meal, 
indicating different uptake mechanisms for solutions and solid foods. Tin in large doses 
inhibits Zn absorption (Valberg et al. 1984), but the ratio between Cu and Zn does not 
affect Zn absorption (August et al. 1989). Animal studies have suggested an interaction 
between Ca and Zn in phytate-rich diets, but this has not been confirmed in human studies. 
When a Ca-rich food such as milk was added to a phytate-containing meal and when the 
Ca content of a soya formula was increased, Zn absorption was improved or unchanged 
(Lonnerdal et al. 1984; Sandstrom et al. 1987). However, it remains to be shown whether 
or not intake of Ca supplements in a phytate-containing diet reduces Zn availability. 

Human milk 
Absorption of Zn from human milk is high (40 YO in adults), lower ( -  30 YO) from cows’ 

milk based formula and cows’ milk, and even less (14 %) from an infant soya formula 
(Sandstrom et al. 1983). The high bioavailability of Zn in human milk has been attributed 
to low molecular weight ligands such as citrate or to specific proteins. However, when 
individual dietary components were added to cows’ milk protein based infant formula the 
depressing effect of phytate was confirmed, but neither the protein nor the carbohydrate 
source had any measurable influence on Zn absorption (Lonnerdal et al. 1984). 

Processing 
Food processing can affect mineral binding and availability, such as the reduction in 

phytate with leavening of bread. A lower absorption of Zn from toasted cornflakes 
compared with corn grits has been reported (Lykken et al. 1986) but extrusion cooking of 
wheat bran did not affect Zn absorption (Fairweather-Tait et al. 1989b). Other studies have 
shown that the extrusion cooking process affects the intestinal degradation of phytate 
which affects absorption, while there is no effect of the extrusion cooking per se (Rossander 
et al. 1992). 

Total diet studies 
Relatively few studies of Zn uptake from total diets have been performed and in the 

majority of these studies formula diets, often with added Zn salts, have been used. The 
inhibiting effect of phytate on Zn has been confirmed; the addition of phytate to a formula 
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diet (molar ratio phytate:Zn 15) halved Zn absorption (Turnlund et a/.  1984). There was 
no difference in Zn absorption between an animal protein diet with a phytate:Zn molar 
ratio of 5.7 and a diet made from mainly plant products with a ratio of 11.6 (Swanson et 
a/. 1983). 

CONCLUSIONS 
The bioavailability of Zn can vary from 5 to 50 O/O. Diets can be roughly classified as having 
a low, medium or high bioavailability, according to the content of Zn, phytate and animal 
protein. The highest absorption, 30-50 %, is found in refined low Zn diets with low phytate 
content or in animal protein based formula diets. From a mixed animal and plant product 
diet, 20-30 YO Zn absorption can be expected. The lowest absorption, 10-1 5 %, is seen from 
diets dominant in developing countries, based on cereals and legumes with a high phytate 
content and with negligible amounts of animal protein. 
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