
ESTIMATES FOR DIRICHLET EIGENFUNCTIONS

M. VAN DEN BERG  E. BOLTHAUSEN

A

Estimates for the Dirichlet eigenfunctions near the boundary of an open, bounded set in euclidean space
are obtained. It is assumed that the boundary satisfies a uniform capacitary density condition.

1. Introduction

Let D be an open, bounded set in euclidean space 2m (m¯ 2, 3,…) with boundary

¦D. Let ®∆
D

be the Dirichlet laplacian for D. The spectrum of ®∆
D

is discrete and

consists of eigenvalues λ
"
% λ

#
%… with a corresponding orthonormal set of

eigenfunctions ²φ
"
,φ

#
,…´. The behaviour of the eigenfunctions near the boundary ¦D

of D has been investigated by several authors under a variety of assumptions on the

geometry of D [1–8, 11–16].

In this paper we obtain pointwise bounds on the eigenfunctions under the

assumption that ¦D satisfies a uniform capacitary density condition. Denote by

Cap(A) the newtonian capacity of a compact set AZ2m (m¯ 3, 4,…) or the

logarithmic capacity of a compact set AZ2#. For x `2m and r" 0 we define

B(x ; r)¯²y `2m : ry®xr% r´, (1.1)

and for a non-empty set GZ2m

diam(G)¯ sup²rx
"
®x

#
r :x

"
`G,x

#
`G´. (1.2)

D 1.1. Let DZ2m (m¯ 2, 3,…) be an open set with boundary ¦D.

Then ¦D satisfies an α-uniform capacitary density condition if for some α ` (0, 1]

Cap((¦D)fB(x ; r))&αCap(B(x ; r)), x ` ¦D, 0! r!diam(D). (1.3)

Condition (1.3) guarantees that all points of ¦D are regular, and in particular that

lim
x!x

!

φ
j
(x)¯ 0 for all x

!
` ¦D. Definition 1.1 has been introduced in [10] in a study

of the partition function of the Dirichlet laplacian on open sets with a non-smooth

or fractal boundary.

Let d :DMN (0,¢) denote the distance function

d(x)¯min²rx®yr : y ` ¦D´, (1.4)

and let R be the inradius of D, defined by

R¯max
x`D

d(x). (1.5)

The main results of this paper are the following.
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T 1.2. Let D be an open, bounded set in 2#. Suppose ¦D satisfies (1.3) for

some α" 0. Then for j¯ 1, 2,… and all x `D such that d(x)! λ−"/#
j

rφ
j
(x)r% (6λ

j
log(2}α#

π)
®1

log(d(x)λ"/#
j

)*
"/#

. (1.6)

T 1.3. Let D be an open, bounded set in 2m (m¯ 3, 4,…). Suppose ¦D

satisfies (1.3) for some α" 0. Let j¯ 1, 2,… and suppose x `D satisfies

d(x)λ"/#
j

% 0α'

2"$
1"+

γ(m−")/(m−#)

. (1.7)

Then
rφ

j
(x)r% 2λm/%

j
(d(x) λ"/#

j
)("/#)(("/γ)+(m−")/(m−#))

−", (1.8)

where

γ¯
3−m−"α

log(2(2}α)"/(m−#))
. (1.9)

The bounds in (1.6) and (1.8) are being complemented by the following well-

known estimate [11, Lemma 3.1].

T 1.4. Let D be an open, bounded set in 2m (m¯ 2, 3,…). Then for j¯ 1, 2,…

and x `D
rφ

j
(x)r% λm/%

j
. (1.10)

The bounds of Theorems 1.2 and 1.3 are in general not sharp. For example if D

is open, bounded and ¦D is smooth then the eigenfunctions are comparable with d(x).

If D is open, bounded and simply connected in 2# then it was shown by Ban4 uelos [3,

Corollary 2.3b] that φ
"

is comparable to the hyperbolic distance induced by the

conformal map F from the unit disc onto D. By Koebe’s 1}4 theorem [17] one then

obtains that
φ
"
(x)%Cd(x)"/# (1.11)

for some constant C depending on D. We will use the ideas of [3] to prove (in Section

5) the following refinement of (1.11).

T 1.5. Let D be an open, simply connected set in 2# with �olume rDr. Then

for j¯ 1, 2,…
rφ

j
(x)r% 2*/#π"/%jrDr"/%R−#d(x)"/#. (1.12)

The following example (see [13, 4.6.7]) shows that Theorem 1.5 is sharp.

E 1.6. Let UZ2m be the conical region in polar coordinates defined by

U¯²(r,ω) : 0! r! 1,ω `Ω´, (1.13)

where Ω is an open subset of the unit sphere Sm−". Then

}
"
(r,ω)Q rβ(Ω), (1.14)

where β(Ω) is the positive solution of

β(β­m®2)¯ λ
"
(Ω), (1.15)

and where λ
"
(Ω) is the first eigenvalue of the Laplace–Beltrami operator on Ω with

Dirichlet conditions of ¦Ω. In particular if m¯ 2 and

Ω
!
¯²ω `S " : 0!ω! 2π´, (1.16)
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then
λ
"
(Ω

!
)¯ "

%
(1.17)

and by (1.15)
β(Ω

!
)¯ "

#
, (1.18)

which shows that the exponent in (1.12) cannot be improved.

The main idea of the proofs of Theorems 1.2 and 1.3 goes back to Brossard and

Carmona [10] who obtained estimates for the Dirichlet heat kernel p
D
(x,x ; t) for x

near D. We improve their lemma [10, Lemma 3.5] and its proof (see also [9]). In

the proof of Theorem 1.3 we also require a refinement of Wiener’s test [18].

Let (B(s), s& 0;0
x
,x `2m) be a brownian motion associated to ®∆­¦}¦t. Let T

D

denote the first exit time of the brownian motion from D :

T
D
¯ inf²s& 0:B(s) ` ¦D´. (1.19)

For a compact set K we also define the first entry time

τ
K

¯ inf²s" 0:B(s) `K ´. (1.20)

Then
0

x
[T

D
" t]¯&

D

p
D
(x, y ; t) dy. (1.21)

By the eigenfunction expansion of the heat kernel and by the semigroup property we

have

e−tλj φ#
j
(x)%3

¢

j="

e−tλj φ#
j
(x)¯ p

D
(x,x ; t)¯&

D

p#
D
(x, y ; t}2) dy. (1.22)

Since the Dirichlet heat kernel is monotone in D

p
D
(x, y ; t}2)% p2m(x, y ; t}2)+ (2πt)−m/#. (1.23)

Hence

e−tλj φ#
j
(x)% (2πt)−m/#&

D

p
D
(x, y ; t}2) dy¯ (2πt)−m/#0

x
[T

D
" t}2]. (1.24)

The choice
t¯ 2λ−"

j
(1.25)

yields for m¯ 2, 3,…

rφ
j
(x)r% e(4π)−m/% λm/%

j
(0

x
[T

D
" λ−"

j
])"/#% λm/%

j
(0

x
[T

D
" λ−"

j
])"/#. (1.26)

This proves Theorem 1.4 since 0
x
[T

D
" λ−"

j
]% 1.

In Sections 2 and 3 we obtain the upper bounds for 0
x
[T

D
" λ−"

j
] in the cases

m¯ 2 and m¯ 3, 4,… respectively. In the proof of Theorem 1.3 we use the following

modification of Wiener’s test. See also [20, Theorem 4.7, p. 73] for related refinements

of Wiener’s test.

T 1.7. Let D be an open, bounded set in 2m (m¯ 3, 4,…). Suppose ¦D

satisfies (1.3) for some α" 0. If x `D satisfies d(x)% (α'}2"$) diam(D), then for any

a ` 92"$

α'

, diam(D)}d(x): (1.27)

one has
0

x
[τ

(¦D)fB(x ;ad(x))
!¢]& 1®2a−γ, (1.28)

where γ is gi�en by (1.9).
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The proof of Theorem 1.7 will be deferred to Section 4.

2. Proof of Theorem 1.2

Let m¯ 2 and define the Green function

g(x, y)¯®(2π)−" log rx®yr. (2.1)

The equilibrium measure on a compact set KZ2# is the unique probability measure

µ
K

concentrated on K for which

u
K
(x)¯&

K

g(x, y)µ
K
(dy) (2.2)

is constant on the regular points of K. The function u
K

is the equilibrium potential of

K and its value R(K ) on the regular points of K is the Robin constant. The logarithmic

capacity is defined by

Cap(K )¯ e−R(K). (2.3)

Then

Cap(K )¯ exp®( inf
µ`P(K)

&
K

&
K

g(x, y)µ(dx)µ(dy)* , (2.4)

where P(K ) is the set of all probability measures supported by K. Moreover

Cap(B(x ; r))¯ r"/(#π) (2.5)

[18, Chapter 3, Proposition 4.11]. Define

B°(x ; r)¯²y `2m : ry®xr! r´. (2.6)

Let a" 4. Then

0
x
[T

D
" t]%0

x
[τ

(¦D)fB(x ;
#d(x))

" t]

¯0
x
[τ

(¦D)fB(x ;
#d(x))

" t, τ
(¦D)fB(x ;

#d(x))
"T

B°(x ;ad(x))
]

­0
x
[τ

(¦D)fB(x ;
#d(x))

" t, τ
(¦D)fB(x ;

#d(x))
%T

B°(x ;ad(x))
]

% 1®0
x
[τ

(¦D)fB(x ;
#d(x))

%T
B°(x ;ad(x))

]­0
x
[T

B°(x ;ad(x))
" t]. (2.7)

Let H be an open half space in 2# containing B°(x ; ad(x)) such that ¦H is tangent to

¦B°(x ; ad(x)). Then

0
x
[T

B°(x ;ad(x))
" t]%0

x
[T

H
" t]

¯ (πt)−"/#&
[!,ad(x))

e−q
#
/(%t)dq% ad(x) (πt)−"/#. (2.8)

For compact sets K
"
XK

#
we have by the variational formula (2.4)

Cap(K
"
)%Cap(K

#
). (2.9)

Let x
!
` ¦D be such that d(x)¯ rx®x

!
r. Then B(x ; 2d(x))[B(x

!
; d(x)), and by (1.3),

(2.5) and (2.9)

Cap((¦D)fB(x ; 2d(x)))&Cap((¦D)fB(x
!
; d(x)))

&αCap(B(x
!
; d(x)))¯α(d(x))"/(#π). (2.10)

By (2.3) and (2.10)

R((¦D)fB(x ; 2d(x)))%®(2π)−" log d(x)®logα. (2.11)



    611

By (2.3) and (2.9) we have for K
"
XK

#

R(K
"
)&R(K

#
). (2.12)

Hence
R((¦D)fB(x ; 2d(x)))&R(B(x ; 2d(x)))&®(2π)−" log(2d(x)). (2.13)

Moreover, by (2.1) and (2.2)

sup²u
(¦D)fB(x ;

#d(x))
(y) : y ` ¦B(x ; ad(x))´

%®(2π)−" log((a®2) d(x))&
(¦D)fB(x ;

#d(x))

µ
(¦D)fB(x ;

#d(x))
(dy)

¯®(2π)−" log((a®2) d(x)). (2.14)

Following the proof of [11, Lemma 3.5] we define for r" 0

m(r)¯®(2π)−" log((a®2) r), (2.15)

and h :2#MN2 by

h(y)¯ (R((¦D)fB(x ; 2d(x)))®m(d(x)))−"(u
(¦D)fB(x ;

#d(x))
(y)®m(d(x))). (2.16)

Now h is superharmonic, harmonic outside (¦D)fB(x ; 2d(x)), equal to one on

(¦D)fB(x ; 2d(x)), and by (2.14) negative on ¦B(x ; ad(x)). Hence

0
x
[τ

(¦D)fB(x ;
#d(x))

%T
B°(x ;ad(x))

]& h(x)¯
u
(¦D)fB(x ;

#d(x))
(x)®m(d(x))

R((¦D)fB(x ; 2d(x)))®m(d(x))
. (2.17)

But

u
(¦D)fB(x ;

#d(x))
(x)&®

1

2π
log(2d(x)), (2.18)

so that by (2.11), (2.15), (2.17) and (2.18)

0
x
[τ

(¦D)fB(x ;
#d(x))

%T
B°(x ;ad(x))

]&
log(a®2)®log 2

log(a®2)®logα#
π
. (2.19)

Hence by (2.7), (2.8) and (2.19)

0
x
[T

D
" λ−"

j
]%

log(2}α#
π)

log((a®2)}α#
π)
­π−"/#ad(x) λ"/#

j
. (2.20)

We make the following choice for a :

a®2¯
2

λ"/#
j

d(x) 01­log0 1

λ"/#
j

d(x)11
−"

. (2.21)

Let z¯ λ−"/#
j

d(x)−". Then d(x)% λ−"/#
j

implies z& 1, and z& 1­log(z) implies a& 4.

By (2.20) and (2.21)

0
x
[T

D
" λ−"

j
]% 0log

2

α#
π1 0log

1

α#
π
­log(2z)®log(1­log z)1−"

­2π−"/#z−"­2π−"/#(1­log z)−". (2.22)

L 2.1. For z& 1

log(2z)®log(1­log z)& "

#
log z. (2.23)
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Proof. Inequality (2.23) is equivalent to

4z& (1­log z)#. (2.24)

But (2.24) holds for z¯ 1. Moreover for z& 1

4& 2(1­log z)}z. (2.25)

Integration of (2.25) over [1, z] yields (2.24) and hence (2.23).

For z& 1, 1}z% (log 1}z)−". Hence by Lemma 2.1 and (2.22)

0
x
[T

D
" λ−"

j
]% 02 log0 2

α#
π1­ 4

π"/#
1 (log z)−"

% 60log0 2

α#
π11 (log z)−". (2.26)

Theorem 1.2 follows from (1.26), (2.26) and by the definition of z. *

3. Proof of Theorem 1.3

We define for m¯ 3, 4,… the Green function on 2m by

g(x, y)¯
1

c(m)
rx®yr#−m, (3.1)

where
c(m)¯ 4πm/#(Γ((m®2)}2))−". (3.2)

For a compact set KZ2m the equilibrium measure µ
K

is the unique non-negative

measure on K satisfying

0
x
[τ

K
!¢]¯& g(x, y)µ

K
(dy). (3.3)

The newtonian capacity of K is defined by

Cap(K )¯µ
K
(K ). (3.4)

The capacity of a ball is

Cap(B(0 ; r))¯ c(m) rm−#. (3.5)

Again, there is a variational description

Cap(K )¯ ( inf
µ`P(K)

&& g(x, y)µ(dx)µ(dy)*−", (3.6)

where P(K ) is the set of all probability measures supported by K. If K
"
,K

#
are

compact sets with K
"
XK

#
then Cap(K

"
)%Cap(K

#
). For these facts, see for example

[18, Chapter 3].

To prove Theorem 1.3 we adapt [10, Lemma 3.5]. Let b" a" 1. Then by the

strong Markov property

0
x
[T

D
" t]% 1®0

x
[τ

(¦D)fB(x ;ad(x))
% t]

% 1®0
x
[τ

(¦D)fB(x ;ad(x))
%T

B°(x ;bd(x))
]­0

x
[T

B°(x ;bd(x))
" t]

% 1®0
x
[τ

(¦D)fB(x ;ad(x))
!¢]

­%
x
[0

B(TB°(x ;bd(x)))
[τ

(¦D)fB(x ;ad(x))
!¢]]­0

x
[T

B°(x ;bd(x))
" t]. (3.7)
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To estimate the third term in the right-hand side of (3.7) we let y be such that

ry®xr¯ bd(x). Then

0
y
[τ

(¦D)fB(x ;ad(x))
]%0

y
[τ

B(x ;ad(x))
!¢]¯ 0ab1

m−#

. (3.8)

The fourth term in (3.7) is again estimated by (2.8). Hence

0
x
[T

D
" t]% 1®0

x
[τ

(¦D)fB(x ;ad(x))
!¢]­0ab1

m−#

­bd(x) (πt)−"/#. (3.9)

Choose a and b as follows:
a¯Ad(x)−β

", (3.10)

b¯B(d(x))β#−", (3.11)

where β
"
, β

#
, A and B are the solutions of

β
"
γ¯ (1®β

"
®β

#
) (m®2)¯ β

#
, (3.12)

A−γ ¯ 0AB1
m−#

¯Bλ"/#
j

. (3.13)

From (3.12) we obtain

β
#
¯ β

"
γ¯ 01γ­

m®1

m®21
−"

, (3.14)

and from (3.13) we obtain

Bλ"/#
j

¯A−γ ¯ λ("/#)(("/
γ)+(m−")/(m−#))

−"

j
. (3.15)

If we can show that (1.7) implies (1.27) and the requirement b& a, then by (3.9)–(3.11)

and Theorem 1.7

0
x
[T

D
" λ−"

j
]% 2A−γd(x)β

"
γ­0AB1

m−#

d(x)("−β
"
−β

#
)(m−#)

­Bd(x)β
#λ"/#

j
. (3.16)

Substitution of the values of β
"
, β

#
, A and B respectively in (3.16) gives

0
x
[T

D
" λ−"

j
]% 4A−γd(x)β

"
γ ¯ 4(d(x) λ"/#

j
)(("/γ)+(m−")/(m−#))

−". (3.17)

Estimate (1.8) follows from (1.26) and (3.17).

Note that b& a is (by (3.10), (3.11)) equivalent to showing that

B

A
& d(x)"−β

"
−β

#. (3.18)

It follows from (3.14) that

0! β
"
­β

#
¯

1­γ

1­γ
m®1

m®2

! 1. (3.19)

Since (1.7) implies d(x)% λ−"/#
j

it is (by (3.19)) sufficient to check that (3.18) holds for

d(x)¯ λ−"/#
j

, that is,

B

A
& λ−("/#)("−

β
"
−β

#
)

j
. (3.20)
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We see by (3.15) and (3.19) that (3.20) holds with the equality sign.

It remains to check the validity of (1.27). Since D is bounded, D is contained in

a hypercube of sidelength diam(D). By monotonicity of the Dirichlet eigenvalues [19,

Chapter XIII.15, Proposition 4(a)]

λ
j
& λ

"
¯

mπ#

(diam(D))#
"

1

(diam(D))#
. (3.21)

Hence the first inequality in (1.27) is satisfied if

1

λ"/#
j

d(x)
& a. (3.22)

By (3.10), (3.14) and (3.15)

a¯ (λ"/#
j

d(x))−("/
γ)(("/

γ)+(m−")/(m−#))
−". (3.23)

Hence (3.22) is satisfied if

(d(x) λ"/#
j

)"−("/
γ)(("/

γ)+(m−")/(m−#))
−" % 1. (3.24)

This is indeed the case because (1.7) implies d(x) λ"/#
j

% 1 and

1®
1

γ 0
1

γ
­

m®1

m®21
−"

" 0. (3.25)

The second inequality in (1.27) follows directly from (3.23) and (1.7). *

4. Proof of Theorem 1.7

For s" r" 0 we define the annulus

B(x ; r, s)¯B(x ; s)cB°(x ; r), (4.1)

and the set
¦D

i
(x)¯ (¦D)fB(x ; bi, bi+"), (4.2)

where b" 1 will be specified later. Let A
i
(x) be the event

A
i
(x)¯²τ¦Di(x)

!¢´. (4.3)

Define
N¯max²k `: : bk+"% a(d(x)) d(x)´. (4.4)

Then for any n%N

²τ
(¦D)fB(x ;a(d(x))d(x))

!¢´[ 5
N

i=n

A
i
(x). (4.5)

If bi+"! d(x) then A
i
(x)¯W. We will choose

n¯min²k `: : bk& 2d(x)´. (4.6)

We choose a ‘spacing’ s `:+, s& 2 (to be specified later) and use

5
N

i=n

A
i
(x)[ 5

[(N−n)/s]

j=!

A
n+js

(x), (4.7)

to obtain

0
x
[τ

(¦D)fB(x ;a(d(x))d(x))
!¢]& 1®0

x 9 4
[(N−n)/s]

j=!

Ac

n+js
(x): . (4.8)
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For technical reasons we replace A
j
(x) by Aa

j
(x) which are defined by

Aa
j
(x)¯²τ¦Dj(x)

% τ
B(x ;b

j+s
,¢)

´. (4.9)

Note that

0
x
[Aa

j
(x)cA

j
(x)]¯ 0, (4.10)

and therefore

0
x
[τ

(¦D)fB(x ;a(d(x))d(x))
!¢]& 1®0

x 9 4
[(N−n)/s]

j=!

Aa c
n+js

(x): . (4.11)

Next we derive a lower bound for 0
y
(Aa

j
(x)) for rx®yr% bj.

L 4.1. Let

b¯ 2 02α1
"/(m−#)

. (4.12)

Then for j& n satisfying b(b j­d(x))% 2diam(D) and any y satisfying ry®xr% b j

0
y
[Aa

j
(x)]& 2[3−mα. (4.13)

Proof. Let x
!
` ¦D be such that d(x)¯ rx®x

!
r. One easily checks that if

b j & 2d(x)

¦D
j
(x)[ (¦D)fB(x

!
; r, br}2), (4.14)

where

r¯ b j­d(x). (4.15)

From this we obtain, by the monotonicity and subadditivity of the newtonian

capacity,

Cap(¦D
j
(x))&Cap((¦D)fB(x

!
; r, br}2))

&Cap((¦D)fB(x
!
; br}2))®Cap(B(x

!
; r))

&αCap(B(x
!
; br}2))®Cap(B(x

!
; r)), (4.16)

since br}2%diam(D) by assumption. By the choice of b and by (3.5)

Cap(¦D
j
(x))&αc(m) (br}2)m−#®c(m) rm−#¯ c(m) rm−#& c(m) b j(m−#). (4.17)

For z ` ¦D
j
(x) and ry®xr% b j we have since b& 2

ry®zr% rz®xr­rx®yr% b j+"­b j % 3b j+"}2. (4.18)

Hence by (4.17) and (4.18)

0
y
[A

j
(x)]¯&

¦Dj(x)

c(m)−"

ry®zrm−#

µ¦Dj(x)
(dz)

& c(m)−"(3}2)#−mb(#−m)(j+") Cap(¦D
j
(x))

& c(m)−"(3}2)#−mb(#−m)(j+")c(m) b j(m−#)

¯ (3b}2)#−m. (4.19)

Furthermore

0
y
[Aa

j
(x)]&0

y
[A

j
(x)]®0

w
[τ

B(x ;b
j+"

)
!¢], (4.20)

where rw®xr¯ b j+s. Hence

0
y
[Aa

j
(x)]& (3b}2)#−m®b(m−#)("−s). (4.21)
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From now on we choose s¯ 3. Then by (4.21) and (4.12)

0
y
[Aa

j
(x)]& 3#−m

α

2
®α#2#("−m) & 2[3−mα. (4.22)

*
Let

&
j
3σ(B(t) : t% τ

B(x ;b
j
,¢)

). (4.23)

By definition of Aa
j
(x), we have that Aa

j
(x) is &

j+$
-measurable. Let x be such that

N®n& 3. (4.24)

Then for any k ` ²1, 2,…, [(N®n)}3]´ we have

0
x94k

j=!

Aa c
n+$j

(x):¯%
x90x

[Aa c
n+$k

(x) r&
n+$k

] ; 4
k−"

j=!

Aa c
n+$j

(x):
¯%

x90B(τB(x ;b
n+$k,¢))

(Aa c
n+$k

) ; 4
k−"

j=!

Aa c
n+$j

(x):
% (1®2[3−mα)0

x 94
k−"

j=!

Aa c
n+$j

(x): . (4.25)

From this we finally obtain

0
x 9 4

[(N−n)/$]

j=!

Aa c
n+$j

(x):% (1®2[3−mα)[(N−n)/$]

% exp®²[(N®n)}3] 2[3−mα´. (4.26)

Since N®n& 3,
[(N®n)}3]& (N®n)}6, (4.27)

and

0
x 9 4

[(N−n)/$]

j=!

Aa c
n+$j

(x):% exp®²(N®n) 3−m−"α´. (4.28)

By the choice of N and n we have

bN+#" a(d(x)) d(x)& bN+", (4.29)

bn−"! 2d(x)% bn, (4.30)

and hence

bN−n &
a(d(x))

2b$

. (4.31)

By (4.28) and (4.31) we obtain

0
x 9 4

[(N−n)/$]

j=!

Aa c
n+$j

(x):% 0a(d(x))

2b$
1−

α
$
−m−"

/logb

¯ a(d(x))−γeα
$
−m

+α
$
−m−"

(log#)/logb

% a(d(x))−γe%α
$
−m−" % 2a(d(x))−γ, (4.32)

by definition of γ and the fact that b& 2, m& 3 and α! 1. Estimate (1.28) follows

from (4.11) and (4.32) provided x `D is such that (i) b(b j­d(x))% 2diam(D) for

j¯ n,…,N, (ii) (4.24) holds. But (i) is satisfied if

bN+"­2bN−n+"d(x)% 2diam(D), (4.33)

since b& 2. But bN+"% a(d(x)) d(x) and 2bN−n+"% a(d(x)). So (4.33) and hence (i)

are clearly satisfied if
a(d(x)) d(x)%diam(D). (4.34)
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For (4.24) to hold we have to have bN+#−(n−") & b'. This is the case by (4.29) and

(4.30) if
a(d(x))& 2b'. (4.35)

But b% 4}α since 0!α! 1 and m¯ 3, 4,… . Hence (4.35) and (4.24) hold if

a(d(x))&
2"$

α'

. (4.36)

This completes the proof of Theorem 1.7. *

5. Proof of Theorem 1.5

Let G
D
([, [) be the Green function for ®∆

D
. Then

G
D
(x, y)¯&

¢

!

p
D
(x, y ; t) dt, (5.1)

and any Dirichlet eigenfunction of ®∆
D

satisfies

}
j
(x)¯ λ

j&
D

G
D
(x, y)}

j
(y) dy. (5.2)

By the Cauchy–Schwarz inequality

r}
j
(x)r% λ

j(&
D

G#
D
(x, y) dy*"/# (5.3)

since s}
j
s
#
¯ 1.

L 5.1. For j¯ 1, 2,…

λ
j
% 8πjR−#. (5.4)

Proof. By definition of R, D contains an open ball with radius R. Hence D

contains an open square with sidelength Ro2. Since the Dirichlet eigenvalues are

monotone in D, λ
j
is bounded from above by the jth eigenvalue of this square. The

eigenvalues for this square are given by

λ
k,l

¯π#(k#­l #)}(2R#), k `:+, l `:+. (5.5)

By definition
j¯g²(k, l ) :k#­l #% 2λ

j
R#}π#´. (5.6)

Suppose j& 4. Then k#­l #& 8 since j¯ 1 corresponds to (k, l )¯ (1, 1) and j¯ 2, 3

corresponds to (k, l )¯ (2, 1) and (k, l )¯ (1, 2). Hence

λ
j
&

4π#

R#

, j& 4. (5.7)

But the right-hand side of (5.6) is equal to the number of lattice points in the first

quadrant of the disc with radius R(2λ
j
}π#)"/#. Hence by (5.6) and (5.7) we have

for j& 4

j&
π

4
((2λ

j
R#}π#)"/#®2"/#)#&

λ
j
R#

8π
. (5.8)

This proves the lemma for j& 4. The case j¯ 1, 2, 3 is easily verified. *
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Let F be the conformal map from the unit disc onto D with F(0)¯x. Then by the

results of [3, §1]

G
D
(x, y)¯

1

2π
log coth(ρ

D
(x, y)), (5.9)

where

)
D
(x, y)¯ inf

γ
&"

!

rγ«(t)r
rF «(0)r

dt, (5.10)

and where the infimum is taken over all rectifiable curves γ in D with γ(0)¯x,

γ(1)¯ y, and where F «(0) is evaluated at γ(t). By Koebe’s 1}4 theorem

d(γ(t))% rF «(0)r% 4d(γ(t)). (5.11)

Without loss of generality we may assume that γ has a parametrisation with constant

speed c. Then for any such γ we have

d(γ(t))% d(x)­tc. (5.12)

By (5.10)–(5.12)

)
D
(x, y)&

1

4&
"

!

c

d(x)­tc
dt¯

1

4
log 01­

c

d(x)1 . (5.13)

Since c& rx®yr we have by (5.9) and (5.13)

G
D
(x, y)%

1

2π
log

(d(x)­rx®yr)"/#­d(x)"/#

(d(x)­rx®yr)"/#®d(x)"/#
. (5.14)

We note that the right-hand side of (5.14) is positive and strictly decreasing in rx®yr
for x fixed. Hence the square of the right-hand side of (5.14) is strictly decreasing in

rx®yr for x fixed. Let R
!

be defined by

πR#

!
¯ rDr. (5.15)

By spherical-symmetric rearrangement

&
D

G#
D
(x, y) dy%

1

2π&
R
!

!

rdr0log
(d(x)­r)"/#­d(x)"/#

(d(x)­r)"/#®d(x)"/#1
#

¯
2d(x)#

π &
¢

d(x)/R
!

dr

r$
(log((1­r)"/#­r"/#))#%

8d(x)R
!

π
, (5.16)

since log((1­r)"/#­r"/#)% 2r"/#. The theorem follows from (5.3), (5.4) and (5.16).

*

C 5.2. Let D be open, simply connected in 2# with finite �olume rDr. Then

%
x
[T

D
]% 2$/#π−$/%rDr$/%d(x)"/#. (5.17)

Proof. By the Cauchy–Schwarz inequality

%
x
[T

D
]¯&

D

G
D
(x, y) dy% rDr"/# (&

D

G#
D
(x, y) dy*"/# (5.18)

and (5.17) follows from (5.18), (5.16) and (5.15). *
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