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An association between Ca intake and the risk of prostate cancer has been reported in some but not all epidemiological studies. Assuming that a

pathophysiological relationship would underlie this association, a favoured hypothesis proposes that relatively high Ca consumption could promote

prostate cancer by reducing the production of 1,25-dihydroxyvitamin D (1,25(OH)2D; calcitriol), the hormonal form of vitamin D. The present

review analyses the plausibility of this hypothesis by considering the quantitative relationships linking Ca intake to 1,25(OH)2D production

and action in healthy conditions and in prostate cancer. Changes in the plasma level of 1,25(OH)2D in response to Ca intake are of very small

magnitude as compared with the variations required to influence the proliferation and differentiation of prostate cancer cells. In most studies,

1,25(OH)2D plasma level was not found to be reduced in patients with prostate cancer. The possibility that the level of 1,25(OH)2D in prostate

cells is decreased with a high-Ca diet has not been documented. Furthermore, a recent randomised placebo-controlled trial did not indicate that Ca

supplementation increases the relative risk of prostate cancer in men. In conclusion, the existence of a pathophysiological link between relatively

high Ca intake and consequent low production and circulation level of 1,25(OH)2D that might promote the development of prostate cancer in men

remains so far an hypothesis, the plausibility of which is not supported by the analysis of available clinical data.

Calcium intake: Vitamin D metabolism: Prostate cancer

An association between Ca intake and prostate cancer has
been reported in several but not all epidemiological studies
(Giovannucci et al. 1998; Schuurman et al. 1999; Chan et al.
2000; Chan & Giovannucci, 2001; Tavani et al. 2001; Berndt
et al. 2002; Kristal et al. 2002; Rodriguez et al. 2003; Qin
et al. 2004b; Giovannucci, 2005; Gross, 2005; Sonn et al.
2005; Tavani et al. 2005; Tseng et al. 2005; Kesse et al.
2006). The aim of the present report is not to review these var-
ious studies. The reader can obtain detailed information from a
recent thorough meta-analysis conducted on prospective
studies that examined the association between dairy product
consumption and/or Ca intake and prostate cancer risk (Gao
et al. 2005). To summarise the main results of this meta-anal-
ysis, the overall pooled relative risk of total prostate cancer
was 1·11 (95% CI 1·00, 1·22; P¼0·047) for the highest v.
the lowest intake categories of dairy products. It was 1·39
(95% CI 1·09, 1·77; P¼0·018) for the highest v. lowest
intake categories of Ca (Gao et al. 2005). The pooled relative
risk of advanced prostate cancer was not significantly associ-
ated with either dairy product consumption or Ca intake (Gao

et al. 2005). The authors concluded that a high intake of dairy
products and Ca may be associated with an increased risk of
prostate cancer, although the increase is small (Gao et al.
2005). Inclusion of a still more recent prospective study
(Severi et al. 2006a) slightly reduced the pooled relative
risk from 1·11 to 1·09 (P¼0·059) for the highest relative to
the lowest dairy intake category, and from 1·39 to 1·32
(P¼0·026) for high v. low Ca intake (Gao et al. 2006).

The main objective of the present report is indeed to exam-
ine whether the association, whenever found to be statistically
significant, between Ca intake and prostate cancer could
mechanistically be related to an effect on vitamin D metab-
olism. The favoured hypothesis for pathophysiologically link-
ing dietary Ca to prostate cancer assumes that the production
of the active metabolite of the endocrine vitamin D system,
namely 1,25-dihydroxyvitamin D (1,25(OH)2D or calcitriol),
would be reduced by relatively high Ca consumption. Such
a Ca-mediated reduction in the production of 1,25(OH)2D
would alter the proliferation and/or differentiation of prostate
cells. By this very specific physiological mechanism on
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vitamin D metabolism, Ca intake would be implicated in the
development and progression of prostate cancer.
The present review analyses the plausibility of this hypoth-

esis by considering the quantitative relationships linking Ca to
vitamin D metabolism and the action of its hormonal form,
1,25(OH)2D. Under the first three sections, essential notions
on the renal and extra-renal production of 1,25(OH)2D and
its action on normal and cancer prostate cells are reviewed.
Then, in the fourth part of the present review we consider
these quantitative experimental notions in order to analyse
the level of evidence supporting the purported pathophysio-
logical Ca–vitamin D mechanism link evoked as a risk of
prostate cancer.

Renal production of 1,25-dihydroxyvitamin D

Under physiological circumstances 1,25(OH)2D, the most
active metabolite of vitamin D, is synthesised in the kidney
(Feldman et al. 2001). It is produced within the cells of the
proximal tubules by the enzyme 25(OH)D-1a-hydroxylase
from its specific precursor 25-hydroxyvitamin D (25(OH)D).
In the renal tubule the synthesis of 1,25(OH)2D is stimulated
by parathyroid hormone (PTH) (Bell, 1998) and insulin-like
growth factor (IGF)-1 (Caverzasio et al. 1990; Bell, 1998).
A low intake of inorganic phosphate is a strong enhancer of
renal 1,25(OH)2D production (Maierhofer et al. 1984). A
low intake of Ca also enhances the synthesis of 1,25(OH)2D
by the kidney, but this effect is largely mediated by the
increased secretion and plasma level of PTH (Adams et al.
1979; Bell, 1998). In healthy human adults the renal pro-
duction of 1,25(OH)2D is tightly regulated. Thus, adminis-
tration of physiological doses of vitamin D that results in an
elevation in the circulating concentration of 25(OH)D does
not alter the plasma level of 1,25(OH)2D (Bell, 1998; Feldman
et al. 2001). Likewise, seasonal variation in 25(OH)D is
associated with opposite change in the plasma level of PTH,
while 1,25(OH)2D remains constant (Holick, 1994). Note
that 1,25(OH)2D exerts a negative feedback on its own renal
production by inhibiting 25(OH)D-1a-hydroxylase. This inhi-
bition is mediated by the binding of 1,25(OH)2D to its vitamin
D receptor (Feldman et al. 2001). In physiological situations
with increased bone mineral demand, such as growth, preg-
nancy and lactation, there is an increment in the production
of 1,25(OH)2D (Bell, 1998; Feldman et al. 2001; Kalkwarf
& Specker, 2002). Such a response explains the enhancement
in the intestinal absorption of Ca and inorganic phosphate that
is observed in these physiological conditions. The intestinal
epithelium, which is equipped with vitamin D receptor, par-
ticularly at the level of the duodenum, is the main target
organ of 1,25(OH)2D (Feldman et al. 2001).

Extra-renal production of 1,25-dihydroxyvitamin D

Besides the renal tubular epithelium, several types of cells can
produce 1,25(OH)2D from its physiological precursor
25(OH)D (Bell, 1998; Feldman et al. 2001; Holick, 2003).
These cells are endowed with the required enzymic machinery
to synthesise 1,25(OH)2D. This capacity has been observed in
macrophages, as well as in prostate, colon, skin and osteo-
blast-like cells (Bell, 1998; Feldman et al. 2001; Holick,
2003). In contrast to the tight renal regulation of

1,25(OH)2D synthesis, extra-renal production is dependent
upon the concentration of 25(OH)D. Such a substrate-depen-
dent extra-renal production of 1,25(OH)2D was well documen-
ted in the macrophages present in sarcoidosis (Bell, 1998). In
patients with sarcoidosis, an increase in plasma 1,25(OH)2D
and abnormal Ca metabolism, particularly hypercalcaemia
with hypercalciuria, often occurs by the end of summer after
longer exposure to sunshine leading to a rise in the circulating
level of 25(OH)D (Bell et al. 1979; Papapoulos et al. 1979).
The same alterations in 1,25(OH)2D and Ca metabolism can
be observed after administration of vitamin D to sarcoidosis
patients, but not in healthy subjects (Bell, 1998).

Vitamin D system in cancer, with special emphasis on
prostate carcinoma

Independent observations suggest that variations in vitamin D
metabolism could play a role in the geographical prevalence
of several neoplasias. These epidemiological data have been
interpreted in relation to the production and action of vitamin
D metabolites. More precisely, the frequently put-forward
hypothesis causally relates the following independent obser-
vations:

(1) The risk of developing and dying of colon, breast, ovar-
ian, oesophageal, prostate and other cancers, is related
to living in higher latitudes (Schwartz & Hulka, 1990).

(2) The geographic pattern of prostate cancer mortality in the
USA was found to be inversely related to the availability
of UV radiation at the level of the county (Grant, 2002).

(3) The risk of developing vitamin D insufficiency is greater
in higher latitudes, presumably because of the reduced
production of vitamin D in the skin (Holick, 2003).

(4) Prostate cancer cells can express the vitamin D receptor.
Exposure of most prostate cancer cells to 1,25(OH)2D
results in an inhibition of proliferation, invasiveness and
metastasis, both in vitro and in animal models of the
human disease. Note that some lines and primary cultures
of prostate cancer cells are resistant to the growth inhi-
bition by 1,25(OH)2D (Miller, 1998; Peehl & Feldman,
2003). This suggests that resistance to the hormonal
form of vitamin D may develop with the progression of
prostate cancer (Miller, 1998; Peehl & Feldman, 2003).

(5) In normal prostatic cells 25(OH)D-1a-hydroxylase is
expressed and 25(OH)D can be converted into
1,25(OH)2D (Schwartz et al. 1998). Indeed, intracellular
accumulation of 1,25(OH)2D can occur when normal
prostatic cells are exposed to 25(OH)D (Schwartz et al.
1998).

(6) In normal prostate tissue, 25(OH)D, like 1,25(OH)2D,
inhibits cellular proliferation while it promotes their
differentiation (Schwartz et al. 1998; Barreto et al. 2000).

Approach to the use of vitamin D metabolites for the
treatment of prostate cancer

The series of observations described in the previous section
led to investigation of the possiblity of using vitamin D metab-
olites as therapeutic tools in the management of prostate
cancer.
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A first approach was to explore whether 1,25(OH)2D might
be a therapeutic agent for prostate cancer. However, it was
rapidly realised that this was not suitable because of the occur-
rence of hypercalcaemia and hypercalciuria, since the concen-
tration required to inhibit prostate cancer cell proliferation was
much higher than that found physiologically in the systemic
circulation (Peehl & Feldman, 2003).

A second strategy was to synthesise 1,25(OH)2D analogues
with similar antiproliferative activity, but devoid of hypercal-
caemic activity (Feldman et al. 2001; Holick, 2003; Peehl &
Feldman, 2003). Until now this logical strategy, widely
explored, did not lead to the development of 1,25(OH)2D ana-
logues usable in the treatment of human prostate cancer. Only
a few clinical trials of phase I or II including a small number
of subjects have been so far reported, as for instance the study
published by Woo et al. (2005).

A further approach was to examine the possibility of using
the precursor of 1,25(OH)2D, namely 25(OH)D, at a non-
hypercalcaemic dose, exploiting the presence of the
25(OH)D-1a-hydroxylase enzymic machinery in prostatic
tissue in order to increase locally the concentration of the
active metabolite of the vitamin D system. An obvious pre-
requisite for this strategy to be successful is the expression
of the 25(OH)D-1a-hydroxylase with substantial converting
activity in prostate cancer cells. This issue is discussed below.

Calcium intake and vitamin D metabolism in healthy
conditions and in prostate cancer

As indicated in the introduction, a relative risk or odds ratio
above unity for Ca and/or dairy products has been found in
some observational studies on prostate cancer (Giovannucci
et al. 1998; Chan & Giovannucci, 2001; Rodriguez et al.
2003; Tseng et al. 2005; Kesse et al. 2006); hence the hypoth-
esis that high Ca consumption would decrease the production
of 1,25(OH)2D by its inhibitory effect on the secretion and cir-
culating level of PTH, and maybe through an additional direct
negative influence of the increased extracellular Ca concen-
tration on 25(OH)D-1a-hydroxylase activity. In order to be
plausible, this hypothesis should be based on several exper-
imentally testable criteria. The relatively high v. low Ca
intakes should be associated with a biologically significant
difference in the circulating level of 1,25(OH)2D.

Healthy adults

A large increase in Ca intake, from 300 to 1400mg/d, was
associated with a relatively small decrease in the circulating
concentration of 1,25(OH)2D, from 40 to 30 pg/ml (Gallagher
et al. 1979). This small variation was within the reference
values, which range from 16 to 56 pg/ml (Favus, 2003).
Still, an inverse relationship between Ca intake and
1,25(OH)2D serum level was observed in subjects aged 30–
65 years but not in normal subjects older than 65 years, or
in patients with osteoporosis (Gallagher et al. 1979). In a
more recent prospective controlled study in healthy men, vari-
ations in dairy product intakes that increased the daily Ca con-
sumption from 590 (SEM 100) to 1660 (SEM 150) mg reduced
1,25(OH)2D plasma levels by only 3·9 pg/ml (Ferrari et al.
2005). Again, this minor reduction from 39·5 to 35·6 pg/ml
remained well within the normal range (17–55 pg/ml) of

serum 1,25(OH)2D for the studied population (Ferrari et al.
2005). In a randomised clinical trial in men (mean age 62
years), serum 1,25(OH)2D decreased from 42·9 to 41·2 pg/ml
after the 4 years of intervention in the group assigned to
receive a daily Ca supplementation of 1200mg (Baron et al.
2005). The results of these three human studies (Gallagher
et al. 1979; Baron et al. 2005; Ferrari et al. 2005) concur at
demonstrating that large variations in Ca intakes induce
quite minor fluctuations in serum 1,25(OH)2D. These data
contrast with the necessity of using pharmacological and
thereby hypercalcaemic doses of 1,25(OH)2D in order to
reduce the invasiveness and metastasisation of prostate
cancer in appropriate animal models (Peehl & Feldman,
2003).

Prostate cancer patients

Several studies have examined whether patients with prostate
cancer would have a relatively low circulating level of
1,25(OH)2D, in order to provide support to the Ca–vitamin
D hypothesis. Out of six case–control studies (Corder et al.
1993; Braun et al. 1995; Gann et al. 1996; Nomura et al.
1998; Jacobs et al. 2004; Platz et al. 2004), only one
(Corder et al. 1993) reported an inverse association between
1,25(OH)2D serum level and the subsequent risk of prostate
cancer. However, in this ‘positive’ study, the mean plasma
level of 1,25(OH)2D was only 1·81 pg/ml lower in prostate
cancer cases than in controls (Corder et al. 1993). This differ-
ence has to be considered in relation to reference values ran-
ging from 16 to 56 pg/ml with a mean of 36 pg/ml (Favus,
2003). It is difficult to conceive that this very small decline
in circulating 1,25(OH)2D could have played a mechanistic
role in the progression of the prostatic tumours recorded in
this case–control study (Corder et al. 1993). It might be
argued that such a very mild plasma level reduction, within
the 1,25(OH)2D reference range, could still prevent the initial
development of prostate cancer but not control the further pro-
liferation of pre-existing cancerous cells. However, there are
no data supporting this hypothesis.

The reports on the circulating level of 25(OH)D and pros-
tate cancer risk remain inconsistent. One study described an
increased risk with low levels (Ahonen et al. 2000). Another
one reported an increment in risk with either a low or high
level (Tuohimaa et al. 2004), whereas four studies did not
find any association (Braun et al. 1995; Nomura et al. 1998;
Jacobs et al. 2004; Platz et al. 2004). Note that Ca does not
influence the circulating level of 25(OH)D, the hepatic pro-
duction of which essentially depends upon the supply of vita-
min D to the liver (Feldman et al. 2001; Heaney et al. 2003).

Nevertheless, it could be hypothesised that the plasma levels
of 1,25(OH)2D might not reflect its concentration within the
prostate tissue. Thus, a high-Ca diet associated with a relatively
low concentration of circulating PTHmight reduce the synthesis
of 1,25(OH)2D in the prostatic cells and thereby could affect cel-
lular growth and differentiation by autocrine and/or paracrine
signalling pathways. The plausibility of this hypothesis is chal-
lenged by several experimental facts. In normal prostatic tissue,
25(OH)D-1a-hydroxylase is influenced neither by PTH nor by
Ca (Young et al. 2004), in contrast to the renal enzyme that
physiologically controls the production of 1,25(OH)2D (Bell,
1998). Therefore, there is no evidence that variations, even of
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large magnitude, in the intake of Ca inducing substantial altera-
tions in the circulating level of PTH could affect the local pro-
duction of 1,25(OH)2D in normal prostatic cells. Note that
unlike kidney proximal tubular cells, prostate tissue does not
appear to be equipped with PTH/PTHrP type 1 receptors
(Young et al. 2004). A possibility remains that elevation in the
circulating level of 25(OH)D, whether induced by an increase
in the endogenous production of vitaminDor by a larger exogen-
ous supply of either vitamin D or 25(OH)D, could cause an
increased synthesis of 1,25(OH)2D within the prostatic tissue.
However, this potentiality appears to be confined to normal pros-
tate cells. Indeed, prostate cancer tissue, both studied either in
primary cultures or in cell lines, has greatly decreased activity
of 25(OH)D-1a-hydroxylase, as compared with normal pro-
static cells (Hsu et al. 2001; Ma et al. 2004). This deficiency
probably explains why prostate cancer tissue is resistant to the
tumour-suppressor activity of 25(OH)D (Hsu et al. 2001). In
prostate cancer cell lines this decreased activity is due to reduced
gene expression, whereas in primary cultures it appears to
involve some post-translational mechanism (Ma et al. 2004).
Furthermore, in vivo studies in nude mice bearing heterotopic
LNCaP human prostate carcinoma, increasing the dietary
supply of either Ca or vitamin D, given alone or together, did
not affect the tumour growth rate, the final tumour weight and
the serum level of prostate-specific antigen (Balaji et al.
2001). These results were obtained despite the fact that these
dietary manipulations led to significant elevation in the serum
concentration of both Ca and 25(OH)D (Balaji et al. 2001).
Taking into account the capacity of normal prostate cells to con-
vert 25(OH)D into 1,25(OH)2D (Schwartz et al. 1998), it may be
argued that increasing the vitamin D supply from cutaneous or
intestinal sources, and thereby inducing an elevation in the
plasma and intra-prostatic level of 25(OH)D, could still prevent
the initial development of prostate cancer but not inhibit the
further proliferation of pre-existing cancerous cells. Neverthe-
less, this possibility is not directly relevant to the main focus
of the present review, since Ca intake does not influence the pro-
duction and circulating level of 25(OH)D (Feldman et al. 2001;
Heaney et al. 2003).
‘Evidence-based medicine’ consists of establishing a hierar-

chy in the level of evidence, taking into account the type of
study design used for investigating putative causal relation-
ships (Guyatt et al. 1995). Consistent results from an adequate
meta-analysis based on well-conducted randomised controlled
trials are set at the top of the evidence hierarchy. Results
obtained in one single well-conducted randomised controlled
trial are considered at the next highest level (Guyatt et al.
1995). Thus, a single trial achieves a higher degree of cer-
tainty than several observational studies. With respect to the
influence of Ca on the development and progression of pros-
tate cancer, a well-conducted randomised clinical trial was
recently reported (Baron et al. 2005). In this trial enrolling
672 men, the effect of Ca supplementation (1200mg/d),
taken as carbonate salt for 4 years, was evaluated against a
placebo (Baron et al. 2005). During the first 6 years, including
2 years of post-treatment follow-up, there was no increased
risk of prostate cancer associated with Ca supplementation.
There was even some suggestion of a protective effect
(Baron et al. 2005). This randomised placebo-controlled inter-
ventional trial does not support the hypothesis made from
observational studies that Ca would play a detrimental role

in the development of prostate cancer. The interpretation of
this important randomised controlled trial has nevertheless
some limitations. The study was originally designed to evalu-
ate the influence of Ca on the prevention of colorectal aden-
oma and not on prostate cancer (Baron et al. 1999). The
number of cases was not very large, with only seventy prostate
cancers diagnosed during the mean follow-up period of 10·3
years (Baron et al. 2005). Another limitation is the fact that
the overwhelming majority of the prostate cancer cases had
localised tumours (Baron et al. 2005). Therefore, this trial
did not provide useful information pertaining to the possible
influence of Ca supplementation on advanced prostate cancer.

A recent study indicates that higher Ca intake was not
appreciably associated with total prostate cancer (Giovannucci
et al. 2006). However, further analysis of the results in relation
to the severity of the disease suggested that Ca intakes exceed-
ing 1500mg/d may be associated with a higher risk in
advanced and fatal prostate cancer, but not with well-differen-
tiated, organ-confined cancers (Giovannucci et al. 2006).

In the Ca intervention trial (Baron et al. 2005) discussed
earlier, baseline dietary Ca, plasma levels of 1,25(OH)2D
and 25(OH)D were not associated with prostate cancer. There-
fore, the hypothesis implying that variations in circulating
1,25(OH)2D might mechanistically explain the association
found in some observational reports between Ca intake and
prostate cancer is not supported by most studies in which
the active vitamin D metabolite has actually been measured
in both cases and controls (Braun et al. 1995; Gann et al.
1996; Nomura et al. 1998; Jacobs et al. 2004; Platz et al.
2004; Baron et al. 2005). Furthermore, the serum level of
1,25(OH)2D changed very little between the values at baseline
and those determined at the end of the 4 intervention years;
from 42·9 to 41·2 pg/ml and from 43·4 to 44·8 pg/ml in the
Ca-supplemented and placebo group, respectively (Baron
et al. 2005). This finding corroborates the notion that a large
difference in Ca intake exerts only a very mild influence on
the circulating level of 1,25(OH)2D.

In studies in which Ca intake was derived from dairy pro-
duct consumption, it was suggested that other milk com-
ponents might be causally related to prostate cancer risk.
Two hypothetical hormonal candidates have been considered:
IGF-1 with its IGF-binding protein-3 (Renehan et al. 2004;
Severi et al. 2006b), and oestrogens (Qin et al. 2004a). It is
not the purpose of the present review to analyse the plausi-
bility of the hypothesis implying a role for these agents.
This kind of analysis should first examine whether milk-
borne IGF-1, IGF-binding protein-3 or oestrogens are both
ingested and absorbed by the intestinal epithelium in sufficient
amounts to contribute significantly to their plasma levels in
adult men. Without this prerequisite information, it remains
highly speculative to implicate these milk-borne hormonal
factors in the development of prostate cancer, particularly as
regards the very low relative risk associated with dairy product
consumption as documented in the recent meta-analysis con-
ducted on prospective studies (Gao et al. 2005, 2006).

Conclusion

Human studies in both healthy subjects and prostate cancer
patients indicate that large variations in Ca intake lead to
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minimal fluctuations in 1,25(OH)2D circulating level. This
contrasts with the necessity to use hypercalcaemic and thereby
toxic doses of 1,25(OH)2D to inhibit prostate cancer develop-
ment in experimental investigations. Thus, the hypothesis
suggesting that a relatively high Ca intake could lead to a
decrease in the 1,25(OH)2D serum level that may quantitat-
ively be substantial enough to influence the risk of developing
prostate cancer is not sustained by a series of clinical and
experimental results. Whether the statistical association
reported in epidemiological studies between Ca intake and
prostate cancer risk would reflect a biologically meaningful
causal relationship remains to be demonstrated.
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