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Abstract. We show that for the Schrödinger operators on the semi-axis with Bessel-

type potentials kðkþ 1Þ=x2, k A � 1

2
;
1

2

� �
, there exists a meaningful direct and inverse

scattering theory. Several new phenomena not observed in the ‘‘classical case’’ of Faddeev–
Marchenko potentials arise here; in particular, for k3 0 the scattering function S takes two
di¤erent values on the positive and negative semi-axes and is thus discontinuous both at the
origin and at infinity.

1. Introduction

The main goal of this paper is to show that there exists a meaningful direct and
inverse scattering theory for the Schrödinger operators Hk generated by the di¤erential
expressions

lkðyÞ :¼ �y 00 þ kðkþ 1Þ
x2

y

with Bessel-type potentials kðkþ 1Þ=x2, where k A � 1

2
;
1

2

� �
. For non-negative integer

values of k such operators arise in the decomposition in spherical harmonics of the three-
dimensional Laplacian �D, and then k is the angular momentum, or partial wave. Operators
of the form Hk with non-integer values of k arise in the study of scattering of waves and
particles in conical domains (see, e.g., [8]), as well as in the study of the Aharonov–Bohm
e¤ect [2].

The scattering theory for the one-dimensional Schrödinger operators

H ¼ � d 2

dx2
þ qðxÞ

on the semi-axis relates the asymptotic behaviour of solutions e�itHcð0Þ of the correspond-
ing Schrödinger equation ic 0ðtÞ ¼ HcðtÞ and the free evolution e�itH0fð0Þ via the scattering
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operator S (also called the scattering matrix or the scattering function in our context). Some
partial results in the inverse scattering problem of reconstruction of the potential q from the
scattering function S appeared already in the late 1940-ies, but a systematic and successful
theory was only developed in the works of Gelfand and Levitan [18], Krein [25], [26], and
Marchenko [29], [30], see also the reviews [13], [16] and the books [7], [28], [31], [33]. This
‘‘classical theory’’ works for the set of real-valued potentials q in the space L1

1ðRþÞ, i.e., for
potentials satisfying the condition

Ðy
0

xjqðxÞj dx < yð1:1Þ

and often called the Faddeev–Marchenko or Bargman–Jost–Kohn potentials [34], Chapter
2.2.1. The Bessel potential kðkþ 1Þ=x2 considered here does not belong to this class as the
integral (1.1) diverges both at the origin and at infinity.

The direct and inverse scattering theory on the line has also successfully been devel-
oped for potentials in L1

1ðRÞ [13], [16], [28], [31]. Recently it has been extended to a larger
class of Schrödinger operators with Miura distributional potentials in H�1

loc [17], [23], [24].
The Miura potentials that were considered in these works are of the form q ¼ u 0 þ u2, with
u A L2; locðRÞXL1ðRÞ. We notice that the function u is related to the modified Korteweg–
de Vries (mKdV) equation in the same manner as q is related to the Korteweg–de Vries
(KdV) equation, see [32]. The corresponding di¤erential expression giving the Hamiltonian
can then be factorized as

� d 2

dx2
þ q ¼ � d

dx
þ u

� �
d

dx
� u

� �
;

and the class of Miura potentials treated in these works include the Faddeev–Marchenko
class and allow potentials with, e.g., local singularities of Coulomb 1=x-type or Dirac delta-
functions. The formal identity

lk ¼ � d

dx
� k

x

� �
d

dx
þ k

x

� �

might suggest that the Bessel potential could be viewed as a Miura potential; however,
since the function k=x is neither integrable at infinity nor at the origin, the approach based
on Miura potentials is not applicable.

We observe that the inverse scattering problem for Schrödinger operators Hk þ q

with k A N and q belonging to the Faddeev–Marchenko class was also considered in the
context of the corresponding three-dimensional problem for the operator �Dþ Q with
spherically-symmetric potential QðxÞ :¼ qðjxjÞ, cf. [7], [33]. The essential di¤erence is, how-
ever, that the unperturbed (or reference) Hamiltonian is then Hk and not H0. Moreover,
in this problem there exists an e‰cient ‘‘double commutation’’ (or multiple Darboux)
procedure that reduces the inverse scattering problem to the case k ¼ 0, albeit with some
modified potential qk that can explicitly be calculated from q and k, see [16]. In fact, the
same double commutation can be applied to Hk þ q for the general case k A R, reducing it
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to the basic case k A � 1

2
;
1

2

� �
, which thus explains the importance of studying operators of

the form Hk with k A � 1

2
;
1

2

� �
.

Scattering with some other singular reference potentials has also been discussed in the
literature. For instance, scattering on Coulombic potentials was treated in e.g. [9], [10], and
singular potentials that describe ‘‘point’’ interactions were thoroughly investigated in the
books [4], [5], where additional references might be found. Inverse scattering for long-range
oscillating potentials leading to scattering functions with finite phase shifts was considered
in [27]. The methods developed for such potentials do not apply, however, to the case of
Bessel potentials.

In this paper, we show that despite the fact that the Bessel potential kðkþ 1Þ=x2

is too singular for applying the methods of the classical scattering theory, a meaningful

stationary scattering theory between H0 and Hk exists when k A � 1

2
;
1

2

� �
. We remark that

lk is invariant under the change k 7! �1 � k, so that only kf�1=2 need to be considered.
On the other hand, the minimal operator generated by lk is essentially self-adjoint on
Cy

0 ðRþÞ when kf 1=2, so that no scattering is possible between H0 and Hk in that case.

Thus k A � 1

2
;
1

2

� �
is a natural limitation for a scattering theory between H0 and Hk to

exist at all. And indeed the e¤ect of ‘‘scattering ambiguities’’, where di¤erent potentials
generate the same scattering data, has been observed for potentials exhibiting a c=x2-type
behaviour at infinity with cf 3=4, see [3], [12].

Let us remark that a non-stationary scattering theory between H0 and Hk can also be
developed, and the scattering operator is the operator of multiplication by the scattering
function S constructed in the present paper, just as it is the case in the above-mentioned
‘‘classical scattering theory’’. This will be discussed elsewhere.

We show that all the classical objects of the potential scattering theory have their
counterparts in our setting, albeit with a special interpretation. For instance, the scattering
function S turns out to take the values e�pik and epik on the positive and negative semi-axes
respectively. Thus S is discontinuous at the origin and at infinity, and the function 1 � S

does not vanish at infinity, in contrast to all situations treated so far (see [15] and [31],
Chapter 3.3, for the classical setting and [3], [12], [27] for some cases of singular potentials).
We then derive the Marchenko equation and show that the kernel f of the corresponding
integral operator F is the Fourier transform of S taken in the sense of distributions. The
operator F is not compact but rather a multiple of the classical Carleman (also called
Stieltjes) operator [6]. Thus one cannot follow the standard arguments in solving the
Marchenko equation for the kernel k of the transformation operators. We show, however,
that the Marchenko equation when interpreted as a relation between operators in some
operator algebra is indeed soluble and the solution gives the transformation operator send-
ing eiox into the special solutions of the equation lky ¼ o2y. Finally, the kernel of the
transformation operator reconstructs the potential we have started with via the same for-
mula as in the case of regular potentials.
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Although we consider here a concrete operator problem which allows for explicit
calculation of all quantities of interest, our treatment is not confined to this special case.
In fact, it can also be extended to Schrödinger operators

HkðvÞ ¼ � d

dx
� k

x
þ v

� �
d

dx
þ k

x
� v

� �
ð1:2Þ

with v A L1ðRþÞ. For smooth enough v this operator might be written as Hk þ q with
q ¼ v 0 þ v2 � 2kv=x. The objects we constructed here give the first approximation, or the
‘‘leading singularity’’, of their counterparts for operators (1.2); thus the precise knowledge
of these objects is important for a subsequent analysis of operators of the form (1.2).

The paper is organized as follows. In the next section we define rigorously the opera-
tor Hk as the Friedrichs extension of the minimal operator generated by lk. The transfor-
mation operator I þ K and its inverse I þ L are constructed in Section 3. The Jost solutions
and the scattering function are constructed in Section 4 first using the explicit formulae
and then by means of the transformation operators. The Marchenko equation relating the
scattering function S and the transformation operator I þ K is derived in Section 5 and its
solution in the special operator algebra and the reconstruction of the potential are discussed
in Section 6. The final Section 7 discusses two examples demonstrating that discontinuity of
S at the origin is caused by the singularity of the potential at infinity and, conversely, that
the behaviour of S at infinity is determined by the singularity of the potential at the origin.
Finally, in two appendices we collect some information about Bessel special functions and
the Hankel and Mellin transforms which we extensively use in the present work.

Notation. Throughout the paper, we shall write Cþ for the open complex upper-half
plane, B for the algebra of all bounded linear operators acting in the Hilbert space L2ðRþÞ,
and L:i:m: for the limit in the topology of the space L2ðRþÞ. As usual, Gð�Þ stands for the
Euler Gamma function.

2. Di¤erential operators

2.1. Minimal and maximal operators. For k A � 1

2
;
1

2

� �
, we consider the di¤erential

expression lk on its natural domain

dom lk ¼ fy; y 0 A AClocðRþÞg

and denote by Tk the symmetric operator in L2ðRþÞ acting on the set Cy
0 ðRþÞ of

test functions on Rþ by Tky :¼ lky. By definition, the minimal operator Tk;min is
the closure of Tk and the maximal operator Tk;max is the adjoint of the latter, i.e.,
Tk;max ¼ ðTkÞ� ¼ ðTk;minÞ�.

Lemma 2.1. The maximal operator Tk;max is given by Tk;max f ¼ lk f on the set of

functions

dom Tk;max ¼ fy A L2ðRþÞX dom lk j lky A L2ðRþÞg:

86 Albeverio, Hryniv and Mykytyuk, Scattering theory for Schrödinger operators



Proof. In order that g A L2ðRþÞ belongs to the domain of the maximal operator, it
is necessary and su‰cient that the functional

GðfÞ :¼
Ðy
0

ðlkfÞðxÞgðxÞ dx

defined on Cy
0 ðRþÞ should be continuous in L2ðRþÞ.

Assume that g A dom Tk;max and fix an arbitrary e > 0. Then the functional

f 7! �
Ðy
e

f 00ðxÞgðxÞ dx; f A Cy
0 ðe;yÞ;

is continuous in L2ðe;yÞ. It follows that the distribution g 00 is in L2ðe;yÞ and thus g

belongs to W 2
2 ðe;yÞ. Since e was arbitrary, we see that g A dom lk and that for every

f A Cy
0 ðRþÞ we can integrate by parts in the expression for GðfÞ to get

GðfÞ ¼
Ðy
0

fðxÞðlkgÞðxÞ dx:ð2:1Þ

Since G is continuous in L2ðRþÞ, it follows that lkg A L2ðRþÞ.

Conversely, if g A L2ðRþÞX dom lk is such that the function lkg belongs to L2ðRþÞ,
then, for every e > 0, the function g 00 is in L2ðe;yÞ and thus g A W 2

2 ðe;yÞ. It follows
that equality (2.1) holds for every f A Cy

0 ðRþÞ and thus the functional G is continu-
ous in L2ðRþÞ. This shows that g belongs to the domain of the maximal operator Tk;max.

r

Remark 2.2. It follows from the above proof that every function y A dom Tk;max

belongs to W 2
2 ðe;yÞ, for every e > 0.

Remark 2.3. In the paper [14] the operator Tk;max was defined as acting by
Tk;max y ¼ lky on the set dom Tk;max of the above lemma.

2.2. The operator Hk. The di¤erential expression lk for the k considered is in the
limit circle case at the origin and in the limit point case at infinity in the Weyl classification.
Indeed, two linearly independent solutions of the equation

�y 00 þ kðkþ 1Þ
x2

y ¼ o2yð2:2Þ

are, e.g., fkðx;oÞ :¼
ffiffiffiffiffiffiffi
ox

p
Jkþ1=2ðoxÞ and ckðx;oÞ :¼

ffiffiffiffiffiffiffi
ox

p
J�k�1=2ðoxÞ with Jn being the

Bessel function of first kind and order n (for k ¼ �1=2, we take c�1=2ðx;oÞ :¼
ffiffiffiffiffiffiffi
ox

p
Y0ðoxÞ,

with Y0 being the Bessel function of second kind and order 0). Thus the Weyl limit circle/
limit point classification of lk follows from the asymptotic behaviour of the Bessel functions
at the origin and at infinity, see Appendix A.
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Therefore the minimal operator Tk;min is symmetric but not self-adjoint. Since

Ðy
0

ðlk f ÞðxÞ f ðxÞ dx ¼
Ðy
0

f 0ðxÞ þ k

x
f ðxÞ

���� ����2 dxf 0

for all f A Cy
0 ðRþÞ, the operator Tk;min is nonnegative. It follows from the results of [14]

that the Friedrichs extension Hk of Tk;min is the restriction of Tk;max by the boundary con-
dition at the origin

lim
x!þ0

xkyðxÞ ¼ 0ð2:3Þ

for k A � 1

2
;
1

2

� �
and by the boundary condition

yðxÞ ¼ Oð
ffiffiffi
x

p
Þ; x ! þ0;

for k ¼ �1=2. Clearly, the operator Hk is nonnegative; moreover, it has no eigenvalues
and its continuous spectrum coincides with the positive half-line Rþ and is absolutely
continuous there (see [14]). Some other spectral properties of operators of the form Hk (in
particular, definition and properties of the related m-function) were investigated in [19].

3. Transformation operators

Both direct and inverse scattering theories for Schrödinger operators heavily rely on
the existence of the Jost solutions eð�;oÞ. These are solutions of the equations lky ¼ o2y

of the form eiox
�
1 þ oð1Þ

�
as x ! y. For our model case, the Jost solutions can explicitly

be constructed as linear combinations of the special solutions fkð�;oÞ and ckð�;oÞ (see
Section 4); the latter, in turn, are expressed via the Bessel functions Jkþ1=2 and J�k�1=2

(or Y0 for k ¼ �1=2, see Subsection A.2).

However, if one adds to Hk a nontrivial potential q belonging to the Faddeev–
Marchenko class, then no explicit formulae for solutions are available and one could try
to follow the classical approach via the transformation operators. In this section we show
that in the unperturbed case q ¼ 0 the transformation operators indeed exist and study
some of their properties. In Sections 5 and 6 below, these transformation operators will be
related to the scattering data via the Marchenko equation and will be used to reconstruct
the potential of Hk.

3.1. Direct construction of the transformation operators. We look for the transfor-
mation operator I þ K with K an integral operator of the form

ðKyÞðxÞ ¼
Ðy
x

kðx; tÞyðtÞ dt

that satisfies the relation

Tk;maxðI þ KÞ ¼ ðI þ KÞT0;max:
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Assume that there exists such a K with kernel k that is bounded in the domain
ce x < t < y for every c > 0. Then for every o in the open upper half-plane Cþ the func-
tion yð�;oÞ :¼ ðI þ KÞeiox solves the equation lky ¼ o2y and is of the form eiox

�
1 þ oð1Þ

�
as x ! þy. Therefore yð�;oÞ gives then the Jost solution eð�;oÞ, i.e., the following inte-
gral representation holds:

eðx;oÞ ¼ ðI þ KÞeiox ¼ eiox þ
Ðy
x

kðx; tÞeiot dt:

Along with I þ K we consider its (formally) inverse operator I þ L satisfying

ðI þ LÞTk;max ¼ T0;maxðI þ LÞ:ð3:1Þ

As in the classical situation of Schrödinger operators with potentials belonging to the
Faddeev–Marchenko class, we expect that L is also an integral operator with an upper-
triangular kernel, i.e., that

ðLyÞðxÞ ¼
Ðy
x

lðx; tÞyðtÞ dt:ð3:2Þ

It turns out that transformation operators I þ K and I þ L of the above form indeed
exist, are bounded and boundedly invertible, and ðI þ KÞ�1 ¼ I þ L. Both operators can
be constructed explicitly; we start with I þ L since its kernel has a simpler form. By anal-
ogy with the classical theory (see [31], Section 3.1, [28], Section 1.1.3), we expect that the
kernel l should satisfy the wave equation

� q2l

qx2
¼ � q2l

qt2
þ kðkþ 1Þ

t2
lð3:3Þ

and the boundary conditions

d

dx
lðx; xÞ ¼ 1

2

kðkþ 1Þ
x2

;

lim
xþt!y

q

qx
lðx; tÞ ¼ lim

xþt!y

q

qt
lðx; tÞ ¼ 0:

ð3:4Þ

The crucial observation is that the system (3.3)–(3.4) is homogeneous in the sense
that, for every l > 0, the function llðlx; ltÞ is a solution of (3.3)–(3.4) along with lðx; tÞ.
This suggests that we can look for homogeneous solutions of that system satisfying the
relation

lðx; tÞ ¼ 1

t
l

x

t
; 1

� �
:

Set uðxÞ :¼ lðx; 1Þ; then the function u must satisfy the ordinary di¤erential equation

�
ð1 � x2Þu

� 00 þ kðkþ 1Þu ¼ 0
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and the boundary condition

uð1Þ ¼ � kðkþ 1Þ
2

:

Recalling that a solution of the Legendre equation

�
ð1 � x2Þy 0� 0 þ kðkþ 1Þy ¼ 0ð3:5Þ

satisfying the terminal conditions

yð1Þ ¼ 1; y 0ð1Þ ¼ kðkþ 1Þ
2

is given by the Legendre function Pk of first kind and order k (see [35], Chapter 15, [1],
Chapter 8), one immediately recognizes that u ¼ �P 0

k.

Set therefore

lðx; tÞ :¼ � 1

t
P 0
k

x

t

� �
; x < t;

and denote by L the integral operator of (3.2). Since Pk is an analytic function in a complex
neighbourhood of ½0; 1�, P 0

k is bounded on ½0; 1� by some constant c. Hence jlðx; tÞje c=t

for all t > 0, and the Hardy inequality [22], Section 9.9 shows that L is a bounded operator
in L2ðRþÞ. By Corollary 3.3 below, the operator I þ L is boundedly invertible in L2ðRþÞ.

Theorem 3.1. The operator I þ L is the transformation operator, i.e., it performs

similarity of the operators T0;max and Tk;max via (3.1).

Proof. Take an arbitrary y A dom Tk;max, set f :¼ lky and g :¼ ðI þ LÞy, and fix
an e > 0. By Remark 2.2, the function y belongs to W 2

2 ðe;yÞ, so that y 00 A L2ðe;yÞ.

Integrating by parts twice in the integral
Ðy
x

lðx; tÞy 00ðtÞ dt for x > e and using the relations
(3.3)–(3.4), we arrive at the equality

f ðxÞ þ
Ðy
x

lðx; tÞ f ðtÞ dt ¼ �g 00ðxÞð3:6Þ

in the sense of distributions over ðe;yÞ.

Observe that the function f belongs to L2ðRþÞ by the definition of dom Tk;max and
that g ¼ ðI þ LÞy and ðI þ LÞ f are in L2ðRþÞ. Since e > 0 was arbitrary, we conclude
that the distribution g 00 belongs to L2ðRþÞ. Therefore g A dom T0;max and ðI þ LÞ f ¼ l0g,
which establishes the inclusion ðI þ LÞTk;max HT0;maxðI þ LÞ.

To prove the reverse inclusion, we take an arbitrary y A L2ðRþÞ for which the func-
tion g :¼ ðI þ LÞy belongs to the domain of T0;max, i.e., to W 2

2 ðRþÞ. We fix an arbitrary

90 Albeverio, Hryniv and Mykytyuk, Scattering theory for Schrödinger operators



e > 0 and observe that Ly is absolutely continuous on the interval ðe;yÞ and that the
derivative

ðLyÞ0ðxÞ ¼ P 0
kð1Þ

yðxÞ
x

�
Ðy
x

P 00
k

x

t

� �
1

t2
f ðtÞ dt

belongs to L2ðe;yÞ; in particular, Ly A W 1
2 ðe;yÞ. Since g A W 2

2 ðRþÞ, we conclude that
y ¼ g � Ly A W 1

2 ðe;yÞ and then, by replicating the arguments, that y A W 2
2 ðe;yÞ.

As a result, the distribution f :¼ lky is in L2ðe;yÞ, and integration by parts again
leads to the equality (3.6) for x > e. As e > 0 was arbitrary and �g 00 A L2ðRþÞ, we see
that ðI þ LÞ f belongs to L2ðRþÞ and equals �g 00. By Corollary 3.3 below, the operator
I þ L is boundedly invertible in L2ðRþÞ, so that f A L2ðRþÞ. It follows that y belongs to
dom Tk;max and that ðI þ LÞTk;max IT0;maxðI þ LÞ, thus completing the proof. r

3.2. Some symbol calculus. The operator I þ L has an upper triangular kernel,
which suggests that it might belong to the subalgebra Aþ introduced in Subsection 6.2
below. To verify this, we have to calculate the symbol zk of I þ L and to show that it
belongs to the Hardy space Hy.

By definition, we have

zkðzÞ :¼ 1 �MðP 0
kw½0;1�ÞðzÞ ¼ 1 �

Ð1
0

t�iz�1=2P 0
kðtÞ dt;ð3:7Þ

where M denotes the Mellin transform (see Appendix B), Pk is the Legendre function
of first kind and order k, see [1], Chapter 8, [35], Chapter 15, and w½0;1� is the indicator
function of the interval ½0; 1�.

Lemma 3.2. For z A Cþ, the following identity holds:

zkðzÞ ¼
G

1

4
� i

2
z

� �
G

3

4
� i

2
z

� �

G
1

4
� i

2
z � k

2

� �
G

3

4
� i

2
z þ k

2

� � :ð3:8Þ

Proof. We multiply the Legendre equation (3.5) by t and then take its Mellin trans-
form to get the relation

Ð1
0

�
ð1 � t2ÞP 0

kðtÞ
� 0

t�izþ1
2 dt þ kðkþ 1Þ

Ð1
0

PkðtÞt�izþ1
2 dt ¼ 0:

Integrating by parts yields

zkðz þ 2iÞ ¼ 1 �
Ð1
0

P 0
kðtÞt�izþ3

2 dt ¼ �iz þ 3

2

� �Ð1
0

PkðtÞt�izþ1
2 dt
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and

Ð1
0

�
ð1 � t2ÞP 0

kðtÞ
� 0

t�izþ1
2 dt ¼ �iz þ 1

2

� ��
zkðzÞ � zkðz þ 2iÞ

�
;

therefore the above relation takes the form

�iz þ 1

2

� ��
zkðzÞ � zkðz þ 2iÞ

�
þ kðkþ 1Þ

�iz þ 3

2

zkðz þ 2iÞ ¼ 0:

Setting aðzÞ :¼ z2 þ 1

4

� ��1

, we get

zkðzÞ
zkðz þ 2iÞ ¼ 1 þ kðkþ 1Þaðz þ iÞ;

or, by iteration,

zkðzÞ ¼ zkðz þ 2niÞ
Qn�1

k¼0

�
1 þ kðkþ 1Þaðz þ i þ 2kiÞ

�
:ð3:9Þ

The Riemann–Lebesgue lemma applied to the integral in (3.7) yields the equality

lim
y!þy

zkðz þ iyÞ ¼ 1

for every z A Cþ. Passing to the limit in (3.9), we derive the relation

zkðzÞ ¼
Qy
k¼0

�
1 þ kðkþ 1Þaðz þ i þ 2kiÞ

�
:ð3:10Þ

Observing that

1 þ kðkþ 1ÞaðzÞ ¼ 1 þ kðkþ 1Þ
z2 þ 1=4

¼ 1 þ ik

z þ i=2

� �
1 � ik

z � i=2

� �
;

we can recast (3.10) as

zkðzÞ ¼
Qy
k¼0

1 þ k=2

k þ 3=4 � iz=2

� �
1 � k=2

k þ 1=4 � iz=2

� �
;ð3:11Þ

which gives (3.8) by [21], Equation 8.325(1). r

Corollary 3.3. The operator I þ L belongs to the algebra Aþ, is boundedly invertible

in Aþ, and the inverse I þ K has symbol 1=zkðzÞ.
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Proof. We have to show that the symbols zk and 1=zk belong to the Hardy class Hy

in the upper complex half-plane. Regrouping the factors in (3.11), we see that

zkðzÞ ¼
Qy
n¼0

1 � kðkþ 1Þ
ð2n þ 1 � izÞ2 � 1=4

 !
:

Since for z A Cþ the estimate

kðkþ 1Þ
ð2n þ 1 � izÞ2 � 1=4

�����
�����e jkðkþ 1Þj

4n2 þ 3=4

holds, the above product converges uniformly in Cþ to a bounded analytic function. The
claim about 1=zk is justified in the same manner by using the representation

1=zkðzÞ ¼
Qy
n¼0

1 � kðkþ 1Þ
ð2n þ 1 � izÞ2 � ðkþ 1=2Þ2

 !
;

and the proof is complete. r

3.3. The transformation operator I BK . According to Corollary 3.3, the transfor-
mation operator I þ K is bounded in L2ðRþÞ and belongs to the algebra Aþ; namely,

ðI þ KÞyðxÞ ¼ yðxÞ þ
Ðy
x

v
x

t

� �
1

t
yðtÞ dt

with a function v that is related to the symbol hk :¼ 1=zk via the Mellin transform M , viz.

hk ¼ 1 þMðvw½0;1�Þ;ð3:12Þ

see Subsection 6.2 and Appendix B. Here we shall use the explicit formula for hk in order
to derive some properties of v and I þ K that will be useful for studying the scattering
function in Subsection 4.2.

By virtue of (3.8), the symbol hk has the form

hkðzÞ ¼
G

1

4
� i

2
z � k

2

� �
G

3

4
� i

2
z þ k

2

� �

G
1

4
� i

2
z

� �
G

3

4
� i

2
z

� �ð3:13Þ

and is a meromorphic function with simple poles at the points

zn :¼ � n þ 1

2
þ ð�1Þnþ1k

� �
i; n A Zþ:

Denote by an the residue of hk at the pole zn; then we have the following result.
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Lemma 3.4. As n ! y, the residues an admit the representation

an ¼ ið�1Þn tan pk

p
1 � kðkþ 1Þ

4n

� �
þ Oðn�2Þ:

Proof. We only treat the poles z2n since the formulae for z2nþ1 are obtained from
those for z2n by replacing k by �1 � k.

We recall that the Gamma function G has simple poles at all non-positive integers
and that its residue at the point �n is equal to ð�1Þn=n!. Therefore,

lim
z!z2n

1

4
� k

2
� i

2
z þ n

� �
G

1

4
� k

2
� i

2
z

� �
¼ ð�1Þn

n!
;

which yields

a2n ¼ 2i
ð�1Þn

n!

G
1

2
þ k� n

� �

G
k

2
� n

� �
G

1

2
þ k

2
� n

� � :ð3:14Þ

Using the relation GðzÞGð1 � zÞ ¼ p=sin pz, we find that

a2n ¼ 2i

sin p
k

2

� �
sin p

1

2
þ k

2

� �

n!p sin p
1

2
� k

� � G n þ 1 � k

2

� �
G n þ 1

2
� k

2

� �

G n þ 1

2
� k

� �

¼ i
tan pk

p

G n þ 1 � k

2

� �
G n þ 1

2
� k

2

� �

Gðn þ 1ÞG n þ 1

2
� k

� � :

By virtue of [21], Equation 8.325(1), we get

G n þ 1 � k

2

� �
G n þ 1

2
� k

2

� �

Gðn þ 1ÞG n þ 1

2
� k

� � ¼
Qy
k¼0

1 þ
k

2

n þ k þ 1 � k

2

0
B@

1
CA 1 �

k

2

n þ k þ 1

2
� k

2

0
B@

1
CA:

Since

1 þ
k

2

n þ k þ 1 � k

2

0
B@

1
CA 1 �

k

2

n þ k þ 1

2
� k

2

0
B@

1
CA¼ 1 � kðkþ 1Þ

4

1

ðn þ kÞ2
þ O

�
ðn þ kÞ�3�
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and

Py
k¼0

1

ðn þ kÞ2
¼ 1

n
þ Oðn�2Þ;

the required representation of an follows. r

Lemma 3.5. The symbol hk has the form

hkðzÞ ¼ 1 þ
Py
n¼0

a2n

z � z2n

þ a2nþ1

z � z2nþ1

� �
;ð3:15Þ

where the series converges uniformly on every compact subset of C not containing the poles.

Proof. We denote by x the function given by the right-hand side of (3.15). By virtue
of Lemma 3.4 the series for x converges uniformly on every compact subset of C not con-
taining the numbers zn, n A Zþ, whence x is a meromorphic function with simple poles at zn.
It follows that the function hk � x is entire.

Fix e > 0 and denote by De the complement of the e-neighbourhood of the set
fzngn AZþ

. Then the function hk is uniformly bounded on De due to the product representa-
tion (3.10). By Lemma 3.4, the function x is also uniformly bounded on De. Hence hk � x is
a constant function by the Liouville theorem, and this constant is zero in view of the
relations

lim
x!þy

hkðxÞ ¼ lim
x!þy

xðxÞ ¼ 1:

The lemma is proved. r

Corollary 3.6. The function v has the representation

vðsÞ ¼ �ia0s�k � ia1s1þk � i
Py
n¼1

ða2ns2n�k þ a2nþ1s2nþ1þkÞ;

in which the series converges uniformly on ½0; 1�.

Indeed, the above formula follows from (3.12), (3.15), and the relation

Mðxaw½0;1�Þ ¼ i z þ i aþ 1

2

� �� ��1

:

The uniform convergence of the series is guaranteed by the asymptotics of the an estab-
lished in Lemma 3.4.

Corollary 3.6 implies that vðsÞ ¼ �ia0s�k þ s1þk~vvðsÞ with a function ~vv that is con-
tinuous on ½0; 1�, which yields the following representation of the transformation operator
I þ K.
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Corollary 3.7. The transformation operator I þ K has the form

I þ K ¼ I � ia0B�k þ ~KK ;

where B�k is the Hardy operator of Example 6.2(i) and ~KK acts via

ð ~KKyÞðxÞ ¼
Ðy
x

x

t

� �1þk

~vv
x

t

� �
1

t
yðtÞ dt

with some function ~vv that is continuous on ½0; 1�.

4. The scattering function

4.1. Direct construction. By definition, the scattering function S is the coe‰cient in
the linear combination eðx;�oÞ � SðoÞeðx;oÞ that produces a solution of (2.2) satisfying
the initial condition (2.3) at the origin.

Recall that the Jost solution eð�;oÞ is a solution of equation (2.2) that for o in the
closed upper half-plane has the asymptotics

eðx;oÞ ¼ eiox
�
1 þ oð1Þ

�
as x ! þy. For k A � 1

2
;
1

2

� �
the asymptotic behaviour of the solutions fk and ck at

infinity (see Subsection A.2) yields

eðx;oÞ ¼
ffiffiffi
p

2

r
1

cos pk
ie�ip

2
kfkðx;oÞ þ eip

2
kckðx;oÞ

h i
:ð4:1Þ

Using the relation G
1

2
� k

� �
G

1

2
þ k

� �
¼ p

cos pk
and the asymptotics of the fk and ck

at the origin, we find that

eðx;oÞ ¼
ffiffiffi
p

p
eip

2
k

cos pk

2k

G
1

2
� k

� � ðoxÞ�k�1 þ oð1Þ
�

ð4:2Þ

¼ eip
2
kffiffiffi
p

p 2kG
1

2
þ k

� �
ðoxÞ�k�1 þ oð1Þ

�

as x ! þ0. For positive o we thus find that

SðoÞ ¼ lim
x!þ0

eðx;�oÞ
eðx;oÞ ¼ e�kðlogoþpiÞ

e�k logo
¼ e�pik:
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Since we only consider o in the upper half-plane, for negative o we should interpret
ð�oÞ�k as e�k logð�oÞ and thus similarly get

SðoÞ ¼ lim
x!þ0

eðx;�oÞ
eðx;oÞ ¼ e�k logð�oÞ

e�kðlogð�oÞþpiÞ ¼ epik:

For k ¼ �1=2 the asymptotics (4.2) of eðx;oÞ as x ! þ0 gets an extra factor
logðoxÞ, which, however, does not influence the value of SðoÞ. Therefore the scattering

function is piecewise constant for all k A � 1

2
;
1

2

� �
and equals

SðoÞ ¼ e�pik; o > 0;

epik; o < 0:

	
ð4:3Þ

We observe that in the case of Schrödinger operators with Faddeev–Marchenko potentials
the scattering function S is continuous and is close to 1 in the sense that the di¤erence 1 � S

belongs to L2ðRÞ, see [31], Chapter 3.3. Here this is not the case; nevertheless one can use S

to uniquely reconstruct the operator Hk, see Section 6 below.

4.2. Construction via the transformation operators. Here we show that the same
result can be derived without knowing the explicit formulae expressing the Jost solution
eð�;oÞ via the Bessel functions but rather using the representation of eð�;oÞ via the trans-
formation operators.

Consider first the case k > 0. By Corollary 3.7, for all o in the open upper half-plane
we get

eðx;oÞ ¼ eiox � ia0x�k
Ðy
x

eiot

t1�k
dt þ

Ðy
x

x

t

� �1þk

~vv
x

t

� �
eiot

t
dtð4:4Þ

with a function ~vv that is continuous over ½0; 1�. Observe that for every fixed x > 0 the
function eðx; �Þ is analytic in the whole complex plane. Since the integrals above converge
uniformly in the domain

fo A C j Imof 0; jojf eg

for every e > 0 (the first one by the Abel–Dirichlet test and the second one by the domi-
nated convergence test), we conclude that the representation (4.4) holds also for all real
nonzero o.

Further, the last integral remains bounded as x ! þ0, so that, by (3.14), we get

lim
x!þ0

xkeðx;oÞ ¼ �ia0

Ðy
0

eiot

t1�k
dt ¼ �ia0GðkÞeip

2
ko�kð4:5Þ

¼ 2eip
2
k

GðkÞG 1

2
þ k

� �

G
k

2

� �
G

1

2
þ k

2

� �o�k ¼ eip
2
kffiffiffi
p

p 2kG
1

2
þ k

� �
o�k;
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which should be compared with (4.2). In the last equality above, we have used the double
argument formula [21], Formula 8.335:

GðxÞG 1

2
þ x

� �
¼

ffiffiffi
p

p
21�2xGð2xÞ

for the Gamma functions. Therefore,

SðoÞ ¼ lim
x!þ0

eðx;�oÞ
eðx;oÞ ¼ lim

x!þ0

xkeðx;�oÞ
xkeðx;oÞ ¼ ð�oÞ�k

o�k
;

which results in (4.3).

The study of the behaviour of the Jost solution eð�;oÞ at the origin for negative k will
be based on a di¤erent integral representation. Firstly, by Corollary 3.6 the function v is
then continuous on ½0; 1� and

lim
s!þ0

skvðsÞ ¼ �ia0:ð4:6Þ

Therefore the formula

eðx;oÞ ¼ eiox þ
Ðy
x

v
x

t

� �
1

t
eiot dt

established in Section 3 for x > 0 and o A Cþ remains true for real o, due to the uniform
convergence of the integral for o A Cþ.

We set VðsÞ :¼
Ðs
0

vðxÞ=x dx and notice that, by l’Hôpital’s rule,

lim
s!þ0

skVðsÞ ¼ � 1

k
lim

s!þ0
skvðsÞ ¼ ia0

k
:ð4:7Þ

Now for x A ð0; 1� the integration by parts gives

eðx;oÞ ¼ eiox
�
1 þ Vð1Þ

�
� eioVðxÞ þ io

Ð1
x

V
x

t

� �
eiot dt

þ
Ðy
1

v
x

t

� �
1

t
eiot dt:

Next we show that 1 þ Vð1Þ ¼ 0. Indeed, both the symbol hk and the Mellin transform of

vw½0;1� can be continued analytically into the half-plane Im z > k� 1

2
. Since z ¼ � i

2
is a

zero of hk in view of (3.13), we derive from (3.12) that

0 ¼ hk
i

2

� �
¼ 1 þ

Ð1
0

t�1vðtÞ dt ¼ 1 þ Vð1Þ
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as required. It follows that

lim
x!þ0

xkeðx;oÞ ¼ �eio lim
x!þ0

xkVðxÞ þ io lim
x!þ0

Ð1
x

x

t

� �k

V
x

t

� �
tkeiot dt

þ lim
x!þ0

Ðy
1

x

t

� �k

v
x

t

� �
1

t1�k
eiot dt:

Using (4.6), (4.7), and applying the Lebesgue dominated convergence theorem to the above
integrals, we get

lim
x!þ0

xkeðx;oÞ ¼ �ia0
eio

k
� io

k

Ð1
0

tkeiot dt þ
Ðy
1

tk�1eiot dt

" #

¼ � a0o

k

Ðy
0

tkeiot dt:

[21], Formula 3.381.5 finally yields the relation

lim
x!þ0

xkeðx;oÞ ¼ � a0o
�k

k
Gð1 þ kÞeip

2
ð1þkÞ ¼ �ia0GðkÞeip

2
ko�k

as for the case k > 0, cf. (4.5), which results in the expression (4.3) for the scattering func-
tion S.

5. Derivation of the Marchenko equation

In Section 3, we constructed the transformation operator I þ K that maps solutions
of the unperturbed equation �y 00 ¼ o2y into the solutions of the equation lky ¼ oy and
preserves their behaviour at infinity. In particular, the asymptotics of the solution fk as
x ! þy yields the relation

fkðx;oÞ ¼
ieip

2
kffiffiffiffiffiffi

2p
p ½eðx;�oÞ � SðoÞeðx;oÞ�

¼ ieip
2
kffiffiffiffiffiffi

2p
p ðI þ KÞ½e�iot � SðoÞeiot�ðxÞ:

We recall (see Subsection A.3) that Jk denotes the Hankel transform in L2ðRþÞ given
by

ðJk f ÞðoÞ :¼
Ðy
0

fkðx;oÞ f ðxÞ dx;

which is a unitary operator in L2ðRþÞ. We shall write FG for the truncated Fourier trans-
forms, viz.

ðFG f ÞðoÞ :¼
Ðy
0

eGioxf ðxÞ dx:
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These are bounded operators in L2ðRþÞ defined by

ðFG f ÞðoÞ :¼ L:i:m:
N!y

ÐN
0

eGioxf ðxÞ dx:

Denoting the operator of multiplication by the scattering function S by the same
letter S and substituting for fk in the transform Jk, we find that

Jk ¼
ieip

2
kffiffiffiffiffiffi

2p
p ðF� � SFþÞðI þ KÞ�;

which yields the relation

I ¼ J �
kJk ¼

1

2p
ðI þ KÞðF� � SFþÞ�ðF� � SFþÞðI þ KÞ�:

Recalling that jSðoÞj ¼ 1 and Sð�oÞ ¼ SðoÞ for all real o and observing that ðFGÞ� ¼ FH,
we find that

ðI þ KÞ�1ðI þ K �Þ�1 ¼ 1

2p
½FþF� þ F�Fþ � FþSFþ � F�SF��:

For every function f A L2ðRþÞ of compact support we find that

ðFþF�fÞðxÞ þ ðF�FþfÞðxÞ ¼ L:i:m:
n!y

Ðy
0

f ðtÞ sin nðx � tÞ
x � t

dt:

Since sin nx=x is the Fourier transform of the characteristic function w½�n;n� of the interval
½�n; n�, the operator of convolution with sin nx=x converges as n ! y to 2pI in the strong
operator topology of L2ðRþÞ. Therefore FþF� þ F�Fþ ¼ 2pI . Further, straightforward
calculations give

ðFþSFþfÞðxÞ þ ðF�SF�fÞðxÞ ¼ �2p sinðpkÞðCfÞðxÞ

þ 2 L:i:m:
n!y

Ðy
0

fðtÞ sin½nðx þ tÞ � pk�
x þ t

dt;

where C is the Carleman (or Stieltjes) transform defined by

ðCfÞðxÞ :¼ 1

p

Ðy
0

fðtÞ
x þ t

dt:

The Carleman operator C belongs to the operator algebra A introduced in Section 6 below;
in particular, it is bounded in L2ðRþÞ (see Example 6.2(b)). Therefore the integral operators
In given by

ðInfÞðxÞ :¼
Ðy
0

fðtÞ sin½nðx þ tÞ � pk�
x þ t

dt
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are uniformly bounded in L2ðRþÞ. If f belongs to Cy
0 ðRþÞ, so that e :¼ inf suppf > 0,

then integration by parts gives the pointwise estimate

jðInfÞðxÞje
C

n

1

eþ x

for some constant C depending only on f. It follows that Inf ! 0 in L2ðRþÞ for every such
f, which implies that In converge to zero in the strong operator topology of L2ðRþÞ.

Combining the above formulae, we finally arrive at the relation

ðI þ KÞ�1ðI þ K �Þ�1 ¼ I � sinðpkÞC;ð5:1Þ

which states that the operator I � sinðpkÞC is factorized in the operator algebra A (see
Section 6 below) by means of the operator I þ L ¼ ðI þ KÞ�1 and its adjoint.

Applying the operator I þ K to both sides of (5.1) and rewriting the resulting equa-
tion in terms of kernels, we derive the Marchenko equation,

kðx; tÞ þ f ðx þ tÞ þ
Ðy
x

kðx; sÞ f ðs þ tÞ ds ¼ 0; x < t;ð5:2Þ

with f ðsÞ :¼ �sinðpkÞ=s. Conversely, it is known that if some functions k and f are related
by the Marchenko equation, then the corresponding integral operators K and F ,

ðFyÞðxÞ :¼
Ðy
0

f ðx þ tÞyðtÞ dt

are related via the factorization relation (5.1) with I � sinðpkÞC there replaced by I þ F .

Remark 5.1. In the classical situation of Schrödinger operators with potentials in
the Faddeev–Marchenko class the function S satisfies the relation Sð�oÞ ¼ SðoÞ and the
inclusion 1 � S A L2ðRÞ. Observing that F 2

þ þ F 2
� ¼ 0, we find that, for every f A L2ðRþÞ

of compact support,�
FþSðoÞFþf

�
ðxÞ þ

�
F�Sð�oÞF�f

�
ðxÞ

¼
�
Fþ½SðoÞ � 1�Fþf

�
ðxÞ þ

�
F�½Sð�oÞ � 1�F�f

�
ðxÞ

¼
Ðy
0

fðtÞL:i:m:
n!y

Ðn
�n

eioðxþtÞ½SðoÞ � 1� do

¼ 2p
Ðy
0

f ðx þ tÞfðtÞ dt;

with f being the Fourier transform of S � 1. It is known that the function f is also
integrable and thus the integral operator F is compact.

In our situation with Bessel potentials the scattering function S is given by (4.3). Its
distributional Fourier transform equals the distribution �sinðpkÞ=x taken in the principal
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value sense, which is in complete agreement with the above. The integral operator F

under the Mellin transform becomes the operator of multiplication by the symbol
�sinðpkÞ=coshðpzÞ in the space L2ðRÞ (cf. Example 6.2(b)) and thus it is no longer
compact.

6. Solution of the Marchenko equation and factorization of the operator I BF

As explained at the end of the previous section, the problem of solving the Marchenko
equation (5.2) is equivalent to that of factorizing the operator I þ F . For the operator Hk,
it is easier to solve the latter one, and we treat it in this section.

6.1. Canonical factorization of operators. For every t A ½0;yÞ, we denote by wt the
characteristic function of the interval ½0; t� and introduce the orthoprojector Pt in L2ðRþÞ
by

ðPt f ÞðxÞ ¼ wtðxÞ f ðxÞ:

An operator A A B is called upper triangular (resp. lower triangular) if

ðI � PtÞAPðtÞ ¼ 0 ðresp: PtAðI � PtÞ ¼ 0Þ

for every t A Rþ. The subset Bþ (resp. B�) of all upper triangular (resp. lower triangular)
operators in B forms a closed subalgebra of B.

Definition 6.1. Assume that B0 is a subalgebra of B and set BG
0 :¼ BGXB0. We

say that an operator A A B0 admits a canonical factorization in B0 if there are operators
Aþ A Bþ

0 and A� A B�
0 that are invertible respectively in Bþ

0 and B�
0 and such that

A ¼ AþA�.

We refer to [20], Chapter IV, for general results on factorization in operator algebras.

6.2. The algebra A. Now we introduce a special commutative subalgebra A of B.
Given an arbitrary function y A LyðRÞ, we denote by My the operator of multiplication
by y, My f ¼ yf , and set

M̂My :¼ M�1MyM ;

with M denoting the Mellin transform, see Appendix B. We call y the symbol of the
operator M̂My. The family

A :¼ fM̂My j y A LyðRÞg

forms a closed self-adjoint commutative subalgebra of the Banach algebra B with unity.
The mapping

LyðRÞ C y 7! M̂My A A

is an algebra isomorphism and ðM̂MyÞ� ¼ M̂M
y
.
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Let f A L2ð0;yÞ be such that y :¼ Mf A LyðRÞ; then the operator M̂My is an integral
operator Kf in L2ðRþÞ given by

ðKf f ÞðxÞ :¼
Ðy
0

f
x

t

� �
1

t
f ðtÞ dt:

Indeed, using the property (B.2), we find that

M̂My f ¼ M�1½ðMfÞ � ðMf Þ� ¼ M�1Mðf ? f Þ ¼ f ? f

for all f A Cy
0 ðRþÞ, and the result follows.

The above construction gives many classical integral operators in the algebra A.

Example 6.2. The algebra A contains the following operators:

(a) The Hardy operator Ba, Re a > �1=2, given by

ðBa f ÞðxÞ :¼
Ðy
x

x

t

� �a1
t

f ðtÞ dt;

the corresponding symbol is y :¼ Mðxaw½0;1�Þ ¼ �iz þ aþ 1

2

� ��1

.

(b) The Carleman operator C given by

ðCf ÞðxÞ :¼ 1

p

Ðy
0

f ðtÞ
x þ t

dt;

the corresponding symbol is y :¼ p�1M
�
1=ð1 þ xÞ

�
. Recalling the formula [21], Equation

3.241(2),

1

p

Ðy
0

xm�1

1 þ x
dx ¼ 1

sin pm
; 0 < Re < 1;

we get yðzÞ ¼ 1=coshðpzÞ.

6.3. Factorization in the algebra A. We set Aþ :¼ AXBþ and A� :¼ AXB�.
The operators in AG are characterized by the following property.

Lemma 6.3. For y A LyðRÞ, the operator M̂My is in Aþ if and only if y belongs to

the Hardy space Hy of functions that are bounded and analytic in the upper complex half-

plane Cþ. Analogously, M̂My A A� if and only if y belongs to the Hardy space H�;y of

functions that are bounded and analytic in the lower complex half-plane C�.

Proof. We only give the proof for Aþ. Assume that M̂My A Aþ. Since the Hardy
operator B0 of Example 6.2(a) belongs to Aþ, we get B0M̂My A Aþ. Clearly, B0M̂My ¼ M̂My1
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with

y1ðzÞ ¼
iyðzÞ

z þ i=2
A L2ðRÞ;

therefore the function f :¼ M�1y1 is in L2ðRþÞ. Fix an arbitrary a > 0 and take
f A L2ðRþÞ with support in the interval ð0; aÞ. By the definition of Aþ, we get

Ða
0

f
x

t

� �
1

t
f ðtÞ dt ¼ 0

for all x > a. This implies that fðxÞ ¼ 0 for a.e. x > 1, whence y1 :¼ Mf belongs to the
space H 2. As a result, the function y is analytic in the upper half-plane Cþ, whence y A Hy.

Assume now that y A Hy. If in addition y A L2ðRÞ, then the function f :¼ M�1y

belongs to L2ðRþÞ and has its support in the interval ½0; 1�. Therefore

ðM̂My f ÞðxÞ ¼ ðKf f ÞðxÞ ¼
Ðy
x

f
x

t

� �
1

t
f ðtÞ dt

for all f A L2ðRþÞ, so that M̂My A Aþ. A generic y A Hy is the limit in Hy of the sequence
ðynÞ A HyXL2ðRÞ with

ynðzÞ ¼
inyðzÞ
z þ in

:

Since M̂Myn
belong to Aþ for all n A N and converge in A to M̂My as n ! y, the closedness

of Aþ yields that M̂My belongs to Aþ as claimed. r

Assume that y A Ly is such that 1=y also belongs to Ly. Assume also that the
Riemann–Hilbert factorization problem for y is soluble, i.e., that

y ¼ y1y2ð6:1Þ

for some functions y1 and y2 in Hy. Since y1 and y2 must be essentially bounded away
from zero on the real line, we conclude that 1=y1 and 1=y2 also belong to Hy. Therefore

M̂My ¼ M̂My1

�
M̂My2

��
;ð6:2Þ

and the operators M̂My1
and

�
M̂My2

��
belong respectively to Aþ

2 and A� and are boundedly
invertible there. Conversely, equation (6.2) clearly implies (6.1). Thus the two problems, the
Riemann–Hilbert factorization problem for the function y and the canonical factorization
problem in A for the operator M̂My, are equivalent.

6.4. Factorization of the operator I BF . Consider now the problem of canonical
factorization in the algebra A of the operator Ak :¼ I þ F , i.e.,

Ak ¼ I � sinðpkÞC;
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where C is the Carleman operator of Example 6.2(b). By the above, Ak ¼ M̂Myk , where

ykðzÞ ¼ 1 � sin pk

cosh pz
:

Set

hþk ðzÞ :¼
G

1

4
� i

2
z

� �
G

3

4
� i

2
z

� �

G
1

4
� i

2
z � k

2

� �
G

3

4
� i

2
z þ k

2

� �

and h�k ðzÞ ¼ hþk ð�zÞ ¼ hþk ðzÞ. By Corollary 3.3, the function hþk belongs to the Hardy
space Hy in the upper half-plane and thus h�k A Hy. Moreover, using the identity

G
1

2
þ z

� �
G

1

2
� z

� �
¼ p

cos pz
;

we find that

hþk ðzÞh�k ðzÞ ¼
cos p

i

2
z þ 1

4
þ k

2

� �
cos p

i

2
z � 1

4
� k

2

� �

cos p
i

2
z þ 1

4

� �
cos p

i

2
z � 1

4

� �

¼ cosh pz � sin pk

cosh pz

¼ ykðzÞ:

As a result, we arrive at the canonical factorization of Ak in the form

Ak ¼ M̂Mhþk
M̂Mh�k ¼ M̂Mhþk

�
M̂Mhþk

��
:

Recalling (3.8), we see that hþk is the symbol of the transformation operator I þ L;
whence M̂Mhþk

¼ I þ L, and we have the equality

I þ Fk ¼ ðI þ LÞðI þ L�Þ;

which is equivalent to the Marchenko equation

kðx; tÞ þ f ðx þ tÞ þ
Ðy
x

kðx; sÞ f ðs þ tÞ ds ¼ 0; x < t;

for the kernel k of the transformation operator I þ K ¼ ðI þ LÞ�1.

6.5. Reconstruction of the potential. The inverse scattering problem consists in re-
constructing the Schrödinger operator from its scattering function S. Given S as in (4.3),
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we form its distributional Fourier transform f ðxÞ ¼ �sinðpkÞ=x, denote by F the integral
operator in L2ðRþÞ with kernel f ðx þ tÞ, and then factorize the operator I þ F as explained
in Subsection 6.4. This way we get kernels k and l of the corresponding transformation
operators discussed in Section 3, and at the final stage of the reconstruction algorithm, we
set

qðxÞ :¼ �2
d

dx
kðx; xÞ ¼ 2

d

dx
lðx; xÞ:

By the above, we have

lðx; xÞ ¼ �P 0
kð1Þ

1

x
;

recalling the normalization of the Legendre function Pk, we see that

qðxÞ ¼ 2
kðkþ 1Þ

2

1

x2
¼ kðkþ 1Þ

x2

as it should be. This completes the solution of the inverse scattering problem.

7. Approximations by half-regular potentials

In the scattering theory for Schrödinger operators with potentials in the Faddeev–
Marchenko class the corresponding scattering functions S are continuous on the whole
line and 1 � S are square integrable [15]. Both these properties do not hold for the operator
Hk. Indeed, as we have seen in Section 4, the scattering function S of Hk is piecewise con-
stant; in particular, it has a jump discontinuity at o ¼ 0 and 1 � S takes nonzero constant
values for positive and negative o.

The Bessel potential kðkþ 1Þ=x2 is singular both at the origin and at infinity (in
the sense that it does not decay su‰ciently fast there). The purpose of this section is to
demonstrate that the discontinuity of the scattering function S at the origin is caused by
the behaviour of the potential at infinity and, conversely, the behaviour of S at infinity is
influenced mainly by the singularity of the potential at the origin. To do this, we consider
two model examples of Schrödinger operators Hk;0;n and Hk;1;n with potentials

q0;nðxÞ :¼ w½1=n;yÞðxÞkðkþ 1Þ=x2

and

q1;nðxÞ :¼ wð0;n�ðxÞkðkþ 1Þ=x2;

which are regular respectively at the origin and at infinity. We shall show that the scattering
functions S0;n and S1;n of Hk;0;n and Hk;1;n have the following properties:

(a) S0;n has the limit values S0;nðG0Þ ¼ eHipk and 1 � S0;n belongs to L2ðRÞ.

(b) S1;n is continuous on the whole line and the limits at Gy exist and are equal
to eHipk.
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We remark that the standard scaling arguments will also enable us to show that,
as n ! y, the scattering functions Sj;n, j ¼ 0; 1, converge pointwise to S. Indeed, if y is a
solution of the equation

�y 00 þ q0;n y ¼ o2y;

then y1ðxÞ :¼ yðxnÞ solves the equation

�y 00 þ q0;1 y ¼ ðo=nÞ2
y:

Therefore S0;nðoÞ ¼ S0;1ðo=nÞ and

S0;nðoÞ !
S0;1ðþ0Þ ¼ e�ipk; o > 0;

S0;1ð�0Þ ¼ eipk; o < 0;

	

pointwise as n ! y. Similarly, the pointwise convergence of S1;n to S follows from the
relation S1;nðoÞ ¼ S1;1ðnoÞ and the behaviour of S1;1 at infinity.

7.1. Approximation by potentials regular at the origin. By the above scaling argu-
ments, it only su‰ces to study the operator Hk;0;1. The Jost solution e0;1ðx;oÞ coincides
with the Jost solution eðx;oÞ of the operator Hk for x > 1 and equals

AðoÞ sinoðx � 1Þ þ BðoÞ cosoðx � 1Þ

for x A ½0; 1�. Equating the limit values at 1 from both sides for the function e0;1 and its
derivative, we conclude that

e0;1ðx;oÞ ¼
e 0ð1;oÞ sinoðx � 1Þ

o
þ eð1;oÞ cosoðx � 1Þ; x A ½0; 1�;

eðx;oÞ; x > 1:

8<
:

Thus

e0;1ð0;oÞ ¼ �e 0ð1;oÞ sino=oþ eð1;oÞ coso

is a continuous function outside the origin. Since the functions e0;1ð0;oÞ and e0;1ð0;�oÞ
are linearly independent if o3 0 and e0;1ð0;�oÞ ¼ e0;1ð0;oÞ, the function e0;1ð0;oÞ never
vanishes for real nonzero o. Therefore the scattering function

S0;1ðoÞ ¼ e0;1ð0;�oÞ=e0;1ð0;oÞ

is continuous for o3 0.

Using the asymptotics of the Bessel functions and their derivatives at the origin
and recalling formulae (A.3) and (4.1), we conclude that e0;1ð0;oÞ ¼ Co�k

�
1 þ oð1Þ

�
as

o ! þ0 for a constant C independent of o. Therefore we find that S0;1ðoÞ ! e�ipk as
o ! þ0 and S0;1ðoÞ ! eipk as o ! �0, cf. Section 4.
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To derive the behaviour of S0;1 at infinity, we use the representation

eðx;oÞ ¼ eiox þ
Ðy
x

v
x

t

� �
eiot

t
dt

¼ eiox � ia0

Ðy
x

x

t

� ��k
eiot

t
dt þ

Ðy
x

x

t

� �1þk

~vv
x

t

� �
eiot

t
dt

of the Jost function of the operator H via the transformation operator I þ K, see Section 3.
Since the function v belongs to L2ð0; 1Þ, the above integral exists as a Fourier transform
of the L2-function vðx=tÞ=t of the variable t and thus eð1;oÞ ¼ eio þ g1ðoÞ for some
g1 A L2ðRÞ. Moreover, since ~vv is continuous over ½0; 1�, we see that g1 is a continuous func-
tion that tends to zero as o ! y.

Next, di¤erentiation and integration by parts yields

e 0ð1;oÞ ¼ ioeio � vð1Þeio þ
Ðy
1

v 0 1

t

� �
eiot

t2
dt

¼ ioeio �
Ðy
1

v
1

t

� �
io� 2

t

� �
eiot

t2
dt;

since the function t�2vð1=tÞ belongs to L1ð1;yÞ, we find that

e 0ð1;oÞ ¼ io½eio þ g2ðoÞ þ oðo�1Þ�

as o !Gy for some g2 A L2ðRÞ that is continuous and vanishes at infinity by the
Riemann–Lebesgue lemma. Therefore,

e0;1ð0;oÞ ¼ 1 þ gðoÞ þ oðo�1Þ

for gðoÞ :¼ cosog1ðoÞ þ i sinog2ðoÞ A L2ðRÞ that vanishes at infinity, and it follows that
1 � S0;1 belongs to L2ðRÞ.

The above considerations are summarized in the following proposition.

Proposition 7.1. The scattering function S0;1 is continuous outside the origin, assumes

the limit values lim
o!G0

S0;1ðoÞ ¼ eHipk, and 1 � S0;1 belongs to L2ðRÞ.

7.2. Approximation by potentials regular at infinity. As explained earlier, it su‰ces
to only consider the potential q1;1. Since it vanishes for x > 1, the Jost solution
e1;1ðx;oÞ coincides there with eiox. For x A ð0; 1Þ, e1;1ð�;oÞ is a linear combination
AðoÞfðx;oÞ þ BðoÞcð�;oÞ of the special solutions f and c of the Bessel equation (A.2).
Equating the values of the two expressions for e1;1 and its derivative at x ¼ 1, we find that

AðoÞ ¼ p

cos pk

eio

2o
½iocð1;oÞ � c 0ð1;oÞ�;

BðoÞ ¼ p

cos pk

eio

2o
½f 0ð1;oÞ � iofð1;oÞ�:
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By definition, the scattering function S1;1ðoÞ is defined by the requirement that the
linear combination e1;1ðx;�oÞ þ S1;1ðoÞe1;1ðx;oÞ should satisfy the boundary condition
at x ¼ 0. We thus find that

S1;1ðoÞ ¼ lim
x!þ0

xke1;1ðx;�oÞ
xke1;1ðx;oÞ

¼ Bð�oÞ
BðoÞ lim

x!þ0

xkcðx;�oÞ
xkcðx;oÞ ¼ Bð�oÞ

BðoÞ SðoÞ:

Recalling the asymptotics of the special solutions f and c of the Bessel equation
(A.2) at the origin and at infinity (see Appendix A.2), we arrive at the following con-
clusion.

Proposition 7.2. The scattering function S1;1 is continuous on the whole line, assumes

the value �1 at the origin, and tends to eHipk atGy.

8. Conclusions

We showed that the classical direct and inverse scattering theory for Schrödinger

operators on the semi-axis can be successfully extended to operators Hk, k A � 1

2
;
1

2

� �
,

with Bessel-type potentials kðkþ 1Þ=x2. In particular, we constructed transformation
operators, Jost solutions, scattering function S, derived the Marchenko equation and dem-
onstrated that its solution reconstructs the potential we have started with. Here we have
come across a new phenomenon that the scattering function S is no longer continuous
but rather has two jump discontinuities, one at the origin and the other at infinity. The
jump at the origin is in some sense caused by the behaviour of the potential at infinity,
while the behaviour of S at infinity is determined by the singularity of the potential at the
origin.

In the problem considered here all the objects have an explicit form in terms of special
functions and ‘‘classical’’ operators of analysis. It gives, however, an insight into more gen-
eral situations; in particular, it suggests that both the direct and inverse scattering theory
can be further developed for perturbations of the Bessel-type potentials we have considered,
e.g., for operators generated by the di¤erential expressions

� d

dx
� k

x
þ v

� �
d

dx
þ k

x
� v

� �

with suitable v. Our model gives a hint of what should be expected in such a more general
case, which will be discussed elsewhere.
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Appendix A. Bessel functions and Hankel transform

A.1. Asymptotics of Bessel functions. The Bessel function Jn of the first kind and
order n is a particular solution of the Bessel equation

x2 d 2y

dx2
þ x

dy

dx
þ ðx2 � n2Þy ¼ 0ðA:1Þ

and is given by the convergent series

JnðzÞ ¼
Py
n¼0

ð�1Þn

n!Gðn þ nþ 1Þ
z

2

� �2nþn

;

where G is the Euler Gamma function. It is an entire function of z and obeys the following
asymptotics:

JnðxÞ �

ffiffiffiffiffiffi
2

px

r
cos x � p

2
n� p

4

� �
; x ! þy;

x

2

� �n 1

Gðnþ 1Þ ; x ! 0:

8>>><
>>>:

For non-integer n, J�n is a solution of (A.1) that is linearly independent of Jn.

A.2. Special solutions of (2.2). If y is a solution of (A.1), then uðxÞ :¼
ffiffiffiffiffiffiffi
ox

p
yðoxÞ

solves the equation

�u 00 þ
n2 � 1

4
x2

u ¼ o2u:ðA:2Þ

Therefore for k A � 1

2
;
1

2

� �
the functions

fkðx;oÞ :¼
ffiffiffiffiffiffiffi
ox

p
Jkþ1=2ðoxÞ; ckðx;oÞ :¼

ffiffiffiffiffiffiffi
ox

p
J�k�1=2ðoxÞðA:3Þ

form a basis of solutions for the equation (2.2). They obey the following asymptotics:

fkðx;oÞ �

ffiffiffi
2

p

r
sin ox � p

2
k

� �
; x ! þy;

ðoxÞkþ1 1

2kþ1
2G kþ 3

2

� �; x ! þ0;

8>>>>><
>>>>>:

ckðx;oÞ �

ffiffiffi
2

p

r
cos ox þ p

2
k

� �
; x ! þy;

ðoxÞ�k 2kþ1
2

G �kþ 1

2

� �; x ! þ0:

8>>>>>><
>>>>>>:
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For k ¼ �1=2, the singular solution c�1=2 is given by c�1=2ðx;oÞ ¼
ffiffiffiffiffiffiffi
ox

p
Y0ðoxÞ; the

asymptotics at infinity remains the same, while at the origin we get

c�1=2ðx;oÞ �
ffiffiffiffiffiffiffi
ox

p
logðox=2Þ; x ! þ0:

A.3. The Hankel transform. For positive o, fkð�;oÞ are generalized eigenfunctions
of the operator Hk corresponding to the point o2 in the continuous spectrum. They gener-
ate the integral transform Jk in L2ðRþÞ called the Hankel transform, given by

ðJk f ÞðoÞ :¼
Ðy
0

fkðx;oÞ f ðxÞ dx;

where the integral here is understood as

L:i:m:
N!y

ÐN
0

fkðx;oÞ f ðxÞ dx:

It is well known [11], [14] that Jk is a unitary operator in L2ðRþÞ. This follows from the
so-called distributional ‘‘closure relation’’:

Ðy
0

fkðx;o1Þfkðx;o2Þ ¼ dðo1 � o2Þ;

where d denotes the Dirac delta function and o1 and o2 are arbitrary positive numbers.

We also notice that Jk diagonalizes the operator Hk, i.e., that

ðJkHk f ÞðoÞ ¼ o2ðJk f ÞðoÞ;

see [14].

Appendix B. The Mellin transform

The Mellin transform M is a linear mapping from L2ðRþÞ into L2ðRÞ given by the
formula

ðMf ÞðzÞ ¼
Ðy
0

t�iz�1=2f ðtÞ dt:ðB:1Þ

The operator ð2pÞ�1=2M is unitary and the inverse Mellin transform is given by

ðM�1gÞðtÞ ¼ 1

2p

Ð
R

tiz�1=2gðzÞ dz:

Clearly, we have ðMf 0ÞðzÞ ¼ � iz þ 1

2

� �
ðMf Þðz � iÞ. If we set

ð f ? gÞðxÞ :¼
Ðy
0

f
x

t

� �
1

t
gðtÞ dt
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for f ; g A Cy
0 ðRþÞ, then one can verify directly that

Mð f ? gÞ ¼ ðMf Þ � ðMgÞ;ðB:2Þ

so that the operation ? plays the same role for the Mellin transform as the usual convolu-
tion does for the Fourier transform.
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