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S U M M A R Y
We present a novel approach for the comprehensive, flexible and accurate simulation of
poroelastic wave propagation in 3-D cylindrical coordinates. An important application of
this method is the realistic modelling of complex seismic wave phenomena in fluid-filled
boreholes, which represents a major, as of yet largely unresolved, problem in exploration
geophysics. To this end, we consider a numerical mesh consisting of three concentric domains
representing the borehole fluid in the centre followed by the mudcake and/or casing, and the
surrounding porous formation. The spatial discretization is based on a Chebyshev expansion
in the radial direction and Fourier expansions in the vertical and azimuthal directions as well
as a Runge–Kutta integration scheme for the time evolution. Trigonometric interpolation and
a domain decomposition method based on the method of characteristics are used to match
the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces
as well as to reduce the number of gridpoints in the innermost domain for computational
efficiency. We apply this novel modelling approach to the particularly challenging scenario
of near-surface borehole environments. To this end, we compare 3-D heterogeneous and
corresponding rotationally invariant simulations, assess the sensitivity of Stoneley waves to
formation permeability in the presence of a casing and evaluate the effects of an excavation
damage zone behind a casing on sonic log recordings. Our results indicate that only first arrival
times of fast modes are reasonably well described by rotationally invariant approximations of
3-D heterogenous media. We also find that Stoneley waves are indeed remarkably sensitive
to the average permeability behind a perforated PVC casing, and that the presence of an
excavation damage zone behind a casing tends to dominate the overall signature of recorded
seismograms.

Key words: Numerical solutions; Interface waves; Seismic attenuation; Computational seis-
mology; Wave scattering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

Biot’s (1962) seminal work demonstrates that pressure re-
equilibration associated with a seismic wave passing through a fluid-
saturated porous medium provides a direct link between seismic
attenuation and permeability. To date, the most tangible application
of this theoretical framework is the inversion of Stoneley waves
recorded along fluid-filled boreholes for permeability (e.g. Cheng
et al. 1987; Winkler et al. 1989). Stoneley waves are special types of
surface waves. When travelling along fluid-filled boreholes they are
also referred to as tube waves. Stoneley-wave inversion has reached
some degree of maturity in hydrocarbon exploration and is now
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considered a viable tool for improving permeability models of oil
and gas reservoirs (e.g. Tang & Cheng 1996; Qobi et al. 2001; Cui
et al. 2003; Parra et al. 2006; Ávila-Carrera et al. 2011). Although
recent work by Baron & Holliger (2011) demonstrated that the
P-wave velocity dispersion inferred from sonic logs can be used to
constrain the permeability of unconsolidated aquifers, the hydraulic
interpretation of sonic log data from shallow boreholes in unconsol-
idated sediments lags far behind that of its deeper counterparts. The
primary reasons for this are likely to be related to the strong hetero-
geneity, high compressibility and low shear strength, screened or
unscreened PVC casings, and extensive excavation damage zones,
which are typical of shallow borehole environments and which
cannot be assessed by the widely used analytical or reflectivity-
type models. Moreover, the commonly used quasi-static or rigid
frame approximations, which are based on the assumption that the
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stiffness of the solid frame is much larger than that of the pore fluid
and which consider wave propagation in the pore fluid separately
from propagation in the porous frame, are likely to be invalid in
unconsolidated sediments.

Seismic wave propagation in near-surface borehole environments
is therefore not only extremely complex, but also largely unex-
plored and correspondingly poorly understood. An effective way
to address this problem is through realistic numerical simulations.
To our knowledge, very few corresponding efforts have been un-
dertaken so far. Clark (1956) presented the analytical solution for
torsional wave modes in hollow cylindrical rods. Based on these
solutions White & Zechman (1968) calculated the response of an
acoustic logging tool to flexural wave modes. Rosenbaum (1974)
used a quasi-static approximation of Biot’s (1956) theory of wave
propagation in porous media to calculate seismograms for sonic log-
ging experiments. Tsang & Rader (1979) used numerical methods
to calculate seismograms for borehole experiments in elastic me-
dia. Norris (1989) introduced a correction term to the quasi-static
solution to account for the frame compressibility of the porous
medium. Guan et al. (2009) presented a finite difference mod-
elling code for seismic wave propagation in rotationally invariant
poroelastic media. Karpfinger et al. (2010) proposed a spectral
method to calculate wave propagation in boreholes with radially
nested homogeneous poroelastic cylindrical layers and Käser et al.
(2010) used a discontinuous Galerkin method to simulate elastic
wave propagation in boreholes with arbitrary model geometry and
heterogeneity.

Here, we present a generic numerical method to simulate wave
propagation in heterogeneous porous media in 3-D cylindrical co-
ordinates. The use of a poroelastic approach is essential given that a
key objective of borehole seismic experiments is the estimation of
the governing hydraulic characteristics of the surrounding geologi-
cal formations (e.g. Norris 1989; Klimentos & McCann 1990; Tang
& Cheng 2004; Lin et al. 2009). The proposed method is based on
a pseudospectral domain decomposition approach using multiple
domains that are connected by an approach based on the method
of characteristics (Carcione et al. 2002). We use Chebyshev differ-
entiation along the radial direction and Fourier operators along the

vertical and azimuthal directions. The viability and accuracy of the
proposed method has been tested and verified in 2-D polar coordi-
nates through comparisons with analytical solutions as well as with
the results of a corresponding and independently benchmarked so-
lution for 2-D Cartesian coordinates (Sidler et al. 2013). In addition
to the simulation of borehole seismic experiments sensu strictu,
potential applications of this approach can, for example, be found
in the planning and/or evaluation of laboratory-scale experiments,
the development of borehole seismic tools or the optimized design
of borehole casings.

2 N U M E R I C A L S O LU T I O N

Pseudospectral methods are efficient and highly accurate techniques
for the modelling of complex wave propagation phenomena (e.g.,
Kessler & Kosloff 1991; Fornberg 1996; Carcione 2007; Sidler et al.
2010; Liu et al. 2011). They can be viewed as the limit of finite dif-
ferences with infinite order of accuracy, as the spatial derivatives are
calculated in the wavenumber domain using a forward and backward
discrete Fourier transform (Fornberg 1988; Boyd 2001). When phys-
ical boundary conditions are to be satisfied, the Fourier method is
replaced by the Chebyshev method, which is not periodic and allows
for an explicit boundary treatment by decomposing the wavefields
using characteristic variables and updating the modelling domain
with appropriate boundary conditions (Carcione et al. 2002). For
this reason, we use the Chebyshev differential operator along the
radial direction and Fourier operators along the other directions. We
use a fourth-order Runge–Kutta method to solve the stress–strain
relations and the equations of motion, where the same time step is
used for all domains.

We consider a 3-D cylindrical coordinate system and use inde-
pendent computational domains for the individual components of
the borehole model (Fig. 1). The innermost domain represents the
fluid and is followed by two or more outer domains that represent
the casing and the surrounding porous formation. For the fluid fill-
ing the borehole, we use an acoustic domain supporting only one
compressional wave mode. For the casing and the surrounding for-
mation we use two poroelastic domains that support a slow and a fast

Figure 1. Basic model setup for the proposed modelling approach consisting of three computational domains. The innermost domain is acoustic, while the
outer two domains are poroelastic. The wavefield is decomposed at the interfaces of the domains and the adjacent domains are updated according to the
governing boundary conditions. (a) The whole modelling domain and (b) grid node locations on a section in the (r − θ ) plane are shown. To represent the
borehole logging tool, the innermost boundary conditions correspond to those of a rigid surface. The centre of the acoustic domain is void.
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compressional wave mode as well as a shear wave mode. An equiv-
alent porous medium is used for the characterization of screened
and non-screened PVC casings. The non-screened casing is char-
acterized by low porosity and permeability, which in turn results in
a quasi-elastic behaviour. The independent domains are combined
by decomposing the wavefields based on the method of charac-
teristics into incoming and outgoing wave modes at the interfaces
between the domains and by modifying these modes on the basis
of the governing boundary conditions. The boundary conditions at
fluid/poroelastic interfaces can be of the open-pore, closed-pore or
mixed-pore type (Deresiewicz & Skalak 1963).

In the following, we present the equations governing wave prop-
agation in porous media. A list of the used symbols is given in
Appendix A. The constitutive equations for a poroelastic medium
are (Carcione 2007)

τ = [(Em − 2μ + Mα2)∇ · u + αM∇ · uf ]I + μ[∇u + ∇u�], (1)

−p = αM∇ · u + M∇ · uf , (2)

where τ is the stress tensor, p the pore fluid pressure, I denotes the
identity matrix and μ is the shear modulus of the bulk material,
considered to be equal to the shear modulus of the dry matrix. The
operators ∇ and ∇ · denote the gradient and divergence, respectively.
The relative fluid displacement is defined as uf = φ(U − u) with U
denoting the fluid displacement and u the solid displacement vector.
The dry rock fast P-wave modulus Em is defined as

Em = Km + 4

3
μ, (3)

with Km being the frame bulk modulus. The poroelastic incompress-
ibility M, which is a fluid storage coefficient since it quantifies the
amount of fluid stored in a sample of constant size when the fluid
pressure is increased, is defined as

M =
(

α − φ

Ks
+ φ

Kf

)−1

, (4)

with φ, Ks and Kf denoting the porosity, the grain bulk modulus
and the pore fluid bulk modulus, respectively. The coefficient α is
known as the effective stress coefficient of the bulk material and is
given by

α = 1 − Km

Ks
. (5)

In the following equations, we use the solid and relative fluid
particle velocity vectors v = u̇ and q = u̇f instead of the displace-
ment vectors, and assume that the bulk density is given by ρ = (1 −
φ)ρs + φρf with the grain density ρs and the pore fluid density ρf.

The Biot–Euler equations for a poroelastic material are

τrr,r + 1

r
τrθ,θ + τr z,z + τrr − τθθ

r
= ρvr,t + ρf qr,t , (6)

τrθ,r + 1

r
τθθ,θ + τzθ,z = ρvθ,t + ρf qθ,t , (7)

τr z,r + 1

r
τθ z,θ + τzz,z + τr z

r
= ρvz,t + ρf qz,t , (8)

where the subscripts ‘,r’, ‘,θ ’ and ‘,z’ denote the derivative in ra-
dial, azimutal and vertical directions of the specific scalar field,
respectively. Similarly, the time derivative is indicated by adding
the subscripts ‘,t’. The correspondingly subscripted scalar fields of
v, q and τ are the components in r, θ and z directions of the solid
and fluid vector fields and the stress tensor, respectively.

The Darcy–Euler equations are given by

−p,r = ρfvr,t + T ρf

φ
qr,t + η

κ
qr , (9)

−1

r
p,θ = ρfvθ,t + T ρf

φ
qθ,t + η

κ
qθ , (10)

−p,z = ρfvz,t + T ρf

φ
qz,t + η

κ
qz, (11)

where T is the tortuosity describing the ‘twisting’ of the actual
flow path compared to a corresponding straight line. The viscosity
η and the permeability κ characterize the flow resistance η/κ of the
pore fluid and are not meant to contribute independently to wave
propagation in Biot’s theory. Eqs (6)–(11) can be recast as

vr,t = γ11

(
τrr,r + τrθ,θ

r
+ τrr − τθθ

r
+ τr z,z

)
+ γ12

(
p,r + η

κ
qr

)
,

(12)

qr,t = −γ12

(
τrr,r + τrθ,θ

r
+ τrr − τθθ

r
+ τr z,z

)
+ γ22

(
p,r + η

κ
qr

)
,

(13)

vθ,t = γ11

( τθθ,θ

r
+ τrθ,r + τzθ,z

)
+ γ12

( p,θ

r
+ η

κ
qθ

)
, (14)

qθ,t = −γ12

( τθθ,θ

r
+ τrθ,r + τzθ,z

)
+ γ22

( p,θ

r
+ η

κ
qθ

)
, (15)

vz,t = γ11

(
τr z,r + τzz,z + 1

r
(τzθ,θ + τr z)

)
+ γ12

(
p,z + η

κ
qz

)
, (16)

qz,t = −γ12

(
τr z,r + τzz,z + 1

r
(τzθ,θ + τr z)

)
+ γ22

(
p,z + η

κ
qz

)
,

(17)

with

γ11 = T
ρT − φρf

, γ12 = φ

ρT − φρf
and γ22 = ρ

ρf

φ

φρf − ρT .

(18)

The stress–strain relations can be written as

τrr,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μvr,r , (19)

τθθ,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μ

r
(vθ,θ + vr ), (20)

τzz,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μvz,z, (21)

τrθ,t = μ

(
1

r
(vr,θ − vθ ) + vθ,r

)
, (22)

τr z,t = μ(vr,z + vz,r ), (23)

τzθ,t = μ
(vz,θ

r
+ vθ,z

)
, (24)

p,t = −M[∇ · q + α(∇ · v)], (25)

where

∇ · v = 1

r
(r · vr ),r + 1

r
vθ,θ + vz,z, (26)

and

∇ · q = 1

r
(r · qr ),r + 1

r
qθ,θ + qz,z, (27)

with μ being the shear modulus.
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The equations of motion for the acoustic domain in the centre
with a fluid of density ρa and bulk modulus Ka are given by the
stress–strain relation

ṗa = Ka

[
wr,r + 1

r
(wθ,θ + wr ) + wz,z

]
, (28)

and Euler’s equations

pa,r = ρaẇr ,
1

r
pa,θ = ρaẇθ and pa,z = ρaẇz, (29)

where pa and w denote the fluid pressure and particle velocity,
respectively.

2.1 Rotational symmetry around the borehole axis

The 3-D cylindrical solution is computationally expensive and for
many practically relevant problems a realistic approximation is to as-
sume symmetry with regard to the vertical axis. An elegant method
to compute the cylindrically symmetric wavefield was shown by
Randall et al. (1991) and by Randall (1991). When applying the
Fourier transform in the azimuthal direction of the 3-D solution,
the derivative in azimuthal direction becomes a multiplication with
the azimuthal wavenumber kθ . By explicitly choosing the azimuthal
dependencies in the frequency–wavenumber domain for vr, qr, vz ,
qz , τ rr, τ θθ , τ zz, τ rz to be proportional to cos (mθ ) and for vθ , qθ ,
τ rθ , τ θ z , p to be proportional to sin (mθ ) the source characteristics
are reduced to a symmetrical distribution around the z-axis with
an azimuthal shape factor m. In the time domain, the derivatives
in azimuthal directions then simplify to a multiplication with this
shape factor (Carcione & Poletto 2008; Carcione et al. 2008).

Some important aspects of the 3-D nature of the wavefield, such
as the source radiation and spreading characteristics, are retained
and the computational cost is dramatically reduced. At the same
time, the heterogeneity of the medium also reduces to two dimen-
sions, which leads to a significant reduction in memory consump-
tion.

The shape factor m defines the symmetry of the source. A
monopole source corresponds to m = 0, a dipole source to m = 1,
a quadrupole source to m = 2, and so on.

For the assumption of azimuthal invariance, the equations of
motion (eqs 12–17) reduce to

vr,t = γ11

(
τrr,r + m

r
τrθ + τrr − τθθ

r
+ τr z,z

)
+ γ12

(
p,r + η

κ
qr

)
,

(30)

qr,t = −γ12

(
τrr,r + m

r
τrθ + τrr − τθθ

r
+ τr z,z

)
+ γ22

(
p,r + η

κ
qr

)
,

(31)

vθ,t = γ11

(
τrθ,r − m

r
τθθ + τzθ,z

)
+ γ12

(m

r
p + η

κ
qθ

)
, (32)

qθ,t = −γ12

(
τrθ,r − m

r
τθθ + τzθ,z

)
+ γ22

(m

r
p + η

κ
qθ

)
, (33)

vz,t = γ11

(
τr z,r + τzz,z + m

r
τzθ + τr z

r

)
+ γ12

(
p,z + η

κ
qz

)
, (34)

qz,t = −γ12

(
τr z,r + τzz,z + m

r
τzθ + τr z

r

)
+ γ22

(
p,z + η

κ
qz

)
, (35)

and the stress–strain relations (eqs 19–25) to

τrr,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μvr,r , (36)

τθθ,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μ

r
(m · vθ + vr ),

(37)

τzz,t = (Em − 2μ + Mα2)∇ · v + αM∇ · q + 2μvz,z, (38)

τrθ,t = μ

(
vθ,r − m

r
vr − 1

r
vθ

)
, (39)

τr z,t = μ(vr,z + vz,r ), (40)

τzθ,t = μ
(
vθ,z − m

r
vz

)
, (41)

p,t = −M[∇ · q + α(∇ · v)]. (42)

2.2 Boundary conditions

In the following, we describe which interfaces need special treat-
ment and how we implement the corresponding boundary condi-
tions. We use the approach of Gottlieb et al. (1982) to simulate
the propagation of seismic waves within the individual domains in-
dependently of each other and to connect these domains with each
other. We decompose the outgoing wavefield at the boundaries using
characteristic variables and update the field variables as explained
later. For computational efficiency, we use different numbers of
gridpoints in the azimuthal direction for individual domains in the
3-D simulations. We therefore use a trigonometric interpolation to
obtain the field variables at the azimuthal locations of opposite grid
nodes (Atkinson 1989). As the grid nodes are equally spaced in
the azimuthal direction, we can use a discrete Fourier transform to
perform this interpolation. The same kind of boundary treatment
in Cartesian and polar coordinates was used by Carcione (1991),
Kessler & Kosloff (1991) and Tessmer et al. (1992) for elastic me-
dia and by Sidler et al. (2010, 2013) for poroelastic media. The
derivation of the characteristic vector for wave propagation in ra-
dial direction for a poroelastic medium in cylindrical coordinates
is shown in Appendix B. The solution of the linear system with
the appropriate characteristics and the boundary conditions for a
specific interface reveals how to update the field variables at this
boundary.

The rigid inner boundary of the acoustic domain and therefore
the innermost boundary of the model space can be seen as cor-
responding to the outer shell of a borehole tool. It is difficult to
comprehensively model a borehole tool as it consists of a large
number of parts with complex shapes. As a first approximation, the
tool can be considered as a metal cylinder with an effective bulk
modulus. As the bulk modulus of metal is considerably higher than
that of the pore fluid, it is reasonable to assume rigid boundary con-
ditions at the interface and to neglect wave propagation inside the
tool (Norris 1990; Tang & Cheng 1993; Carcione & Poletto 2008).

Ignoring the wave propagation inside the borehole tool is a short-
coming of the method. On the other hand, it can be argued that
the suppression of wave propagation along and inside the tool is a
vital concern for tool developers as, due to the high bulk modulus
and the prevailing geometry, waves propagating in the tool would
arrive first at the receiver thus obscuring the actual formation sig-
nal. Norris’ (1990) example for changes in tube wave speed due
to the presence of a borehole tool may give an impression of the
order-of-magnitude of the effect: A 6-cm-diameter tool is placed
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in a 10-cm-diameter borehole which changes the tube wave speed
from 1292 m s−1 without a tool to 1201 m s−1 when assuming a steel
tool and to 1207 m s−1 when rigid boundary conditions are used.
The shear very presence of a tool in the simulation and the diame-
ter of the tool thus seem to have a much stronger influence on the
resulting seismograms than the detailed properties of the borehole
tool. Appendix B1 outlines the corresponding boundary conditions
and explains how to update the field variables at the innermost grid-
point of the fluid domain when using the wavefield decomposition
approach considered in this study.

The outer boundary of the acoustic domain is connected to
the first porous domain. Here we use the boundary conditions of
Deresiewicz & Skalak (1963) and employ the surface flow
impedance to account for the non-uniqueness of the equations when
applying the energy conservation law. The physical meaning of the
surface flow impedance is the interconnection of the pore space of
two adjacent media at an interface. The pore space can be fully or
partially connected or entirely disconnected and the corresponding
boundary conditions are referred to as open-, mixed- or closed-
pore boundary conditions, respectively. We have implemented the
entire range of boundary conditions for the interface between the
acoustic and the first poroelastic domain as we think it has an im-
portant physical meaning describing the condition of the borehole
wall when the pores are clogged by deposits such as, for example,
drilling mud (Appendix B2). For the boundary between the first
and the second porous domain, we have restricted the implementa-
tion to open-pore boundary conditions assuming a connected pore
space (Appendix B3). For the outer boundary of the second porous
solid, we use non-reflecting boundary conditions. That is, we keep
the outgoing characteristics and set the inward propagating wave
modes to zero (Appendix B4). This sort of boundary conditions
absorb the normally incident part of the impinging waves. Due to
the geometry and the fact that we place the sources for the sonic
experiments mostly close to the centre of the modelling domain,
these boundary conditions prevent non-physical reflections from
the edges of the modelling domain even more effectively than in
Cartesian coordinates. To further enhance the absorbing properties,
we also add a diffusive strip to the outermost boundary (Carcione
& Kosloff 2013).

3 S I M U L AT I O N S

3.1 Comparison of seismic wave propagation in 3-D
heterogeneous media and corresponding rotationally
invariant media

Using the methods described above, we compare wave propagation
in 3-D heterogeneous media to wave propagation in corresponding
cylindrically invariant media. The latter approach is computationally
much more efficient, but the implications of assuming rotational
symmetry for 3-D heterogeneous environments are not clear. Both
approaches have 3-D spreading characteristics and hence can be
easily compared. The goal is to explore to what extent a simplified
rotationally invariant model can be used for simulations of seismic
wave propagation in heterogeneous formations.

We create a 3-D heterogeneous poroelastic model in Cartesian co-
ordinates and use an algorithm to search for the closest correspond-
ing grid node to populate the parametrization in cylindrical coordi-
nates. We start with a heterogeneous porosity distribution generated
with the spectral method, which provides a second-order stationary
realization of a random variable with a given mean value and auto-

Figure 2. 3-D heterogeneous porosity model characterized by a von Kármán
auto-covariance function with ν = 0.2 and a ratio between radial and vertical
correlation lengths ar/az of 6. The values are normally distributed around
a mean of 38 per cent and have a standard deviation of 5 per cent. See also
Appendix C.

Table 1. Material properties
of unconsolidated marine sand
(Jackson & Richardson 2007).

Grain Ks 32 GPa
μs 44 GPa
ρs 2690 kg m−3

Matrix Km 1.36 GPa
μ 1.86 GPa
φ 0.38
κ 28.3 D
T 1.8

Fluid ρf 1000 kg m−3

η 0.00105 Pa s
Kf 2.25 GPa

covariance function (Appendix C1). An illustration of the resulting
porosity model is shown in Fig. 2. We have chosen a realization
based on a von Kármán auto-covariance function with a mean of
38 per cent, a standard deviation of 5 per cent and a strong spatial
variability characterized by a ν-value of 0.2. ν-values close to zero
emulate the ubiquitous and seemingly universal flicker noise char-
acter of sonic log data (e.g. Holliger & Goff 2003). The porosity is
discretized in Cartesian coordinates in a mesh with 300 × 300 × 300
nodes. The cylindrical domain, which has 55 × 55 × 151 grid nodes
in the r, θ and z directions, respectively, is centred in this mesh with
the values of the closest corresponding node assigned accordingly.

Based on this porosity distribution, we estimate the other poro-
elastic model parameters using empirical relationships. The rela-
tionships used in Appendix C2 were computed with the solid grain
properties shown in Table 1.

To obtain the input models for the rotationally invariant simula-
tions that are then compared to the corresponding 3-D simulations,
we cut six vertical slices through the 3-D porosity model, which
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Figure 3. Six 2-D porosity models for the rotationally invariant simulations
obtained by vertically cutting through the 3-D model shown in Fig. 2.

Table 2. Poroelastic material properties of a screened
PVC casing (Barrash et al. 2006; Bakulin et al. 2008).

Grain Ks 4.049 GPa
μs 1.248 GPa
ρs 1400 kg m−3

Matrix Km 3.482 GPa
μ 1.211 GPa
φ 0.04 / 0.10
κ 1900 D (1 D = 9.86233 · 10−13 m2)
T 1.5

Fluid ρf 1000 kg m−3

η 0.001 Pa s
Kf 2.25 GPa

are evenly distributed along the azimuthal direction. The resulting
slices are shown in Fig. 3.

The innermost radius of the acoustic domain is 0.019 m, which
corresponds to the rigid surface of the borehole tool. The outer
radius of the acoustic domain corresponding to the borehole wall
is 0.075 m. The bulk modulus and density of the acoustic domain
have the same properties as the fluid filling the pore space in the
surrounding formation. The first porous domain has the proper-
ties of a screened PVC casing shown in Table 2 and the second
porous domain corresponds to unconsolidated sand characterized in
Table 1. The number of gridpoints in the z-direction is 151 and 13/13
for the acoustic, 7/25 for the first and 55/55 for the second porous
domain are used along the radial/angular directions. These simula-
tions where run for 50 000 time steps of 2.5 × 10−8 s. The source is
a monopole or ring source with the time history of a Ricker wavelet
centred at 9 kHz applied at the inner boundary of the fluid domain.
For the rotationally invariant simulations the same grid sizes are
used for the directions different from the angular direction.

Fig. 4 shows the corresponding seismograms recorded at the
borehole wall for a vertical distance of 0.35, 0.55 and 0.80 m from
the source. The red curve shows the solution for the 3-D hetero-

Figure 4. Seismograms recorded at the borehole wall at a vertical distance
of (a) 0.35 m, (b) 0.55 m and (c) 0.80 m from the source for the model based
on the porosity distribution shown in Fig. 2. The red line shows the solution
for the 3-D heterogeneous model (Fig. 2) and the black lines correspond to
the solutions for the six rotationally invariant heterogeneous models based
on vertical cuts through the 3-D model (Fig. 3). The seismograms are nor-
malized with respect to the maximum amplitude of the 3-D solution.

geneous cylindrical solution and the black lines correspond to the
solutions for the six rotationally invariant solutions shown in Fig. 3.
The seismograms are normalized to the maximum amplitude of the
3-D solution. It can be seen that phases and amplitudes for early
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arrivals are well approximated by the rotationally invariant solu-
tions. This is also true for larger source–receiver offsets where the
absolute amplitudes are lower and the effect of scattering becomes
stronger. For later arrivals, the discrepancies between the solutions
for the 3-D heterogeneous model and for the rotationally invariant
models are systematically high and increase with increasing offset.
Again, the amplitudes are more strongly affected than the phases.
This can be explained by the fact that the shear wave is more
strongly affected by the heterogeneities than the fast compressional
wave due to the slower velocity and the correspondingly larger het-
erogeneities with respect to the dominant wavelength. Indeed, the
Stoneley wave can no longer be detected in the rotationally sym-
metric solutions, whereas this wave mode can be clearly identified
in the 3-D heterogeneous case.

Scattering is strongly dependent on the detailed character of the
heterogeneity of the medium in which the wave propagates. We
have therefore repeated the above-mentioned experiment for het-
erogeneous media with different porosity distributions, correlation
lengths and standard deviations. We have obtained consistent results
and came to the same conclusions as for the example discussed
above, which are based on a rather strongly heterogeneous medium.
The results for a more moderate heterogeneity as characterized by
a standard deviation of 2 per cent for the underlying porosity distri-
bution are shown in Fig. 5.

Fig. 6 shows snapshots illustrating the effects of heterogeneity.
We compare a homogeneous medium (Fig. 6a) with a compara-
ble heterogeneous medium (Fig. 6b). The heterogeneous model is
based on the porosity distribution shown in Fig. 2, and the formation
properties of the homogeneous formation are given in Table 1. In
the homogeneous model, the individual wave modes as well as con-
versions between these modes can be clearly identified. Conversely,
the heterogeneous solution is largely dominated by scattered waves
that cannot easily be assigned to any specific wave modes.

3.2 Sensitivity of Stoneley waves to formation
permeability behind a casing

Stoneley waves are a particular form of surface waves propagating
along fluid–solid interfaces. For elastic media and planar interfaces
Stoneley waves are not subject to dispersion. They can, however,
become dispersive in poroelastic media. In a borehole-type setup,
Stoneley waves become slightly dispersive even in the elastic limit
due to waveguide effects (Haldorsen et al. 2006). In most cases
of practical importance, the poroelasticity of the surrounding for-
mation does, however, dominate their attenuation and dispersion
behaviour. This in turn allows for relating the hydraulic properties
of the formation surrounding a borehole to seismic wave propaga-
tion and can be exploited for the estimation of permeability (e.g.
White 1965; Rosenbaum 1974; Winkler et al. 1989). The effect of a
casing on such permeability estimates in particular and to sonic log
recordings in general is as of yet largely unknown and of particular
interest for shallow boreholes, which tend to be cased to prevent the
collapse of the drilled unconsolidated sediments.

To address this question, we consider models for an uncased and
two-cased boreholes with one of the casings being screened and the
other one not. In an additional set of simulations, we assess how
formation heterogeneity may influence the recorded seismograms.
For this purpose, we again use the porosity distribution shown in
Fig. 3(a), albeit with a somewhat smaller standard deviation of
2 per cent. For each scenario, we then evaluate the sensitivity of the
Stoneley wave to permeability.

Figure 5. Same as Fig. 4, but for a model based on a porosity distribution
with a standard deviation of 2 per cent. The arrow denotes the Stoneley
wave.

The ease with which a fluid can flow through a porous or frac-
tured medium depends both on the formation’s permeability as
well as on fluid’s viscosity. This finds its expression in the fact
the corresponding terms in the governing differential equations are
consistently characterized by the ratio between viscosity η and the
permeability κ . Setting the viscosity η to zero hence also results
in a vanishing effect of the permeability κ . To test a model for its
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Figure 6. Snapshots of the solid pressure of the wavefield after a propagation time of 0.775 ms for (a) a homogeneous model with properties shown in Table 1
and (b) the 3-D heterogeneous model based on the porosity distribution shown in Fig. 2.

sensitivity to permeability, we therefore perform two simulations
which differ only in terms of the viscosity of the pore fluid: in one
simulation, we set the viscosity to that of water, while in the other
one, we set the viscosity to zero. For the cased borehole models,
we perform an additional simulation to characterize the effects of
permeability due to the casing by considering a non-viscous pore
fluid in the formation while the pore fluid of the casing is assigned
the viscosity of water.

The radius of the logging tool and the borehole are considered to
be 19 mm and 75 mm, respectively. We use 13, 9 and 55 gridpoints
in the radial direction for the acoustic as well as the first and the
second porous domain, respectively, and 351 gridpoints in the ver-
tical direction. A receiver recording the fluid pressure is located at
a vertical distance of 0.5 m from the source at the inner boundary
of the casing. As the individual domains in the model are homo-
geneous, we use the rotationally invariant version of our algorithm
in conjunction with a monopole source with the time history of a
Ricker wavelet centred at 9 kHz at the inner boundary of the acoustic
domain.

For the models with screened and unscreened casings, we set the
properties of the inner porous domain to those of PVC to emulate a
typical casing used to stabilize surficial boreholes. The thickness of
the casing is assumed to be 5 mm. The material properties of PVC
are adopted from Bakulin et al. (2008) and are shown in Table 2.
There are, however, differing opinions with regard to the porosity
and permeability of typical screened PVC casings. We use a porosity
of 4 per cent (Bakulin et al. 2008) and a permeability of 1900 D
(Barrash et al. 2006).

The seismograms corresponding to the reference model of an
uncased borehole penetrating a homogeneous sandy formation
(Table 1) are shown in Fig. 7. The dashed line refers to the case
of a non-viscous pore fluid and the solid line to a pore fluid with the

Figure 7. Sensitivity to formation permeability for an uncased borehole
penetrating a homogeneous sandy formation (Table 1). Two numerical sim-
ulations are performed, one with a non-viscous pore fluid (dashed line) and
one with a pore fluid that has the viscosity of water (solid line). The differ-
ence between the two seismograms characterizes the sensitivity of the data
to permeability. The arrow denotes the Stoneley wave.

viscosity of water. Our results demonstrate that the Stoneley wave is
very sensitive to permeability while the direct compressional wave
is largely insensitive to this property.

The seismograms for a screened casing are shown in Fig. 8,
where the dotted, dashed and solid lines correspond to the simula-
tions considering no viscous dissipation, viscous dissipation only
in the surrounding formation and throughout the entire model, re-
spectively. The results indicate that the effect of the screened casing
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Figure 8. Same as Fig. 7, but for a borehole with a screened casing. Here,
three seismograms are shown. The dotted line represents the seismogram
for a non-viscous pore fluid in the casing and the formation. The dashed line
corresponds to the solution with a non-viscous pore fluid in the formation
and illustrates the effect of the casing. The solid line denotes the solution
for a pore fluid with the viscosity of water. The arrow indicates the Stoneley
wave.

Figure 9. Same as Fig. 8, but for a borehole with a casing that is not
screened. The sensitivity to pore fluid viscosity and formation permeability
is strongly reduced compared to the scenarios containing a screened casing
(Fig. 8) or no casing at all (Fig. 7). The arrow denotes the Stoneley wave.

is surprisingly weak. This might be due to the fact that the perme-
ability of the casing is very high and offers correspondingly little
resistance to the wave-induced fluid flow between the borehole and
the surrounding formation. We have therefore repeated this numer-
ical experiment for lower permeabilities of the casing and found
that our original findings remain valid as long as the permeability
of the casing is not substantially lower than that of the formation
surrounding the casing.

The corresponding seismograms for a non-screened casing are
shown in Fig. 9. The permeability and porosity of this non-screened
casing are assumed to be of 0.01 mD and 0.005, respectively. The
bulk and shear moduli of the matrix are the same as for those
of the solid grain and hence the seismic behaviour of this casing
is quasi-elastic. In contrast to the screened casing, the effect of
an unscreened casing on the propagation of the Stoneley wave is

Figure 10. Same as Fig. 8, but for a heterogeneous formation. The solid
red line denotes the response for the corresponding homogeneous model
(Fig. 8). The arrow indicates the Stoneley wave.

very pronounced and its sensitivity to formation permeability is
correspondingly weak.

Formation heterogeneity affects the seismic wavefield primarily
by scattering and associated mode conversion. This phenomenon is
strongly dependent on the ratio of the prevailing wavelength and the
scale of the heterogeneity as well as the standard deviation of the
latter. While corresponding effects in the considered example are
moderate, it still nicely illustrates the contribution of this process to
the overall complexity of the recorded signal. The seismograms for
the heterogeneous formation are shown in Fig. 10 and compared to
the seismogram of a homogeneous formation. The amplitudes and
phases between the seismograms resulting from the heterogeneous
and the homogeneous formations agree reasonably well, although
the scattering hampers the identification of the Stoneley wave mode.

From a practical point of view, it is important to note that our
simulations demonstrate that Stoneley waves are strongly attenu-
ated and difficult to identify at larger source–receiver offsets and
that the amplitudes in the considered frequency range decay rapidly
with increasing distance from the borehole wall. These observa-
tions are fully consistent with the results of earlier theoretical and
experimental work by Chao et al. (2004). It is therefore critical to
place the receivers close to the borehole wall to measure the effects
outlined above.

3.3 Effects related to the presence of an excavation
damage zone

Drilling inherently induces mechanical disturbances in the rocks
surrounding the borehole. As a result these so-called excavation
damage zones are generally associated with significantly increased
porosities and permeabilities as well as weakened mechanical
strength compared to the corresponding pristine formation. A num-
ber of other processes related to the construction of a borehole may
also contribute to this excavation damage zone, such as, for exam-
ple, the installation of a casing, which requires the drill string to be
slightly larger than the diameter of the casing. This in turn results
in a gap between the casing and the formation, which is usually
filled with sand, cuttings and/or cement. Due to the narrow and/or
irregular nature of the void space, this filling may be incomplete
(e.g. Yearsley et al. 1991; Wheaton & Bohman 1999; Christman
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Figure 11. Rotationally invariant (a) porosity and (b) corresponding permeability models for an excavation damage zone.

et al. 2007). Similar problems exist for the so-called sand-screened
completion of boreholes (e.g. Bakulin et al. 2008). Drilling-induced
disturbances tend to be particularly pronounced and laterally exten-
sive in soft formations and their influence on borehole measure-
ments is widely acknowledged as being important, albeit largely
unknown in detail.

In the following, we consider a canonical model to explore some
first-order effects of excavation damage zones on sonic log mea-
surements in surficial boreholes. To this end, we characterize the
excavation damage zone as a region of high and spatially vari-
able porosity and assume the seismic model to be homogeneous
outside the disturbed zone and characterized by the material prop-
erties of unconsolidated sand (Table 1). As Biot’s model of wave
propagation in porous media does not automatically converge to
wave propagation in acoustic media for high porosities, we have
to consider appropriate values of the bulk and shear moduli for
the highly unconsolidated sediments. Laboratory measurements of
sand-screened deep-water completions and studies of unconsoli-
dated sediments indicate that the shear modulus is small but not
negligible for such materials (Bakulin et al. 2009; Sidler & Hol-
liger 2010). For the purpose of this study, this implies that a porous
medium model should be used rather than a suspension model that
does not support shear waves.

To represent the excavation damage zone in our model, we start
with a maximum porosity of 70 per cent at the first gridpoint out-
side the casing and gradually decrease the porosity with increasing
lateral distance from the casing to the value of the homogeneous
formation outside the excavation damage zone by following a Han-
ning taper. We assume the width of the excavation damage zone
to vary with depth and introduce a 1-D stochastic variable to de-
fine the length of the Hanning taper. The mean width and standard
deviation of the excavation damage zone are chosen to be 10 and
5 cm, respectively. The corresponding porosity and associated per-
meability (eq. C2) models are shown in Fig. 11. To account for the

above-mentioned change in the bulk and shear moduli, we use the
Krief equations (eq. C3). Even though the accuracy of these empir-
ical relations is likely to be limited for such high porosities, we do
indeed obtain very small shear and bulk moduli in the immediate
vicinity of the casing that we consider to be reasonable first-order
approximations for exploring some of the key effects related to the
presence of excavation damage zones.

For the numerical model, we use 13, 9 and 55 gridpoints along the
radial direction for the acoustic and the two poroelastic domains and
351 gridpoints in the vertical direction. The ring source at the inner
boundary of the acoustic domain is assumed to have the time history
of a Ricker wavelet with a central frequency of 9 kHz. We evaluate
5 × 105 time steps with a discretization interval of 5 × 10−9 s.

The seismograms are recorded at the inner wall of the casing at
a vertical distance of 0.75 m from the source and compared to a
homogeneous reference model without an excavation damage zone
(Fig. 12). The key characteristics of the seismograms observed in
the presence of an excavation damage zone are the high amplitude
of the fluid wave and the oscillatory wave train later in the record.
Both of these features are related to the mechanical decoupling of
the casing from the surrounding formation. The high amplitude of
the fluid wave is a consequence of the larger effective diameter
of the borehole as the casing does not constitute a strong barrier
for the propagating wave, which in turn leads to substantially lower
attenuation of the fluid wave (Hsui & Toksöz 1986; Norris 1989).
The “ringy” wave train corresponds to surface waves travelling
along the weakly connected, and hence essentially freely oscillating,
casing.

To isolate the effects related to the spatial variability of this exca-
vation damage zone, we compare the seismogram resulting from the
heterogeneous excavation damage zone discussed earlier to a model
characterized by a corresponding damage zone with a uniform width
of ∼10 cm (Fig. 12). The corresponding seismograms are indeed
very similar to those obtained for corresponding excavation damage
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Figure 12. Seismograms showing the effect of an excavation damage zone
behind a screened casing. The seismograms are recorded at the casing at a
vertical distance of 0.75 m from the source. The solid black line shows the
seismogram without an excavation damage zone, the dotted line corresponds
to an excavation damage zone with a constant width and the dashed line to
the model of an excavation damage zone characterized by the porosity shown
in Fig. 11. Permeability, tortuosity, bulk and shear modulus are inferred from
the porosity based on the relations given in Appendix C2. The arrow denotes
the wave train bound to the casing.

Figure 13. Same as Fig. 12, but for a borehole with a casing that is not
screened.

zones characterized by a stochastically variable width. This in turn
indicates that the dominant effects of the excavation damage zone
are related to its characteristic mechanical and hydraulic properties,
while the additional heterogeneity associated with such zones is of
minor importance.

For completeness, Fig. 13 shows the corresponding simulation
for an unscreened casing, that is remarkably similar to those for
the screened casing (Fig. 12). Our results therefore indicate that for
typical surficial borehole environments, the seismic response of an
excavation damage zone clearly dominates over that of the pristine
formation.

4 C O N C LU S I O N S

We have developed a pseudospectral numerical solution of the
poroelastic equations in 3-D cylindrical coordinates and applied
it to explore the propagation of seismic waves in complex borehole
environments. Using a domain decomposition technique permits us
to decompose the mesh into concentric subdomains. The interfaces
between the various subdomains are matched by using the method
of characteristics to satisfy the physical boundary conditions. This
wavefield decomposition allows for an accurate modelling of inter-
faces and enhances the computational efficiency due to the possibil-
ity of varying the number of gridpoints in the azimuthal direction. A
coordinate transformation is applied in the directions where Cheby-
shev operators are used in order to enlarge the inherently small
grid spacing towards the edges of the computational domain. This
transformation can also be used to account for variations in the
borehole diameter along the borehole axis. We have applied the
method to compare wave propagation in 3-D heterogeneous mod-
els with azimuthally invariant models, to estimate the sensitivity
of sonic experiments to formation permeability in the presence or
absence of a screened or unscreened casing, and to asses the effects
of excavation damage zones. Our key findings are the following:

(i) Phases and amplitudes of the direct wave for a 3-D hetero-
geneous medium largely correspond to those of a corresponding
rotationally invariant medium, whereas the corresponding solutions
tend to differ for later arrivals, notably for the Stoneley wave. These
differences increase with increasing heterogeneity and increasing
source–receiver offsets.

(ii) Comparing otherwise identical simulations for viscous and
non-viscous pore fluids allows for estimating the sensitivity of
Stoneley waves to permeability. This sensitivity is high as long
as the permeability of the casing is at least as large as that of the
formation, but largely vanishes in the presence of an impermeable,
unscreened casing. Conversely, the heterogeneity of the formation
has a rather minor influence on the sensitivity of the Stoneley wave
to permeability in cased boreholes.

(iii) The presence of an excavation damage zone largely domi-
nates the borehole seismic response. Excavation damage zones can
therefore be easily detected, but also tend to largely obliterate the
response of the pristine formation.
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Hsui, A.T. & Toksöz, M., 1986. Application of an acoustic model to de-
termine in situ permeability of a borehole, J. acoust. Soc. Am., 79,
2055–2059.

Jackson, D.R. & Richardson, M.D., 2007. High-Frequency Seafloor Acous-
tics, Springer.
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A P P E N D I X A : L I S T O F S Y M B O L S

Grain bulk modulus Ks Fluid displacement vector U
Grain shear modulus μs Solid displacement vector u
Grain density ρs Relative fluid displacement uf

Frame bulk modulus Km Particle velocity vector v
Frame shear modulus μ Relative fluid velocity vector q
Porosity φ Stress tensor τ

Frame permeability κ Pore fluid pressure p
Tortuosity T Bulk density ρ

Pore fluid density ρf Effective stress coefficient α

Fluid storage coefficient M Pore fluid bulk modulus Kf

Pore fluid viscosity η polar number m
Acoustic particle velocity vector w Acoustic pressure pa

Acoustic bulk modulus Ka Acoustic impedance If

Acoustic density ρa

A P P E N D I X B : B O U N DA RY C O N D I T I O N S

To obtain the characteristic vector for a 3-D poroelastic medium in cylindrical coordinates, we recast the regular part (η = 0) of eqs (12)–(25)
as (Sidler et al. 2013)

Hv,t = Av,r + Bv,θ + Cv,z, (B1)

where H, A, B and C are matrices containing the material properties and

v = [vr , vθ , vz, qr , qθ , qz, τrr , τθθ , τzz, τrθ , τr z, τzθ , p]�, (B2)

is the field vector. The relevant matrix to implement the boundary conditions at the boundaries perpendicular to the r-direction is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 γ11 0 0 0 0 0 γ12

0 0 0 0 0 0 0 0 0 γ11 0 0 0

0 0 0 0 0 0 0 0 0 0 γ11 0 0

0 0 0 0 0 0 −γ12 0 0 0 0 0 γ22

0 0 0 0 0 0 0 0 0 −γ12 0 0 0

0 0 0 0 0 0 0 0 0 0 −γ12 0 0

Em + α2 M 0 0 αM 0 0 0 0 0 0 0 0 0

Em + α2 M − 2μ 0 0 αM 0 0 0 0 0 0 0 0 0

Em + α2 M − 2μ 0 0 αM 0 0 0 0 0 0 0 0 0

0 μ 0 0 0 0 0 0 0 0 0 0 0

0 0 μ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

−αM 0 0 −M 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

The characteristic vector is given by

c = Lv, (B4)

where L is the matrix whose rows are the left eigenvectors of matrix A. Vector c satisfies
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ċ = �c,r , (B5)

where the diagonal matrix � is given by

� = LAL−1. (B6)

The 13 eigenvalues, that is, the elements of �, are given by

0; 0; 0; 0; 0; ±V±; ±√
γ11μ; ±√

γ11μ, (B7)

where

V± =
√

b ± c

2
, (B8)

and

b = EGγ11 − 2Mαγ12 − Mγ22, (B9)

with

EG = Em + α2 M (B10)

denoting the Gassmann P wave modulus EG. The scalar c, not to be confused with the characteristic vector c, satisfies

b2 − c2 = 4M
(
Mα2 − EG

) (
γ 2

12 + γ11γ22

)
. (B11)

The non-zero eigenvalues are the velocities of the ingoing and outgoing waves. The third set of eigenvalues corresponds to the fast and slow
P waves, as defined by the plus and minus signs inside the square root, respectively. Then follow the four eigenvalues corresponding to the
ingoing and outgoing S waves. The matrix L is given by

L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 l27 0 1 0 0 0 l213

0 0 0 0 0 0 l27 1 0 0 0 0 l213

0 0 l43 0 0 1 0 0 0 0 0 0 0

0 l43 0 0 1 0 0 0 0 0 0 0 0

l61 0 0 l64 0 0 l67 0 0 0 0 0 l613

−l61 0 0 −l64 0 0 l67 0 0 0 0 0 l613

l81 0 0 l84 0 0 −l67 0 0 0 0 0 l813

−l81 0 0 −l84 0 0 −l67 0 0 0 0 0 l813

0 0 l103 0 0 0 0 0 0 0 1/2 0 0

0 l103 0 0 0 0 0 0 0 1/2 0 0 0

0 0 −l103 0 0 0 0 0 0 0 1/2 0 0

0 −l103 0 0 0 0 0 0 0 1/2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B12)

where

l43 = γ12

γ11
, l103 = −1

2

√
μ

γ11
, (B13)

l27 = 2eM

V 2+(c − b)

(
Mα2 − EG + 2μ

)
, (B14)

l213 = 4eMαμ

V 2+(c − b)
, (B15)

l61 = − V−
4ce

(2Mαγ11γ22 + γ12(c + EGγ11 − Mγ22)) , (B16)

l64 = − V−
4ce

(
EGγ 2

11 + (c − 2Mαγ12 + Mγ22)γ11 + 2Mγ 2
12

)
, (B17)

l67 = M

2c
(αγ11 − γ12) , (B18)
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l81 = − V+
4ce

(γ12(c − EGγ11 + Mγ22) − 2Mαγ11γ22) , (B19)

l84 = − V+
4ce

(−EGγ 2
11 + (c + 2Mαγ12 − Mγ22)γ11 − 2Mγ 2

12

)
, (B20)

l613 = c + EGγ11 + Mγ22

4c
, (B21)

l813 = c − EGγ11 − Mγ22

4c
, (B22)

with

e = γ 2
12 + γ11γ22. (B23)

Hence, the characteristic vector (B4) is given by

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c(old)
2

c(old)
3

c(old)
4

c(old)
5

c(old)
6

c(old)
7

c(old)
8

c(old)
9

c(old)
10

c(old)
11

c(old)
12

c(old)
13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τzθ

l27τrr + τzz + l213 p

l27τrr + τθθ + l213 p

l43vz + qz

l43vθ + qθ

l61vr + l64qr + l67τrr + l613 p

−l61vr − l64qr + l67τrr + l613 p

l81vr + l84qr − l67τrr + l813 p

−l81vr − l84qr − l67τrr + l813 p

l103vz + τr z/2

l103vθ + τrθ /2

−l103vz + τr z/2

−l103vθ + τrθ /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B24)

It can be shown that the first five rows are the zero-eigenvalue characteristics, the sixth and seventh row correspond to the slow P waves, the
eighth and ninth row to the fast P waves and the 10th–13th row to the in- and outgoing S waves, respectively.

Let us now consider the same approach for the acoustic equations of motion in the fluid domain (28) and (29). It is easy to show that the
characteristics vector corresponding to the unknown vector (wr, wθ , wz , pa)� and the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 0 0 ρ−1
a

0 0 0 0

0 0 0 0

Ka 0 0 0

⎞
⎟⎟⎟⎟⎠ (B25)

is

d =

⎛
⎜⎜⎜⎜⎝

d1

d2

d3

d4

⎞
⎟⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎜⎝

2wz

2wθ

pa − Ifwr

pa + Ifwr

⎞
⎟⎟⎟⎟⎠ , (B26)

where d1 and d2 are the characteristic in the vertical and azimuthal direction, while d2 and d3 are the inward and outward characteristics along
the radial direction, respectively, and If = √

ρa Ka is the fluid impedance (Sidler et al. 2010).

B1 Rigid boundary conditions for an acoustic domain

The rigid boundary conditions at the centre of the fluid-filled domain are

wr = 0, wnew
θ = wold

θ , wnew
z = wold

z . (B27)
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Additionally the characteristic for the inward travelling wave is retained. Thus, the field variables at this boundary have to be updated as

w(new)
r = 0,

w
(new)
θ = w

(old)
θ ,

w(new)
z = w(old)

z ,

p(new)
a = 2d (old)

3 , (B28)

with the characteristic for the inward travelling wave

d3 = 1

2
(pa − Ifwr ). (B29)

B2 Fluid/porous-solid boundary conditions

Let us denote by pa and p the pressure in the fluid and porous medium domains, respectively. The boundary conditions at an interface between
a porous medium and a fluid are

qr + vr = wr , pa − p = T qr , τrr = pa, τrθ = 0, τr z = 0, (B30)

where T is the dimensionless surface flow impedance. T = 0 corresponds to the open-pore case, whereas T = ∞ corresponds to the closed-pore
case. The field variables are updated as

v(new)
r D = c(old)

8 (−l64 + If l67 + (If + T )l613) + c(old)
6 (If l67 + l84 − (If + T )l813) + 2d (old)

3 (−l67 (l64 + l84) + (T l67 − l84) l613

+ (l64 + T l67) l813) ,

v
(new)
θ = c(old)

11 / l103,

v(new)
z = c(old)

10 / l103,

q (new)
r D = c(old)

8 (l61 − If (l67 + l613)) + 2d (old)
3 (l81 (l67 + l613) + l61 (l67 − l813)) − c(old)

6 (If l67 + l81 − If l813) ,

q (new)
θ = c(old)

5 − c(old)
11 l43/ l103,

q (new)
z = c(old)

4 − c(old)
10 l43/ l103,

τ (new)
rr D = If c

(old)
8 (l61 − l64 + T l613) + If c

(old)
6 (l81 − l84 + T l813) + 2d (old)

3 (−l64l81 + T l81l613 + l61 (l84 − T l813)) ,

τ
(new)
θθ D = Dc(old)

3 + c(old)
8 (((If + T )l61 − If (l64 + T l67)) l213 + If l27 (l61 − l64 + T l613))

− c(old)
6 ((If T l67 + (If + T )l81 − If l84) l213 + If l27 (l81 − l84 + T l813)) + 2d (old)

3 [((l64 + T l67) l81 + l61 (T l67 − l84)) l213

+ l27 (−l61l84 + l81 (l64 − T l613) + T l61l813)],

τ (new)
zz D = Dc(old)

2 + C (old)
8 (((If + T )l61 − If (l64) + T l67l213) + If l27(l61 − l64 + T l613))

− c(old)
6 ((If T l67 + (If + T )l81 − If l84)l213 + If l27(l81 − l84 + T l813))

+ 2d (old)
3 [((l64 + T l67)l81 + l61(T l67 − l84))l213

+ l27(−l61l84 + l81(l64 − T l613) + T l61l813)],

τ
(new)
rθ = 0,

τ (new)
rz = 0.

p(new) D = c(old)
8 (−(If + T )l61 + If (l64 + T l67)) − 2d (old)

3 ((l64 + T l67) l81 + l61 (T l67 − l84)) + c(old)
6 (If T l67 + (If + T )l81 − If l84) , (B31)

where

D = [If l67l81 − If l67l84 + If T l67l613 + If l81l613 + T l81l613 − If l84l613

+If T l67l813 − l64 (If l67 + l81 − If l813)] + l61 (If l67 + l84 − (If + T )l813) .
(B32)

The updated fields for the fluid are

w(new)
r = v(new)

r + q (new)
r ,

w
(new)
θ = d (old)

2 ,

w(new)
z = d (old)

1 ,

p(new)
a = T q (new)

r + p(new). (B33)
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B3 Porous-solid/porous-solid open-pore boundary conditions

The open-pore boundary conditions between two porous media (1) and (2) are

vr (1) = vr (2), vθ (1) = vθ (2), vz(1) = vz(2), qr (1) = qr (2),

τrr (1) = τrr (2), τrθ (1) = τrθ (2), τr z(1) = τr z(2), p(1) = p(2).
(B34)

B4 Non-reflecting boundary conditions for a porous solid

The absorbing boundary conditions for the outer boundary can be obtained by retaining the outward characteristics and setting the inward
characteristics c(old)

6 , c(old)
8 , c(old)

10 and c(old)
12 to zero. This leads to the following boundary conditions:

v(new)
r = (c(old)

9 l64 − c(old)
7 l84)/(−2l64l81 + 2l61l84),

v
(new)
θ = −c(old)

13 /(2l103),

v(new)
z = −(c(old)

12 )/(2l103),

q (new)
r = (c(old)

9 l61 − c(old)
7 l81)/(2l64l81 − 2l61l84),

q (new)
θ = c(old)

5 + (c(old)
13 l43)/(2l103),

q (new)
z = c(old)

4 + (c(old)
12 l43)/(2l103),

τ (new)
rr = (−c(old)

9 l613 + c(old)
7 l813)/(2l67 (l613 + l813)),

τ
(new)
θθ = [c(old)

9 (−l67l213 + l27l613) + 2c(old)
3 l67 (l613 + l813)

−c(old)
7 (l67l213 + l27l813)]/(2l67 (l613 + l813)),

τ (new)
zz = [c(old)

9 (−l67l213 + l27l613) + 2c(old)
2 l67 (l613 + l813)

−c(old)
7 (l67l213 + l27l813)]/(2l67 (l613 + l813)),

τ
(new)
rθ = c(old)

13 ,

τ (new)
rz = c(old)

12 ,

p(new) = (c(old)
7 + c(old)

9 )/(2 (l613 + l813)). (B35)

A P P E N D I X C : H E T E RO G E N E O U S P O RO U S M E D I U M

The quantities of a heterogeneous Biot-type porous medium are not completely independent of each other and empirical relationships have
been established to parametrize additional quantities from known ones (Carcione & Picotti 2006; Sidler et al. 2010). We therefore first create
a stochastic porosity distribution, based on which we then evaluate the related parameters.

C1 Stochastic medium

To generate a band-limited fractal distribution for the porosity, we use the von Kármán auto-covariance function and the ‘Wiener-Khinchine’
theorem to relate it to the spectral density function of the considered stochastic distribution (von Kármán 1948; Mandelbrot 1983; Christakos
1992; Sidler & Holliger 2005). The Fourier transform of the von Kármán auto-covariance function is given by

Phh(	k) = σ 2
h (2

√
πa)E(ν + E/2)

(ν)(1 + 	k2a2)ν+E/2
, (C1)

where 	k is the vectorial wavenumber, σ h is the variance and a the correlation length. The parameter 0 ≤ ν ≤ 1 is related to the so-called
Hausdorff fractal dimension HD and thus to the complexity of the medium as HD = E + 1 − ν (e.g. Goff & Jordan 1988), where E denotes the
underlying Euclidian dimension of the stochastic process. Taking the square root yields the corresponding amplitude spectrum. The actual
realization of the stochastic medium is then obtained by adding a random phase spectrum followed by the inverse Fourier transform and
appropriate scaling.

C2 Empirical relationships between properties of a porous medium

A relationship between porosity and permeability based on geometrical considerations is given by the Kozeny–Carman equation (Mavko
et al. 1998)

κ = Bφ3d2

(1 − φ)2
, (C2)
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where φ is the porosity, d is the grain diameter and B = 0.003 an empirical constant. Jackson & Richardson (2007) specify an average grain
diameter d = 0.25 mm for the fine- to medium-grained marine sandy sediments.

The matrix and shear bulk moduli can be computed from the porosity and the solid grain bulk and shear modulus using the Krief equations
(Garat et al. 1990)

Km = Ks(1 − φ)4/(1−φ), (C3)

μ = Km

Ks
μs. (C4)

The tortuosity can be estimated from the porosity as (Berryman 1980)

T = 1

2

(
1 + 1

φ

)
. (C5)
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