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What goes in must come out—the small intestine modulates renal

phosphate excretion*
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In a recent article in PNAS, Berndt et al. describe a
novel and rapid regulation of renal phosphate excre-
tion by phosphate instilled into the small intestine [1].
In a series of elegant experiments, renal phosphate
clearance was measured before and during the infusion
of a small amount of phosphate into the distal duode-
num of rats. Twenty minutes after the infusion,
massive phosphaturia was observed. This effect was
specific for phosphate and was not seen when phos-
phate was instilled into the stomach or when NaCl was
applied. Phosphaturia occurred without a measurable
increase in serum phosphate and was independent of
parathyroid hormone as it could also be observed in
parathyroidectomized rats. Furthermore, other phos-
phaturic hormones, such as FGF23 and sFRP4,
appear not to be involved. Alternatively, phosphaturia
was preserved after denervation of the kidneys.
Interestingly, infusion of a protein extract prepared
from duodenum mucosa also induced phosphaturia
similar to the intestinal phosphate infusion. Taken
together, Berndt et al. suggest that upon phosphate
ingestion, a phosphate-sensing mechanism in the duo-
denum releases a humoral signal which rapidly reduces
renal phosphate reabsorption and thereby prevents
an increase in the phosphate � calcium product, which
otherwise would trigger precipitations, calcifications
and secondary hyperparathyroidism.

Systemic phosphate homoeostasis is the product of
regulated intestinal phosphate absorption from diet,
deposition in skeleton, release from bone and soft
tissue and tightly controlled renal reabsorption.

Transport of phosphate in intestine, bone and kidney
is mediated by several members of the type II
sodium-dependent phosphate transporter family,
SLC34, including the two renal isoforms NaPi-IIa
and NaPi-IIc, and the intestinal NaPi-IIb transporter
[2,3]. The importance of these transporters in phos-
phate balance has been highlighted by genetic knock-
out of NaPi-IIa in a mouse model [4] and more
importantly, in patients with hereditary hypophos-
phataemic rickets with hypercalciuria caused by muta-
tions in the NaPi-IIc (SLC34A3) transporter [5,6].
Serum phosphate concentration has to be maintained
in a narrow range. Hypophosphataemia can cause
skeletal deformities or osteomalacia, muscle weakness
or glucose intolerance [7], whereas when phosphate
rises, it will exceed the solubility limit of the calcium �

phosphate product and precipitate. Consequences
are tissue calcifications, arteriosclerosis or secondary
hyperparathyroidism, as often seen in the setting of
ESRD [8]. Under physiological conditions, phosphate
balance is therefore tightly regulated by a number
of hormones such as parathyroid hormone, 1,25 (OH)2
vitamin D3, or the growing number of so-called
phosphatonins (including FGF-23, sFRP4 or FGF-7)
[3,9,10]. These factors have in common that they
regulate expression of renal and intestinal phosphate
transporters and thereby determine absorption and
excretion [3,9]. Additionally, it has long been known
that dietary phosphate intake influences intestinal
absorption and renal excretion through only poorly
understood mechanisms. Chronic changes in dietary
phosphate intake may involve at least in part
1,25(OH)2-dependent changes in transporter expres-
sion [11]. Acute adaptation of renal reabsorption
within hours leads to down-regulation of the renal
NaPi-IIa transporter [12], an effect that can be
mimicked in the renal OK cell line in vitro by adding
phosphate to the medium [13]. These data strongly
suggest the existence of a phosphate-sensing mechan-
ism. The data by Berndt et al. point to an intestinal
mechanism that would sense at the forefront of
phosphate ingestion a potential phosphate load and
acutely adapt renal excretion. This seems to make sense
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on the background that expression and activity of
intestinal phosphate uptake transporters is only
adapted slowly, reflecting long-term changes in dietary
intake or hormonal status [14]. In contrast, the kidney
can adapt rapidly to metabolic or hormonal alterations
leading to acute internalization and degradation of
NaPi-IIa cotransporters within 10–15min [3,15]. Thus
the body has two complimentary mechanisms that
adapt to acute or chronic changes in dietary phosphate
intake and thereby maintains phosphate perfectly
within a safe range required by metabolism.

Deranged phosphate handling is a severe problem in
patients with ESRD requiring dialysis. Reduced renal
phosphate clearance causes phosphate retention with
the precipitation of calcium-phosphate deposits in
tissue and arteries, a major life-limiting complication
in these patients. Moreover, intestinal phosphate
absorption is inadequately high in these patients, and
a rat model of chronic renal failure showed recently
that expression of intestinal NaPi-IIb transporters is
inappropriately normal [16]. Our understanding of
how systemic phosphate homeostasis is regulated is at
the very early stages. The recent discoveries of phos-
phaturic hormones and co-factors, such as FGF-23
and klotho, have added new complexity to the system
[9,10,17]. However, if we aim to understand mechan-
isms that regulate systemic phosphate balance, we may
ultimately also be able to devise strategies for the
treatment of hyperphophataemia in ESRD patients.
The discovery of an intestinal phosphate- sensing
mechanism and the cross-talk with renal phosphate
handling led to a number of interesting questions as to

the nature of this putative ‘phosphate-sensor’ and its
signal transduction to the kidney, the mechanism of
inducing phosphaturia, and its potential role as
a therapeutic target.
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Fig. 1. Serum phosphate levels are determined by the rate of
intestinal phosphate absorption, renal reabsorption and its deposi-
tion in bone or storage in soft tissue, respectively. Extensive cross-
talk exists between bone and kidney via phosphaturic factors, such as
FGF-23 or FRP4, and influences renal and intestinal expression
of phosphate transporters. In addition, 1.25(OH)2-vitamin D3

modulates renal and intestinal phosphate transport and provides a
feed-back loop to bone release of FGF-23. Parathyroid hormone
directly inhibits renal phosphate reabsorption and stimulates renal
synthesis of 1.25(OH)2-vitamin D3. The novel intestinal-renal axis
may provide a means of balancing intestinal phosphate intake and
renal excretion.
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