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Cerebrospinal fluid dynamics between the
intracranial and the subarachnoid space of the optic
nerve. Is it always bidirectional?
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CSF is thought to flow continuously from the site of production in the ventricles into interconnected spaces; i.e.
cisterns and subarachnoid spaces (SASs). Since the SAS of the optic nerve is defined by a cul-de-sac anatomy, it
is not evident how local CSF might recycle from that region to the general SAS. The concept of free com-
munication of CSF has recently been challenged by the description of a concentration gradient of beta-trace
protein, a lipocalin-like prostaglandin D-synthase (L-PGDS), between the spinal CSF and that in the SAS of the
optic nerve, indicating diminished local clearance or local overproduction of L-PGDS here. In fact, computed
cisternography with a contrast agent in three patients with idiopathic intracranial hypertension and asym-
metric papilloedema demonstrate a lack of contrast-loaded CSF in the SAS of the optic nerve despite it being
present in the intracranial SAS, thus suggesting compartmentation of the SAS of the optic nerve. The concept
of an optic nerve compartment syndrome is further supported by a concentration gradient of brain-derived
L-PGDS between the spinal CSF and the CSF from the optic nerve SAS in the same patients.
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Introduction
CSF is thought to be fairly homogeneous in composition

and to be distributed evenly with a continuous flow

through all CSF spaces, such as ventricles, cisterns and

subarachnoid spaces (SAS) including the SAS of the optic

nerve (Fig. 1). It is generally agreed that there is a bulk

circulation from the site of origin to the site of absorption;

i.e. from the ventricles to the arachnoid villi in the cranial

SAS (Dichiro, 1964; Bito and Davson, 1966; Milohart, 1972;

Wood, 1982). CSF circulation and direction of flow in

the large CSF spaces (ventricles and spinal CSF space) have

been studied with radiocisternography and other tracers.

(Dichiro, 1966; Greitz et al., 1992; Greitz and Hannerz,

1996). The mechanism by which CSF is propelled on its

circulatory route is not fully understood but probably is

influenced by the outpouring of newly produced CSF,

postural effects, ventricular pulsations, the pulse pressure of

the vascular choroid plexus, and a piston action of the brain

(Bito and Davson, 1966; Milohart, 1972; Greitz et al., 1991,

1992). CSF is renewed within 24 h, thus indicating a fast

turnover. The velocity of CSF can be calculated using its

total volume (Voltot) and the recycle time (Rt) as follows:

velocity = Voltot/Rt. In addition to the well-established

concept of CSF resorption in the arachnoid villi, in vivo

research in animals strongly supports the concept of

resorption via lymphatics (Johnston, 2000, 2003; Zakharov

et al., 2003). Indeed, lymphatics have been demonstrated on

light and transmission electron microscopy in human tissue,

and Indian ink injected into the SAS of the optic
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nerve subsequently appears in dural lymphatics (Killer

et al., 1999).

The concept of a homogeneous CSF composition has been

challenged based on the measurement of a marked concen-

tration gradient of the brain-derived protein lipocalin-like

prostaglandin D-synthase (L-PGDS) between the spinal CSF

and that in the SAS surrounding the optic nerve in patients

with idiopathic intracranial hypertension (IIH), optic nerve

sheath meningioma and non-arteritic anterior ischaemic

optic neuropathy (NAION) (Killer et al., 2006). This concen-

tration gradient does however not elucidate the CSF

dynamics between the intracranial optic nerve SAS, nor

does it explain how the CSF in the SAS of the optic nerve

could recycle back to the intracranial site of resorption,

apparently in violation of the laws of hydrodynamics.

Persistent papilloedema and visual loss in patients with

IIH despite a functioning CSF shunt—a phenomenon that

may be more common than generally appreciated—poses a

conundrum that cannot be explained by the current concept

of free CSF circulation throughout all CSF spaces (Guy et al.,

1990; Kelman et al., 1991; Ramsey et al., 2006). Compart-

mentation of the SAS of the optic nerve providing a barrier

to free flow of CSF and the nerve offers a possible

pathophysiological explanation for this phenomenon.

Material and methods
Three patients with IIH diagnosed by previous MR imaging of

the brain and the orbits and lumbar puncture (LP) underwent

complete neurological and ophthalmological examination. In all

patients, bilateral asymmetric papilloedema was present on

fundoscopy. All patients underwent CT-cisternography after

intrathecal injection of 10 ml of contrast medium (Iopamidol,

molecular weight 778 Da) by LP (Mironov et al., 1993).

CT-cisternography was performed in the same room as LP and

contrast application. The time interval between contrast application

and CT-cisternography measured on average 2–5 min.

In order to compare the results from patients with elevated

intracranial pressure (ICP) with those from patients with normal

ICP, we also performed CT-cisternography in two patients who

were already enrolled in another study of atypical normal tension

glaucoma (ANTG).

In all patients, CT-cisternography was performed while the

patients were postioned on their knees and elbows. They were

then asked to turn to the left and to the right with their heads

facing the floor. In order to elevate the ICP, the patients were

instructed to perform a Valsalva manoeuvre. In all patients CT-

cisternography was performed prior to optic nerve sheath

fenestration (ONSF).

CSF was obtained during the procedure and subsequently

analysed for cells, glucose, immunoglobulin G antibodies, albumin

and L-PGDS. In all patients (IIH and ANTG) optic nerve sheath

decompression was performed under general anaesthesia via a

medial transconjunctival orbitotomy. Special care was taken not

to use fluids to moisten the cornea after the orbitotomy in order

not to dilute the CSF. Multiple incisions were performed in the

dura of the optic nerve with a 19-gauge blade, and the trabeculae in

the SAS were loosened with a tenotomy hook. After the first

incision, a gush of CSF was observed, followed by further slow

outflow. CSF then was sampled with a syringe using a 37-gauge

needle (Killer et al., 2006).

Results

No intracranial lesions were present in any of the patients on

MRI; however, in the patients with IIH, orbital MRI revealed

a variable degree of distension of the optic nerve sheath,

most prominent in the bulbar segment adjacent to the

posterior sclera (Figs 2–4). The amount of CSF surrounding

the optic nerve was best seen on axial and coronal T2-

weighted sequences. Flattening of the posterior sclera with

protrusion of the optic disc into the vitreous body

was present in all patients with IIH to a variable degree.

CT-cisternography in the IIH patients demonstrated an

impaired contrast-loaded CSF (CLCSF) communication

between the intracranial SAS and the SAS of the optic

nerve. In two patients with IIH, CLCSF entered the SAS of

the optic nerve only within the optic canal, not in the SAS of

the intraorbital optic nerve, suggesting blockage of CLCSF

within the canalicular portion of the optic nerve (Figs 2 and

3). In another patient with IIH, CLCSF entered the SAS of

the optic nerve up to 10 mm within the orbit on the right

side, whereas CLCSF on the left side entered �5 mm (Fig. 4).

In one patient from the ANTG study group, CLCSF

reached the mid-orbital portion of the optic nerve on

both sides. A discrete CLCSF signal could be demonstrated

only on the nasal side of the bulbar region of the right optic

nerve, whereas no CLCSF reached the bulbar segment of

Fig. 1 Schematic representation of the CSF spaces surrounding
the optic chiasm (intracranial CSF space) (A) and the CSF
surrounding the optic nerve (orbital CSF space) (B). CSF flows
from intracranial (A) into the SAS of the optic nerve (B). The
SAS of the optic nerve is most narrow in the canalicular region
(C). The intraorbital segment of the SAS is characterized by
broad septae (D), whereas the retrobulbar segment is
characterized by small trabeculae (E). Due to the CSF volume
gradient the direction of flow is directed from the intracranial
SAS to the orbital SAS.
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the left optic nerve (Fig. 5). In another ANTG patient, the

CLCSF demonstrated a modest signal on the right with a

patchy distribution and no CLCSF on the left (Fig. 5).

In contrast to the patients with elevated ICP, an inversion of

the L-PGDS ratio (L-PGDS optic nerve/L-PGDS LP) was

measured (Table 1).

Discussion
In contrast to all other cranial nerves, the optic nerve is—to

start with—by histological definition not really a nerve, but

a white-matter tract of the CNS that extends into the orbit

where it is surrounded by CSF throughout its entire length.

As a consequence of this unique anatomy, the optic nerve

can become involved in CNS disorders characterized by

elevated ICP; e.g. IIH, intracranial masses, and inflammatory

and infectious disease. The cul-de-sac structure of the cov-

ering of the optic nerve is the anatomical hallmark of the

optic nerve and may be the crucial issue in understanding

the CSF dynamics between the intracranial SAS and the SAS

of the optic nerve. Free bidirectional communication

between these areas has previously been taken for granted;

however, this concept has recently been challenged by the

description of a marked concentration gradient of L-PGDS

(beta-trace protein) between the spinal CSF and the CSF in

the SAS of the optic nerve that was measured in patients

Fig. 5 Two patients with ANTG. (A) Axial CT-cisternography
demonstrating normal intracranial CLCSF signal. The right
SAS of the optic nerve demonstrates a modest patchy filling
signal of CLCSF while the left SAS is devoid of CLCSF.
(B) CT-cisternography coronary view (same patient as A).
Compared with the intracranial signal, the SAS of the right optic
nerve shows only a modest signal of CLCSF while there is
no CLCSF signal in the SAS of the left optic nerve. (C) Axial
CT-cisternography. CLCSF reaches into the mid-orbital portion of
both optic nerve.

Fig. 2 (A) T2 sequence of MRI demonstrates fluid congestion in
the SAS of both optic nerves. Note flattening of the posterior
sclera and papilloedema in both eyes. (B and C) CT-
cisternography, axial/sagittal view: Distinct CLCSF in all intracranial
CSF spaces. Note, full filling in the chiasmal cistern. (D) Coronary
CT-cisternography does not show CLCSF in the SAS of both
SAS of the optic nerve. The CT-cisternography shows an extension
of the optic nerve shape with stasis of contrast agent loaded
CSF at the level of the distal optic nerve sheath immediately
before the optic canal.

Fig. 3 (A and B) Asymmetric papilloedema, more pronounced in
the left eye. (Note obscuration of the vessels on the nasal disc).
(C) Axial MRI T1 sequence, displaying congested optic nerve
sheath on both sides and flattening of the posterior sclera.
(D) Coronal orbital MRI, T2 sequence demonstrating fluid
accumulation and dilatation of both SAS of the optic nerves.
(E) CT cistography. CLCSF in the intracranial CSF spaces.
No CLCSF in both SAS of the optic nerves.

Fig. 4 (A and B) Asymmetric papilloedema, more pronounced in
the right eye. (C) The T2-weighted MRI image shows marked
dilatation of both subarachnoid spaces of both optic nerve sheaths.
(D) CT-cisternography demonstrates a stop of CLCSF in the
posterior region of the intraorbital optic nerve on the right and the
left. Note, no CLCSF in both bulbar regions of the optic nerves.
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with IIH, NAION, and optic nerve sheath meningioma

(Killer et al., 2006). Whether or not this concentration

gradient of L-PGDS is due to a local surplus production of

CSF or a lack of clearance from the SAS of the optic nerve is

not yet understood. Although orbital MR imaging in

patients with IIH demonstrates changes consistent with CSF

congestion and bulging of the meningeal sheath, it does not

provide either qualitative or quantitative information

regarding the biochemical composition of the local CSF,

nor does the appearance of CSF in the SAS of the optic nerve

differ from that of the intracranial CSF. Furthermore, there

is no hydrodynamic theory that would explain how the

cranial CSF that enters the SAS of the optic nerve could

change its direction of flow against the volume gradient that

directs it from the site of production and higher volume

(intracranially) towards the SAS of the optic nerve. Two

possible outflow routes from the SAS of the optic nerve have

been suggested. Outflow from the SAS of the distal portion

of the optic nerve into the orbit was demonstrated in animal

studies via leakage of contrast agent and radioisotopes

(Weed, 1914; Field and Brierly, 1949; McComb et al., 1982;

Shen et al., 1985; Fogt et al., 2004; Lüdemann et al., 2005).

Drainage via lymphatics is a new powerful concept that has

demonstrated a great capacity for CSF outflow from the

CNS (Johnston, 2000, 2003). Lymphatics in the dura of

the human optic nerve may also offer an outflow pathway

(Gausas et al., 1999; Killer et al., 1999).

The possibility of impaired exchange between the

intracranial CSF and that in the SAS of optic nerve has

only recently become of interest because of reports about

persistent papilloedema and visual loss in patients with IIH

despite a functioning lumboperitoneal shunt (Kelman et al.,

1991).

Asymmetric and unilateral papilloedema is another

conundrum that requires a better understanding of CSF

dynamics. Although papilloedema in patients with IIH tends

to be symmetric, asymmetric disc swelling and even IIH

without papilloedema have been described (Marcelis and

Silberstein, 1991; Strominger et al., 1992; Huna-Baron et al.,

2001). Considering the current understanding of CSF com-

munication, patients with IIH without papilloedema are

even more intriguing than asymmetric and unilateral

papilloedema (Lipton and Michelson, 1972; Seggia and De

Menezes, 1993). Although papilloedema is defined as disc

swelling due to elevated ICP (Hayreh, 1968), typical

radiological and fundoscopical features have been reported

in patients without elevated ICP that presented with

swollen discs resembling papilloedema due to retrobulbar

neuritis and arachnoid cysts (Gass et al., 1996; Brodsky and

Vaphiades, 1998; Killer and Flammer, 2001; Killer et al.,

2003b; Hickman et al., 2005). Partial or total compartmen-

tation of the SAS of the optic nerve would offer a

pathophysiological explanation for such cases; however,

other than biological evidence (L-PGDS concentration

ratio), there have been no data to support the concept of

an optic nerve compartment syndrome.

One might expect studies of CSF dynamics in vivo to

provide information about the location of impeded CSF

flow and probably about mechanisms resulting in impaired

flow. However, although radionuclide cisternography is

often used to provide information regarding CSF flow, the

SAS of the optic nerve is too small for this technique to

render reliable information about the CSF in this area. It

is for this reason that we have used CT-cisternography with

contrast. This technique has been used in the past for the

diagnosis of CSF leaks in patients with fractures of the

skull base (Mironov et al., 1993). The molecular size of the

contrast agent (Iopamidol; 778 Da) allows easy access to

the SAS of the optic nerve (molecular weight of L-PGDS

28 000 Da).

In the present study, CT-cisternography with contrast

demonstrated blockage (stasis) and impaired influx of

CLCSF in patients with IIH as well as to some extent in

the ANTG study group patients. The information from this

technique, combined with the finding of L-PGDS concen-

tration gradients, provides strong evidence for optic nerve

sheath compartmentation in patients with IIH.

If a total block of the CSF occurs in some situations, it is

feasible to assume that a partial block may occur in other

conditions. An interesting candidate is ANTG. In glauco-

matous optic neuropathy the astrocytes are activated.

This leads to an upregulation of factors such as matrix

Table 1 Clinical characteristics of the patients studied

Patient C.M. T.Z. M.F. H.E. N.E.

Age (years) 56 49 30 75 64
Gender F F F F M
Diagnosis IIH IIH IIH ANTG ANTG
Side R L L R R
BMI (kg/m2) 31 34 35 22 25
LP pressure (cm H2O) 30 31 30 18 16
L-PGDS LP (mg/l) 32.20 18.00 17.00 73.20 34.10
L-PGDS ON (mg/l) 70.80 132.00 47.80 27.00 30.60
L-PGDS ratio ON/LP (%) 220 733 281 37 90

M = male, F = female, L = left, R = right. ANTG = atypical normal tension glaucoma; BMI = body mass index; IIH = idiopathic intracranial
hypertension (pseudotumour cerebri); LP = lumbar puncture; L-PGDS = lipocalin-like prostaglandin D-synthase (beta-trace); ON = optic nerve.
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metallo-proteinases, tumour necrosis factor a or endothelin.

While on one hand, these factors may lead to arachnoiditis

and thereby slow down CSF renewal, an increased

concentration of these factors in the CSF on the other

hand may contribute to the optic nerve damage. Endothelin,

for example, is known to be increased in glaucoma

patients—both locally and systemically. It not only reduces

blood flow in the microcirculation but also interferes with

the axoplasmatic transport (Hernandez, 2000). Ongoing

studies will clarify whether such physiological molecules

reach local concentrations that may be toxic to the optic

nerve.

The development of compartmentation may depend on

several pathophysiological mechanisms. The smallest dia-

meter of the SAS of the optic nerve is within the optic

canal. Although the osseous component of the canalicular

portion of the optic nerve could theoretically play a role in

the development of compartmentation, most patients with

fibrous dysplasia retain normal vision in spite of narrowing

of the optic canal (Lee et al., 2002). It seems therefore more

likely that the site of the pathophysiology is within the dura

mater and the arachnoid and its adherent structures, inclu-

ding the trabeculae and septae (Killer et al., 1999, 2003a;

Sens et al., 2003). Inflammatory changes in the SAS of the

optic nerve leading to distension of the sheath and subse-

quent disc swelling has been suggested in patients with

anterior optic neuritis (Killer et al., 2003b; Hickman et al.,

2005). Anatomical studies of the SAS in post-mortem

specimens from patients without neurological disease

demonstrate polymorphonuclear leucocytes attached to the

arachnoid layer (Killer et al., 2003a). In addition, studies in

rats demonstrate large numbers of MHC type II cells on

the arachnoid in the SAS (Braun et al., 1993). Leucocytes,

macrophages, lymphoblasts and monocytes were detected

following injection with bacillus Calmette-Guerin (Merchant

and Low, 1977). It seems therefore feasible that even mild

inflammatory stimuli may produce arachnoiditis and trabe-

culitis with secondary fibrosis, eventually leading to an optic

nerve sheath compartment syndrome. The same process may

occur in patients with subarachnoid haemorrhage (Julow

et al., 1979). Inflammatory processes might also contribute

to the closing of the arachnoid apertures that drain CSF

into the meningeal lymphatics thus adding to the CSF

compartmentation.

Our study using CT-cisternography provides a patho-

physiological explanation—optic nerve compartment

syndrome—for persistent papilloedema and progressive

visual loss in patients with apparently functioning CSF

shunts as well as the occurrence of unilateral or asymmetric

papilloedema. At the same time, our findings raise questions

concerning the biological effects of accumulated CSF and its

components on the optic nerve following the development

of this syndrome. A possible toxic effect of reduced CSF

clearance on brain tissue has recently been postulated

(Rubenstein, 1998; Silverberg et al., 2003). As the biochem-

ical effects of L-PGDS are several, including neuroprotection

of astrocytes on one hand and apoptotic activity and

modulation of inflammatory processes on the other, it is to

be expected that high concentrations of this agent will have a

significant effect on the optic nerve (Logdberg and Wester,

2000; Govoni et al., 2001; Ragolia et al., 2001, 2003; Taniike

et al., 2002; Kagitani-Shimono et al., 2006). The immediate

retrobulbar portion of the nerve—from where CSF was

sampled during sheath decompression—may be particularly

vulnerable to these toxic effects. Histochemical and

immunocytochemical studies have demonstrated a striking

inverse relationship between myelination and mitochondrial

distribution with the highest concentration of unprotected

mitochondria in the bulbar region of the optic nerve

(Bristow et al., 2002). Damage to the mitochondria in this

region—and to the pial vasculature—may contribute to the

loss of visual function in IIH as well as other types of optic

nerve disease. The crucial role of mitochondria for an intact

optic nerve becomes evident from patients with Leber’s optic

neuropathy (Biousse and Newman, 2001).

In conclusion, understanding unilateral and asymmetric

papilloedema in patients with elevated ICP is not possible

without focusing on the SAS of the optic nerve. Damage in this

setting can only be understood in the context of the close

relationship of the optic nerve with the surrounding CSF and

its proximity to the axons, mitochondria and the pia septal

blood supply. We believe that the best explanation for both

(unilateral and asymmetric papilloedema in patients with

elevated ICP) is that the CSF in the SAS of the optic nerve may

become sequestered, thus producing a compartment syn-

drome. The lack of CLCSF in the SAS of the optic nerve found

in this study combined with the marked concentration

gradient of a mainly brain-derived component—L-PGDS—

between the spinal CSF and the SAS of the involved optic nerve

strongly supports this concept of an optic nerve sheath

compartment containing highly biological active molecules.

Based on the concentration gradient of L-PGDS and the

corresponding CT-cisternography studies there is strong

evidence for compartmentation of the SAS of the optic

nerve. As there are at present no data on the normal

population, the link between compartmentation and disease

of the optic nerve is therefore based on the analogy of

disturbed CSF dynamics and disease of the CNS (Ruben-

stein, 1998; Silverberg et al., 2003).
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