A novel synthesis of the N-13 labeled atmospheric trace gas peroxynitric acid

By T. Bartels-Rausch^{1,*}, Th. Ulrich^{1,2}, Th. Huthwelker¹ and M. Ammann¹

Paul Scherrer Institut, Laboratory of Radiochemistry and Environmental Chemistry, 5232 Villigen PSI, Switzerland
 ² Universität Bern, Department of Chemistry and Biochemistry, 3008 Bern, Switzerland

(Received November 29, 2010; accepted in revised form January 14, 2011)

Synthesis / N-13 / Nitrogen oxides / Snow-air interface / Atmosphere / Cryosphere / PNA / HNO₄ / HO₂NO₂

Summary. Radioactively labeled trace gases have been successfully used to study heterogeneous chemistry of atmospheric relevance. Here we present a new synthesis of gas-phase peroxynitric acid labeled with ¹³N (H¹³NO₄) to study the interaction of HNO₄ with ice and snow surfaces. A yield of about 30% for HNO₄ was determined. The main by-products were HNO₃ and HNO₂. Exposure of an ice packed bed flow tube to these species revealed that the interaction with the surface scale in the order HNO₃ > HNO₄ = HNO₂ > NO₂.

1. Introduction

The interaction of atmospheric trace gases with the Earth's snow cover or ice surfaces is of high environmental relevance [1, 2]. The atmospheric trace gas that we focus on in this work is the nitrogen oxide peroxynitric acid (HNO_4). Nitrogen oxides have been of particular interest in atmospheric science, because their gas-phase concentration directly influences the ozone levels and the oxidative capacity of the atmosphere.

For example, in the lower atmosphere, HNO₃ adsorbs to and is thus scavenged by ice clouds [3]. Similarly, on the ground, trace gas uptake by snow may significantly alter the concentration both in the air above snow-covers and in the snow itself [4, 5]. Nitrous acid (HNO₂) partitions less to ice or snow, but its interactions with the ice are still strong enough to significantly slow down its diffusion through surface snow [6,7]. This longer residence time in the snow pack, as compared to non-interacting species such as NO₂, makes its photolytic dissociation and thus its role as source of the strong oxidant OH more probable. Recently, Slusher et al. concluded that the uptake of HNO₄ by snow is of similar magnitude than observed for HNO_3 [8]. The finding that deposition to snow is a major loss process for gas-phase HNO₄ above Antarctic surface snow was based on steadystate calculations and comparison to field measurements. Taken its significant fraction of total nitrogen oxides in cold

(E-mail: thorsten.bartels-rausch@psi.ch).

regions of the atmosphere such as in Antarctica and the upper troposphere [9, 10], its uptake would significantly impact the budget of gas-phase nitrogen oxides. Also, as HNO₄ has a significant photo-dissociation cross section [11], its deposition should be taken into account when discussing the vivid photochemistry of nitrogen oxides in snow-packs [4]. Sound conclusions are however hampered by missing data from well-controlled laboratory experiments on the interaction of HNO₄ with ice or any other environmental surface.

¹³N with a half-life of 10 min has been used in the past to label nitrogen oxides to be used as tracer in chemical experiments with relevance to Earth's atmosphere [12]. The main aim of this work was to develop a new synthesis route for $^{13}\mathrm{N}$ labeled HNO₄ in the gas phase by an association reaction of ¹³NO₂ with HO₂. ¹³N isotopes are obtained from the PROTRAC facility at the Paul Scherrer Institute. In the first part of the work, we describe the yield of the product (HNO₄) and of other nitrogen oxide by-products by means of a chemical ionization mass spectrometer and of a chemiluminescence detector. This work was done with an excess of H¹⁴NO₄. As neither method can differentiate ¹³N from other nitrogen isotopes, the production of ¹³N labeled nitrogen oxides was verified using a packed bed flow tube for separation and radioactive decays for detection in a second step. This method has been called thermochromatography before [13]. In this work, ice was chosen as stationary phase, because the separation of HNO₃, HNO₂, NO₂, and of NO in an ice packed bed flow tube has been shown before [14] and additionally, first information on the partitioning of HNO₄ between ice and air can be gained.

2. Experimental

Fig. 1 shows a scheme of the experimental set-up consisting of the production of ¹³N in a gas target and of the synthesis of HNO₄ (Fig. 1a). Included is also a scheme of the packed bed flow tube that was used to verify the production of H¹³NO₄ (Fig. 1b) and of the analytical set-up to characterize the HNO₄ synthesis (Fig. 1c). The tubing of the flow system consisted of perfluoro-alkoxy copolymer (PFA) 4 mm i.d. Gas flows were controlled by mass flow controllers (Brooks Instruments) or by mass flow regulators (Vögtlin Instruments) both of which have a 1% full-scale accuracy.

^{*}Author for correspondence

Fig. 1. Scheme of the experimental set-up. (**a**) shows the production of 13 N isotopes and the synthesis of HNO₄ molecules. The synthesis was coupled to either a packed bed flow tube for detection of radioactively labeled nitrogen oxides (**b**), or to analytical devices for detection and characterization of also non-labeled molecules (**c**).

2.1 Production of ¹³N

The production of ¹³N isotopes *via* the reaction ¹⁶O(p, α)¹³N has been described in detail before [12]. In brief, a flow of 10% O₂ (99.9995%, AirLiquid) in He (99.9999%, Messer) passed through a gas target at 1 L min⁻¹ flow velocity and at 2 bar pressure that was continuously irradiated with an 11 MeV proton beam – provided by the accelerator facilities at Paul Scherrer Institute, Switzerland. The primary ¹³N molecules and radicals were reduced to NO over a molybde-num catalyst at 653 K, immediately after the target cell. The resulting gas was continuously transported to the laboratory through a 580 m long capillary. The radiation chemistry in the target cell also led to the production of non-labeled nitrogen oxides at around 2 × 10¹¹ molecules cm⁻³ from nitrogen impurities in the carrier gas supplies.

2.2 Synthesis of HNO₄

¹³N labeled and/or non-labeled HNO₄ was continuously synthesised in the gas phase by reaction of NO₂ with HO₂. For this, a H₂O/O₂/CO/NO₂ mixture in a N₂ (Carbagas, 99.999%) gas flow passing an 8 mm i.d. quartz tube was irradiated by an excimer UV lamp (Heraeus) emitting light at a wavelength of 172 nm. Typical mixing ratios of the gas phase species at atmospheric pressure were 3.5×10^{18} molecules cm⁻³ H₂O, 2.3×10^{16} molecules cm⁻³ CO, 1.3×10^{16} molecules cm⁻³ O₂, and 9.4×10^{12} molecules cm⁻³ NO₂. Ultrapure water (0.054 µS, Millipore) was dosed by passing the gas flow through a home-built, temperature regulated humidifier consisting of a heated Teflon tube immersed in water. The gases were mixed from certified gas bottles of synthetic air (Carbagas, 20% O₂ in N₂ (99.999%)), of CO (Carbagas, 10% CO in N_2 (99.999%)), and of NO (Carbagas, 10 ppm NO in N_2 (99.999%)) as source for NO₂, see below.

NO₂ was quantitatively synthesized by mixing a gas flow containing NO, from the PROTRAC target and/or from the certified gas bottle, and O₃ in a reactor of 2 L volume. O₃ was produced by irradiation of a flow of dry synthetic air with a Hg pen-ray lamp at 185 nm. The irradiation time and the flow of O₂ were adjusted to achieve a small excess of O₃ for full conversion of NO to NO₂, but not more than 2×10^{12} molecules cm⁻³ excess to prevent further oxidation of the NO₂.

2.3 Detection of HNO₄ and by-products

A chemical ionization mass spectrometer was used to monitor HNO₄ in the gas phase. The mass spectrometer has been described elsewhere [15], the detection scheme was adapted from Slusher [10]. The strength of this mass spectrometer method is that – without further use of specific chemical traps - several nitrogen oxides can be detected simultaneously based on specific cluster ions [16]. These clusters were produced by reaction with SF_6^- in a home-made ionization chamber situated in front of the mass spectrometer entrance orifice. In detail, a flow of 600 mL min⁻¹ of the gas flow exiting the HNO₄ synthesis was mixed with a flow of 1205 mL min⁻¹ N₂ and SF₆⁻ at 11 mbar total pressure. The SF₆⁻ ions were produced by passing SF₆ (Carbagas, 1%) SF₆ in Ar (99.999%)) in N₂ through a ²¹⁰Po-ionizer (NRD, p-2031). To enhance the formation of ions, a negative voltage of -136 V was applied to the ionizer and the inner walls of the ionisation chamber. Charged clusters entered the mass spectrometer from the ionization chamber via an orifice at -10 V.

The following clusters have been described and were also observed in this work: (HF)⁻NO₄ with mass 98 from reaction of HNO_4 with SF_6^- [10], (HF)⁻NO₃ with mass 82 from HNO₃ [16], (HF)⁻NO₂ with mass 66 for HNO₂ [17], NO₂⁻ with mass 46 for NO₂ [16]. A complication of mass spectrometry is that several different species might produce identical fragments. HNO₄, for example, has been described to break apart upon reaction with SF₆⁻ leading also to the formation of (HF)⁻NO₂ clusters that are typically used to monitor HNO_2 [10]. To quantify this effect the gas flow containing the nitrogen oxides was heated to 373 K for quantitative destruction of HNO₄ to form NO₂. HNO₄ is thermally instable [18] and the exposure to 373 K at our experimental flow conditions led to a quantitative decomposition of HNO_4 as verified by observation of the mass spectrometer's signal at a mass to charge ratio (m/z) of 98. To heat the gas flow 2 m of the PFA tube were wrapped around an aluminium support and covered by temperature-regulated heating wire (Wisag AG, Switzerland). It was found that the (HF)⁻NO₂ signal decreased by about 10%. From this we conclude that the (HF)⁻NO₂ fragment at m/z = 66 has also a non-negligible contribution from HNO4 at our detection conditions. We further found that m/z = 66 also rose in absence of nitrogen oxides, as soon as O₃ was added. This correlation of O_3 and the signal at m/z = 66 was observed earlier [19], and is assigned to $O_3^{-}(H_2O)$ clusters of mass 66. To correct for this, and derive the fraction of the signal that is not

caused by O₃, O₃ was also monitored at mass 48 (O₃⁻). The ratio of m/z = 48 to m/z = 66 was determined in the absence of nitrogen oxides and used to compute the intensity of m/z = 66 due to O₃ during the synthesis. This later signal was than subtracted from the raw signal at m/z = 66 to give an estimate of the m/z = 66 traces originating from HNO₂. No interferences were observed for m/z = 82 or m/z = 46. Overall, with this measurement method, HNO₄, HNO₃, and NO₂ can be monitored with high selectivity, while HNO₂ measurements are less reliable. The mass spectrometer data allow direct analysis of relative trends in the individual nitrogen oxide's abundance with changing synthesis settings. For a quantitative analysis the mass spectrometer needs to be calibrated.

Quantification of the nitrogen oxides in the reactor and calibration of the mass spectrometer was done by means of a chemiluminescence NO monitor equipped with a molybdenum converter (Monitor Labs 9841). This converter reduces nitrogen oxides to NO and its use thus allows detecting the sum of all nitrogen oxides present in a sample (NO_y) , by-passing it selectively quantifies NO. Please note that the presence of CO interferes with the NO measurements, so that NO cannot be quantified in this study. NO_v measurements via the converter were not affected by the presence of CO, presumably because the molybdenum converter eliminates CO. To further differentiate individual nitrogen oxides selective chemical traps were used. The performance of the traps was verified by observing the individual traces in the mass spectrometer. HNO₃ is not detected by this NO monitor, because it is removed from the gas flow prior to entering the molybdenum converter by steel components of the instrument. Its concentration can be given by drop in the instrument's signal intensity when the synthesis is started. Scrubbing HNO₄ and HNO₂ from the gas phase in a carbonate trap and measuring the remaining nitrogen oxide content in the gas phase quantifies NO_2 . The carbonate trap was made from firebrick granulate that was soaked with 1.5% aqueous Na₂CO₃ (Fluka, p.a.) solution, dried, and placed in a 100×6 mm glass tube. The ends of the glass tube were filled with glass wool to keep the covered firebrick in its position. Due to their acidity, carbonate traps HNO₄, and HNO₂; but neither NO₂ nor NO. HNO₄ was quantified by heating the gas flow to 373 K, by which HNO_4 is converted to NO_2 , before it enters the carbonate trap. The measured gas-phase concentration corresponds then to HNO₄ and NO₂. From this measurement, also HNO2 can be derived as fraction of nitrogen oxides that is removed by the carbonate trap. All this requires careful calibration of the nitrogen oxide analyzer that was done with a certified bottle of NO (Carbagas, 10 ppm NO in N₂ (99.999%)).

2.4 Packed bed flow tube

The main feature of the packed bed flow tube is a negative temperature gradient along a bed of packed ice spheres – $500 \,\mu\text{m}$ in diameter each – as described previously [14]. One end, where the gas flow enters the packed bed flow tube was cooled with a circulating cooling liquid regulated at 250 K. The other end where the gas flow exits the apparatus, was immersed in liquid nitrogen. The temperature inside the flow

tube was measured with a Pt-100 thermo element (MTS, Switzerland) prior to the measurements.

To start an experiment, a packed bed flow tube was placed in the apparatus and exposed to the temperature gradient for 30 min to allow the temperature equilibrium to be reached at any place in the ice flow tube. Then, the carrier gas containing the ¹³N- and ¹⁴N-nitrogen oxides was fed into the packed bed flow tube. After 30 min the experiment was stopped, and the flow tube was removed, sealed and immersed in an open bath of liquid nitrogen to stop any further migration of species. In some experiments, the gas flow passed a cooling trap prior to entering the packed bed flow tube to freeze out components from the carrier gas flow with a high partitioning tendency to surfaces. Different geometries and thus surface to volume ratios were used depending on the demands on the capacity. Typically, a quartz tube, 50 mm i.d. and 200 mm in length was filled with quartz spheres, to enhance the surface area, and cooled to 268 K by ethanol cooling liquid circulating around its wall. The cooling trap was operated at least 1 h prior to experiments.

The distribution of the ¹³N-nitrogen oxides on the ice surface along the flow tube is the primary observable of the experiment and was measured by means of a coincident γ counter. The coincident γ -counter consisted of two bismuthgermanate-detectors; 3 cm in diameter, mounted face to face with a gap of 35 mm. Lead shields were used to reduce the detection width to a slit of 5 mm distance. Coincident γ -counting leads to optimum counting efficiency and low background counting rates (1 cps or less), because annihilation of positrons following the β^+ -decay of ¹³N results in two γ -rays in opposite direction to each other.

For each experiment, a new packed bed flow tube was prepared as described earlier [7, 14]: Spraying of ultra pure water into liquid nitrogen rapidly froze small ice droplets. After a minimum of 2 d of annealing at 253 K, the ice spheres were sieved with calibrated sieves (Retsch, Germany) to grain sizes between 400 and 600 μ m, filled into a PFA tube (8 mm inner diameter, 360 mm length), and stored again for at least 12 h at -20 °C. This preparation was done in a walk-in cold room, during transport to the laboratory, the ice columns were cooled with cooling elements in an insulated box. Based on the mass of the ice filling and the mean diameter of the spheres a mean ice surface area of the packed bed of 20 cm per cm length and a packing density of 70% can be calculated.

3. Results and discussion

Irradiation at 172 nm of a $H_2O/NO_2/O_2$ mixture leads to the production of OH and HO₂ radicals by photolysis of water (Eqs. 1 and 2), both of which react with NO₂ to form HNO₃ (Eq. 3) and HNO₄ (Eq. 4), respectively. Central to the synthesis of HNO₄ with high yields is to shift the OH to HO₂ ratio towards an excess of HO₂ and thus amplify HNO₄ yields. Fig. 2 shows that this can be achieved in the presence of CO as scavenger. CO reacts fast with OH but not with HO₂ (Eqs. 2 and 5) [20].

$$H_2O + h\nu \to OH + H \tag{1}$$

$$H + O_2 \to HO_2 \tag{2}$$

Fig. 2. Products of the HNO₄ synthesis with time at 8.7×10^{12} molecules cm⁻³ initial NO₂. The line plot shows the calibrated traces as measured with the mass spectrometer of HNO₄ (line with crosses), HNO₃ (circles), HNO₂ (triangles), and NO₂ (squares). On the relative time axis 0 denotes the time when the NO₂ flow was switched on to start the synthesis of HNO₄. 60 min later the gas flow was passed over a cooling trap at 268 K situated just after the reactor.

$$NO_2 + HO \rightarrow HNO_3$$
 (3)

$$NO_2 + HO_2 \rightarrow HNO_4$$
 (4)

$$\rm CO + OH \rightarrow \rm CO_2 + H$$
 (5)

Fig. 2 displays the gas phase concentrations of HNO₄, HNO₃, HNO₂, and NO₂ in the reactor with time as measured with the mass spectrometer during irradiation in absence (Fig. 2, -30 to 0 min) and in the presence of NO₂ (Fig. 2, 0–90 min). It can be clearly seen that, at a high concentration of 2×10^{16} molecules cm⁻³ CO, HNO₄ is the main product with a concentration in the reactor of 3×10^{12} molecules cm⁻³. HNO₃ and HNO₂ are also detected but at lower concentrations of 2×10^{12} molecules cm⁻³ and 1×10^{12} molecules cm⁻³, respectively. HNO₃ is most likely formed *via* Eq. (3). HNO₂ can potentially be formed by reaction of NO with OH, where NO comes from reaction of NO₂ with O- or with H-radicals. H-radicals are an intermediate product of the reaction 1 and 5, O-radicals originate from photolysis of O₃.

Also shown is a significant decrease of 76% HNO₃ in gas-phase reaching the mass spectrometer when the flow is feed through a cooling trap at 268 K (Fig. 2, 60–90 min). This loss can be explained by the high tendency of HNO₃ to stick to surfaces even at high temperatures. The mass spectrometer traces of HNO₄ and of HNO₂ did also show a response to the cooling trap. But these are caused by variations in humidity in the chemical ionization mass spectrometer by adsorption of water in the cooling trap and not by changes in the concentration of HNO₄ or HNO₂, respectively. This conclusion is supported by independent measurements of the total nitrogen oxide concentration in the gas flow with the chemiluminescence detector the performance of which is unaffected by gas-phase humidity. The signal from this nitrogen oxide analyzer that is sensitive to NO, NO₂, HNO₂, and HNO₄, but not to HNO₃, did not show any reduction when the gas passed the cooling trap. Additionally, it is well known that the concentration of water in the chemical ionization chamber can significantly affect the formation and yield of ion production [16]. For example, water might exchange with HF in (HF)⁻NO₄ clusters of m/z = 98 leading to $(H_2O)^-NO_4$ clusters of m/z = 96. A slight decrease in relative humidity, when the gas flow is fed over the cooling trap, might thus explain the higher abundance of m/z = 98 and the decrease in observed intensity of the m/z = 96 cluster (data not shown). Similarly, the cluster (HF)⁻NO₂ with m/z = 66 might be sensitive to humidity. Additionally, and likely more important, to derive the concentration of HNO₂ based on the measured trace with m/z = 66, the portion of the mass spectrometer signal originating from the $O_3^{-}H_2O$ cluster (also at m/z = 66) was subtracted (see Experimental). As the later cluster heavily depends on the water content, this analysis becomes questionable when humidity is not stable during an experiment. As the intensity of the cluster $(H_2O)^-NO_3$ did not change during passage through the cooling trap, we conclude that the cluster (HF)⁻NO₃ does not respond to changes in humidity under our experimental conditions and consequently, the drop in signal intensity observed at m/z = 82can be fully attributed to loss of HNO₃ from the gas phase. Note that the temperature of the cooling trap was always above the dew point of water in the carrier gas to prevent riming.

In summary, in presence of CO in large excess, HNO_4 , HNO_3 , HNO_2 , and NO_2 have been identified as products by mass spectrometer measurements. Calibration of the mass spectrometer traces by and comparison to measurements with a chemiluminescence analyzer showed that HNO_4 is the main product, but that substantial amounts of HNO_3 and HNO_2 are present. HNO_3 can be significantly reduced by use of a cooling trap at 268 K, whereas HNO_4 and HNO_2 pass this trap unhindered.

More information on the effect of CO on the product distribution of the photolysis can be seen in Fig. 3 showing the concentration of nitrogen oxides with increasing CO content in the gas phase. In the absence of CO, about 80% of the initial NO₂ is oxidized, forming primarily HNO₃. This synthesis route to HNO₃ is well established and HNO₃ yields of up to 90% can be reached at higher humidity [12]. This approach has been used as HNO₃ source in a number of earlier experiments [21, 22]. The level of HNO₃ drops rapidly to below 20% with increasing concentration of CO in the reactor and, simultaneously, the HNO₄ share increases from below 5 to over 30%. The major leap in the HNO₄ yield is observed at CO concentrations of 1.0×10^{16} molecules cm⁻³, further increase in CO seems to lead to no significant increases in HNO₄ yields, presumably because the self-reaction of HO₂ to form H_2O_2 becomes more important. H_2O_2 has not been quantified in this study due to a lack of a method to calibrate the mass spectrometer signal. A high count rate of m/z = 140 was observed and can be attributed to H₂O₂ at our experimental conditions. Bardwell et al. have observed and explained this mass as product of a multi-step reaction

from HO₂ and SF₆⁻ previously [23]. We have excluded the presence of HO₂ in the sample gas immediately before the sample inlet by adding NO₂ to the gas flow after the reactor. In the presence of HO₂, HNO₄ should have been formed, which was not observed. We thus argue that the fragment of m/z = 140 also originates from H₂O₂. HNO₂ shows no response to varying CO concentrations with a constant yield of about 10%. NO₂ concentration increases slightly from about 20–40% with increasing CO.

The observed trends for HNO₄ and HNO₃ with increasing CO as determined with the specific traps and the nitrogen oxide analyzer (Fig. 3) are supported by the mass spectrometer measurements. The very selective, but relative, raw mass spectrometer signals of both species at various CO concentrations show the same trend. In contrast, the mass spectrometer data of NO₂ indicate the highest yields in the absence of CO followed by a plateau with increasing CO levels, which is quite different from the increasing NO₂ levels with rising CO concentration as measured with the nitrogen oxide analyzer. An explanation might be that NO turns up as further by-product at high CO concentrations. NO does not interfere with the NO₂ signal of the mass spectrometer, but contributes to the NO₂ budget as determined with the carbonate trap and chemiluminescence analyzer. The same might hold for some organic nitrates that can potentially also be formed in the reactor during the photolysis in the presence of CO.

To increase readability, Figs. 2 and 3 do not show any error bars. Uncertainties of the mass spectrometer measurements, based on the standard deviation of 3 repeated experiments at 2.3×10^{16} molecules cm⁻³ CO, are 42% of the mean signal, 18, 14, and 4% for NO₂, HNO₂, HNO₃, and HNO₄. NO₂ is generally difficult to measure by chemical ionization mass spectrometry, because its reaction with SF₆⁻ is slow which makes this measurement method for NO_2 insensitive and uncertain [24]. The reproducibility of HNO₂ measurements is quite low, because of the intense data handling necessary to correct the raw signals for interferences. Measurements of HNO₃ by the chemical ionisation mass spectrometer are very sensitive and accurate, but HNO3 might be lost at tubing walls during transport to the mass spectrometer resulting in a lower reproducibility of the amount that actually enters the mass spectrometer. HNO₄ measurements show an excellent reproducibility.

The main uncertainty of the chemiluminescence measurements originates most likely from fluctuations of the chemical trap performance. Standard deviations of 16, 19, 6, and 22% for NO₂, HNO₂, HNO₃, and HNO₄ were determined.

To summarize, addition of CO to the gas phase leads to a significant increase of HNO₄ as product with a maximum yield of about 30% of the initial NO₂. The fraction of HNO₃ decreases significantly with higher CO levels, from the main product in the absence of CO to a share smaller than the HNO₄ content at CO levels higher than 1.0×10^{16} molecules cm⁻³. HNO₂, on the other hand, shows a rather invariant yield with higher CO levels and accounts for about 1/3 of the HNO₄ concentration. The use of a coldtrap at 268 K further reduces the HNO₃ mixing ratio in the gas flow.

Fig. 3. Products of the HNO_4 synthesis with increasing CO concentration. The area graph displays the proportion of each nitrogen oxide as quantified by chemical traps and by the chemiluminescence detector relative to the amount of total nitrogen oxides: NO_2 (white), HNO_2 (light gray), HNO_4 (dark gray), HNO_3 (black).

4. Chromatography of ¹³N-nitrogen oxides

Based on the above, the following settings were chosen for the production of ¹³N labeled HNO₄ during the packed bed flow tube experiments: 2.3×10^{16} molecules cm⁻³ CO, 1.3×10^{16} molecules cm⁻³ O₂, 9.4×10^{12} molecules cm⁻³ NO₂, 3.5×10^{18} molecules cm⁻³ H₂O. With these settings about 2.6×10^{12} molecules cm⁻³ HNO₄, 2.2×10^{12} molecules cm⁻³ HNO₃, 1.4×10^{12} molecules cm⁻³ HNO₂, and 3.2×10^{12} molecules cm⁻³ NO₂ exited the reactor.

The resulting distribution of this mixture along the packed bed flow tube, as shown in Fig. 4a, reveals three distinct zones of increased radioactive decays centred around temperatures of 267 K with a 95% confidence interval of 252-282 K, 184 K (170-198 K), and of 126 K (116-136 K). The confidence interval reflects uncertainties in determining the centre position of the zone by a Gaussian fit to the data and uncertainties in temperature determination at that position by linear regressions.

The evolution of these peaks is a direct consequence of the partitioning of each species between the gas phase passing through the flow tube and the surface of the packed bed [13]. As this interaction is both strongly temperature dependent and species-specific, mixtures of trace gases are separated during their migration along the packed bed process reflecting their individual partitioning behaviour [14]. Thus the results presented in Fig. 4 indicate that the gas flow contains 3 types of nitrogen oxides species, with weak, intermediate and strong partitioning to the ice phase, respectively.

When the gas flow is passed *via* a cooling trap at 268 K prior to entering the packed bed flow tube, the radioactive decays at the beginning of the packed bed do not exceed the background level and only two peaks are evident at 189 K (175-204 K) and at 135 K (126-144 K). The first peak appears at an identical position and temperature as the cor-

Fig. 4. The distribution of radioactive decays from ¹³N-labeled nitrogen oxides along packed bed flow tubes. Zero denotes the beginning of the ice bed. Also shown are the temperature profiles inside the flow tube (crosses). (a) The gas flow from the synthesis was directly passed over the packed bed flow tube for 30 min. (b) The gas flow passed a cooling trap at 268 K prior to the packed bed flow tube.

responding peak in Fig. 4a. The second peak is shifted to a shorter distance and slightly higher temperature, but as the confidence intervals overlap this difference is statistically not significant.

The vanished peak at 267 K can clearly be assigned to HNO_3 based on measurements with the mass spectrometer that showed that HNO_3 is the only species scrubbed by this cold trap. The strong interaction with ice, or dominant partitioning to the surface at relatively high temperatures, is also supported by recent IUPAC recommendations on the partitioning of HNO_3 between ice and air, which predict a high surface concentration of 2×10^3 molecules cm⁻² in equilibrium for each gas-phase molecule cm⁻³ at 267 K [25]. The partitioning of NO_2 and HNO_2 to ice is much weaker compared to HNO_3 : Significant adsorption of NO_2 to ice has not been observed at temperatures above 195 K [26, 27]. HNO₂ partitioning to ice surfaces occurs at higher tem-

perature (above 170 K) [7, 28, 29]. Consequently, we can assign HNO₂ deposition to the second zone at 184 K and NO₂ to the third zone at 126 K. Again, the current IUPAC recommendations for HNO₂ support this conclusion with 1×10^4 molecules cm⁻² HNO₂ on the surface per molecule cm⁻³ in the gas-phase at 184 K.

This assessment of HNO₃, HNO₂, and NO₂ is supported by our earlier experiments where we have used selective traps to identify the deposition zones of nitrogen oxides along a negative temperature gradient in a packed bed flow tube [14]. During those earlier experiments settings such as flow velocity (75 and 360 cm³ min⁻¹) and ice surface area in the packed bed flow tube (4 and 10.9 cm² cm⁻¹) were similar but not identical to those in our current investigation. However, systematic variation of these settings during our earlier work was found not to result in modified retention behaviour. Direct comparison of the deposition properties seems thus well suited. NO₂ was found to migrate to a position with a temperature of 132 K with a 95% confidence interval of 18 single experiments of ± 14 K, which is in excellent agreement with 5 recent experiments, for which a mean of $130 \text{ K} (\pm 9 \text{ K})$ can be determined. HNO₂ was found to migrate to temperatures at 186 K (± 20 K for 8 experiments), which overlaps with the intermediate peak as presented in Fig. Fig. 4 at 191 K (\pm 17 K for 5 experiments).

Li et al. have observed that HNO₄ is released from ice surfaces at temperatures above 210 K, whereas HNO₃ was only released at higher temperatures of 246 K or above [30]. These results imply for our experimental set-up that HNO₄ deposits at lower temperatures than HNO₃, *i.e.* at the same position as HNO_2 in the second peak (Fig. 4a). This conclusion is supported by comparing the peak areas as measure for the amount of nitrogen oxides deposited to the concentration of nitrogen oxides in the carrier gas as determined by chemiluminescence measurements. For this, the Gauss fits to the distribution of radioactive decays along the packed bed flow tube were integrated. The areas of peak 1 : peak 2 : peak 3 scale with the ratio 0.5 : 1.7 : 1. Taking that pure NO₂ deposits in peak 3 and pure HNO₃ in peak 1 we can compare this to the ratio of NO₂ : HNO₃ of 0.7 as determined by quantification of the nitrogen oxide budget by the chemiluminescence analyzer (Fig. 3). This agreement is excellent, taking into account that a fraction of HNO₃ is lost during its way to the packed bed flow tube by surface adsorption on the tubing walls. The mass balance analysis of nitrogen oxides further reveals that neither HNO₂, nor HNO₄ alone, can explain the observed high intensity of peak 2. The ratio of HNO₂ to NO₂ is only 0.4 and the ratio of HNO₄ to NO_2 is 0.8; both ratios are less than the ratio of the area of peak 2 to peak 3 of 1.7. Thus it is most likely that both species together deposit in peak 2.

The uptake to ice surfaces heavily depends on the amount of total uptake to the surface, as at high surface concentrations, adsorbate–adsorbate interactions evolve. For our experiments, a surface concentration of HNO₄ on the ice of 1×10^{14} – 4×10^{14} molecules cm⁻² can be calculated. For this calculation, a typical length of the deposition zone of 5 cm, HNO₄ gas phase concentration entering the packed bed flow tube of 1×10^{12} – 5×10^{12} molecules cm⁻³ with a flow of 300 mL min⁻¹ for 30 min, were used. The resulting surface concentration is significantly lower than during the early study by Li *et al.* in which a formal monolayer, here defined as 1×10^{15} molecules cm⁻², was exceeded [30].

We conclude that the interaction of HNO₄ with ice surfaces is significantly weaker than observed for HNO₃, it rather resembles the interaction of HNO₂ with ice. One might thus expect that the partitioning coefficient at the temperature of peak 2 for HNO₄ is similar to the recommendations for HNO₂, and we propose the same partitioning coefficient K_{LinC} of 7.6×10^{-5} cm⁻¹ also for HNO₄ at 189 K. The partitioning coefficient K_{LinC} is defined as concentration of adsorbed species per surface area divided by concentration of gas-phase species per volume in equilibrium and is frequently used for parameterization of surface uptake in atmospheric chemistry models.

5. Conclusion and outlook

A new synthesis route to $H^{13}NO_4$ was developed based on the gas-phase reaction of ${}^{13}NO_2 + HO_2$. At high concentrations of CO, HNO_4 is the main product with a yield of 30%. HNO₃ and HNO₂ are the most important nitrogen oxide by-products. HNO₃ can be scrubbed from the gas flow in a cold trap at 268 K. Exposure of this mixture to a temperature gradient along a packed ice bed leads to separation of HNO₃ from HNO₂, HNO₄, and from NO₂. This migration behaviour reveals that the interaction of HNO₄ with ice surfaces is similar to that of HNO₂-ice but much weaker than the HNO₃-ice interaction. Thus, the surface partitioning coefficient (K_{LinC}) that quantitatively describes the uptake to the ice surface lies in the order of 7.6×10^{-5} cm⁻¹ also for HNO_4 at 189 K. This implies that the uptake of HNO_4 by surface snow in Antarctica or ice crystals in the upper troposphere, where temperatures of 190 K can be reached, is a very potential loss process.

Precise measurement of the surface partitioning and especially its temperature dependence is urgently recommended. For this isothermal chromatographic methods are well suited [7, 29]. The advantage of isothermal methods is that the highly temperature-depended partitioning coefficient is the observable of such experiments, and can be directly measured at the temperatures of interest. The strength of the gradient method is rather that it directly reflects the relative intensity of trace-gas-ice interactions for mixtures exposed to the ice surface.

Scrubbing of HNO_2 and HNO_3 from the gas flow is required as the concentration of HNO_2 in the synthesis presented here is too high for isothermal experiments.

Acknowledgment. We gratefully thank M. Birrer for the excellent technical support. We acknowledge the staff of the PSI accelerator facilities for supplying stable proton beams. We thank I. Zimmermann and J. Graell for their work on this project during their internships with us. We thank R. Eichler for discussion on the thermochromatography experiments. This project was supported by the Swiss National Science Foundation, project no. 200021_121857 and the EU FP6 SCOUT-O3 project (GOCE-CT-2004- 505390) funded through the Swiss Federal Office of Education and Science.

References

1. Huthwelker, T., Ammann, M., Peter, T.: <u>The uptake of acidic gases</u> on ice. Chem. Rev. **106**, 1375–1444 (2006).

- Abbatt, J.: <u>Interactions of atmospheric trace gases with ice sur-faces</u>: <u>Adsorption and reaction</u>. Chem. Rev. **103**, 4783–4800 (2003).
- Popp, P. J., Marcy, T. P., Watts, L. A., Gao, R. S., Fahey, D. W., Weinstock, E. M., Smith, J. B., Herman, R. L., Troy, R. F., Webster, C. R., Christensen, L. E., Baumgardner, D. G., Voigt, C., Kaercher, B., Wilson, J. C., Mahoney, M. J., Jensen, E. J., Bui, T. P.: Condensed-phase nitric acid in a tropical subvisible cirrus cloud. Geophys. Res. Lett. 34, L24812 (2007).
- 4. Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzman, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R., Huey, L. G., Hutterli, M., Jacobi, H.-W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., Von Glasow, R., Weller, R., Wolff, E. W., Zhu, T.: An overview of snow photochemistry: Evidence, mechanisms and impacts. Atmos. Chem. Phys. 7, 4329–4373 (2007).
- Dominé, F., Shepson, P.: <u>Air-snow interactions and atmospheric chemistry</u>. Science 297, 1506–1510 (2002).
- Pinzer, B., Kerbrat, M., Huthwelker, T., Gäggeler, H. W., Schneebeli, M., Ammann, M.: Diffusion of NO_x and HONO in snow: A laboratory study. J. Geophys. Res. **115**, D03304 (2010).
- Kerbrat, M., Huthwelker, T., Gäggeler, H. W., Ammann, M.: Interaction of nitrous acid with polycrystalline ice: Adsorption on the surface and diffusion into the bulk. J. Phys. Chem. C 114, 2208–2219 (2010).
- Slusher, D., Huey, L., Tanner, D., Chen, G., Davis, D., Buhr, M., Nowak, J., Eisele, F., Kosciuch, E., Mauldin, R., Lefer, B., Shetter, R., Dibb, J.: Measurements of pernitric acid at the South Pole during ISCAT 2000. Geophys. Res. Lett. 29 (2002).
- Jaeglé, L., Jacob, D., Brune, W., Wennberg, P.: <u>Chemistry of HO₃</u> <u>radicals in the upper troposphere</u>. Atmos. Environ. **35**, 469–489 (2001).
- Slusher, D., Pitteri, S., Haman, B., Tanner, D., Huey, L.: <u>A chem-ical ionization technique for measurement of pernitric acid in the upper troposphere and the polar boundary layer</u>. Geophys. Res. Lett. 28, 3875–3878 (2001).
- Staikova, M., Donaldson, A., Francisco, J.: <u>Overtone-induced reactions on the HO₂NO₂ potential surface. J. Phys. Chem. A 106, 3023–3028 (2002).
 </u>
- Ammann, M.: Using ¹³N as tracer in heterogeneous atmospheric chemistry experiments. Radiochim. Acta 89, 831–838 (2001).
- Eichler, B., Zvara, I.: Evaluation of the enthalpy of adsorption from thermochromatographical data. Radiochim. Acta 30, 233–238 (1982).
- Bartels-Rausch, T., Eichler, B., Zimmermann, P., Gäggeler, H. W., Ammann, M.: <u>The adsorption enthalpy of nitrogen oxides on crystalline ice</u>. Atmos. Chem. Phys. 2, 235–247 (2002).
- Guimbaud, C., Bartels-Rausch, T., Ammann, M.: An atmospheric pressure chemical ionization mass spectrometer (APCI-MS) combined with a chromatographic technique to measure the adsorption enthalpy of acetone on ice. Int. J. Mass. Spectrom. 226, 279–290 (2003).
- Huey, L. G.: <u>Measurement of trace atmospheric species by chemical ionization mass spectrometry: Speciation of reactive nitrogen</u> and <u>future directions</u>. Mass. Spectrom. Rev. 26, 166–184 (2007).
- Longfellow, C., Imamura, T., Ravishankara, A., Hanson, D.: <u>HONO solubility and heterogeneous reactivity on sulfuric acid</u> <u>surfaces</u>. J. Phys. Chem. A **102**, 3323–3332 (1998).
- Zabel, F.: <u>Unimolecular decomposition of peroxynitrates</u>. Z. Phys. Chem. **188**, 119–142 (1995).
- Abbatt, J., Oldridge, N., Symington, A., Chukalovskiy, V., McWhinney, R. D., Sjostedt, S., Cox, R. A.: <u>Release of gas-phase</u> <u>halogens by photolytic generation of OH in frozen halide-nitrate</u> <u>solutions</u>: <u>An active halogen formation mechanism</u>? J. Phys. Chem. A **114**, 6527–6533 (2010).
- Schultz, M., Heitlinger, M., Mihelcic, D., Volzthomas, A.: Calibration source for peroxy-radicals with built-in actinometry using H₂O and O₂ photolysis at 185 nm. J. Geophys. Res.-Atmos. **100**, 18811–18816 (1995).
- Vlasenko, A., Huthwelker, T., Gäggeler, H. W., Ammann, M.: Kinetics of the heterogeneous reaction of nitric acid with mineral

dust particles: An aerosol flowtube study. Phys. Chem. Chem. Phys. **11**, 7921–7930 (2009).

- Guimbaud, C., Arens, F., Gutzwiller, L., Gäggeler, H. W., Ammann, M.: Uptake of HNO₃ to deliquescent sea-salt particles: A study using the short-lived radioactive isotope tracer N-13. Atmos. Chem. Phys. 2, 249–257 (2002).
- Bardwell, M., Bacak, A., Raventos, M., Percival, C., Sanchez-Reyna, G., Shallcross, D.: Kinetics of the HO₂ + NO reaction: A temperature and pressure dependence study using chemical ionisation mass spectrometry. Phys. Chem. Chem. Phys. 5, 2381–2385 (2003).
- 24. Huey, L., Hanson, D., Howard, C.: Reactions of SF_6^- and I^- with atmospheric trace gases. J. Phys. Chem. **99**, 5001–5008 (1995).
- Ammann, M., Atkinson, R., Cox, R., Crowley, J., Hynes, R., Jenkin, M., Rossi, M., Troe, J., Wallington, T., IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric

chemistry: Heterogeneous reactions on ice. http://www.iupac-kinetic.ch.cam.ac.uk/index.html (2008).

- Saastad, O., Ellermann, T., Nielsen, C.: On the adsorption of NO and NO₂ on cold H₂O/H₂SO₄ surfaces. Geophys. Res. Lett. 20, 1191–1193 (1993).
- Leu, M.: Heterogeneous reactions of N₂O₅ with H₂O and HCl on ice surfaces – implications for antarctic ozone depletion. Geophys. Res. Lett. 15, 851–854 (1988).
- Fenter, F., Rossi, M.: Heterogeneous kinetics of HONO on H₂SO₄ solutions and on ice: Activation of HCl. J. Phys. Chem. **100**, 13765–13775 (1996).
- Chu, L., Diao, G., Chu, L.: Heterogeneous interaction and reaction of HONO on ice films between 173 and 230 K. J. Phys. Chem. A 104, 3150–3158 (2000).
- Li, Z., Friedl, R., Moore, S., Sander, S.: Interaction of peroxynitric acid with solid H₂O ice. J. Geophys. Res. 101, 6795–6802 (1996).