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Synopsis
Upper and lower bounds for the solutions of a nonlinear Dirichlet problem are given and isoperimetric
inequalities for the maximal pressure of an ideal charged gas are constructed. The method used here is
based on a geometrical result for two-dimensional abstract surfaces.

1. Introduction

Let D c R 2 b e a simply connected domain and x = (xu x2) be a generic point. The
starting-point for our investigations is problems of the type

Aw(x) + A(x)ew(x) = 0in D, w(x) = <p(x) on dD. (1.1)

If v is the harmonic function in D coinciding with <p on the boundary, then (1.1)
can be written as

Au(x) + A(x)e"(x)+u(x) = 0 in D, u(x) = 0 on dD, (1.2)

where u = w-v.
In this paper we shall give bounds for the solutions of (1.2) requiring A(x) and

u(x) to satisfy the conditions

(Cl)

(C2)

We shall transform (1.2) into an integral equation and use a method already
developed in [3] for the particular case A(x) = Ao>0 and v =0. It is based on the
introduction of a special coordinate system defined by the level lines of the
Green's function. The results are related to a theorem of Poly a and Szego [10]
concerning the warping function. It states that the solution of the problem
Au + l = 0 in D, u = 0 on dD satisfies maxugR2/4, where R is the maximal
conformal radius. An extension to higher dimensions has been given by Payne [8]
and a generalization is found in [4]. We then use our results to derive bounds for
the pressure of a charged gas in a container [7]. It turns out that there exists a
sharp estimate for the maximum value of the pressure in terms of the total mass
and the geometrical quantity R. As a further application we study a nonlinear
Dirichlet problem arising in combustion theory [6]. In particular we are interested
in the behaviour of the solutions at interior points. We also add a little discussion
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on the loci where the solutions attain their maxima. It shows some typical
difficulties of this class of problems.

2. General inequalities

The first step is to transform the partial differential equation (1.2) into an
integral equation. Let g(x, y) be the Green's function of the Laplace operator. It
is of the form

-y\) + H(x,y), (2.1)

where H is determined such that for fixed y e D
(i) g(., y) vanishes on dD

(ii) H(., y) is continuous in D and harmonic in D
(iii) limx_y H(x, y) = 0.
Rx is called the conformal radius of x with respect to D.

With the help of the Green's function (1.2) can be written as

u(x)=f g(x,y)Hy)e^)+uMdy (2.2)

where dy = dyx dy2- Let us introduce the following notation:

£>(f) :={yeD: g(x,.) g t}, a(t): = [ e
u(y)+vW dy.

a(t) can be interpreted as the area of D(t) in the Riemannian metric d©2 =
eu+v ds2, where ds denotes Euclidean arc length.

The next lemma will be the key for all our investigations. It is based on a
geometrical result and is already contained in [3]. For the sake of completeness
we shall repeat it here.

LEMMA 2.1. Under the conditions (Cl) and (C2), the function m(t): =
e-4ir t(l/a(f) —X0/(8TT)) is non-decreasing.

Proof. We observe that D(t) is homeomorphic to a circle and that by the strong
maximum principle |grad g(x, .)| does not vanish on dD(t). Hence the following
formula holds [5]

"+» |grad g(x, yT1 dsy. (2.3)
JdD(t)

By the Schwarz inequality

| e ^ l g r a d g r 1 ^ ! Igrad g| dsy g U eiu+v)/2 dsX. (2.4)

Since feD(t) |grad g| dsy = 1, (2.3) and (2.4) imply

j (2.5)
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A priori bounds for a class of nonlinear elliptic equations 77

In view of the conditions (Cl) and (C2) the Gaussian curvature K =
-A(u + u)/2exp(u + tj) of the metric d@2: = exp(u + u) ds2 is bounded from
above by Ao/2. Alexandrov showed that under these assumptions the following
inequality holds between the length L(t): = §aDit) d<£> of dD(t) and the area a(t) of
D(t) [1]

-ya2(t).

This inequality together with (2.5) yields

The assertion is now obvious.
From this lemma we obtain immediately the

COROLLARY 2.1. Under the assumptions stated above we have, setting /3(x)
^0 p 2 ufa)

a(0) 877- x'-%Trp{x)e»

(ii)

(iii)

Proof. The first statement expresses the fact that m(O)Sm(O = m(°°). The
second assertion follows from the inequality m(t)Sm (00) and the third assertion
follows from the second by integration.

3. Problems with XQ^O

Consider the problem (1.2) subject to the conditions (Cl), (C2) and

(C3) X(x)S\0SO.

From (2.2) and (Cl) we conclude that

u(x) g \0 [ g(x, y)e»<»)+»(v) d v . (3.!)

If we integrate along the level curves of g(x,.), we get

| g(x, y)evM+uW dy = ~ [ tda(t)=[ a(t) dt. (3.2)

Equation (3.2) holds irrespective of the sign of A.. Inequality (iii) of Corollary 2.1
together with (3.1) and (3.2) yields

u(x)S21og(l + |3(x)eu(x)). (3.3)
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u(x)/2«- 1 | 1
~2B(x) ' U/32(x) t

1

i(x)2/3(x) U/32(x) 0(x)J V j

Remarks
1. The estimate (3.4) remains valid, if we replace Rx by any lower bound, for

example we could take as a lower bound 8(x) : = dist(jc, 3D) [5].
2. Since JRX-H>0 as x—>dD, the right-hand side of (3.4) tends to infinity if x

approaches the boundary. The estimate (3.4) is therefore very bad for points near
the boundary.

4. The problem of a charged gas

In the study of the equilibrium of a uniformly charged gas in a perfectly
conducting container, we are led to the following problem which we shall describe
briefly. For a more detailed discussion, especially on the physical model, we refer
to [7]. Let p be the pressure and p be the mass density of the gas. For an ideal gas
the equation of state is of the form p = yp. In this case equilibrium occurs when
w : = log p satisfies the differential equation Aw = cew, where c is a constant
depending on some physical properties of the system. In equilibrium the pressure
attains its maximum at the surface of the container, and it is constant there. The
problem consists in determining the pressure for a given total mass of the gas. We
shall restrict ourselves to containers of the form of an infinitely long cylinder with
cross-section D. Mathematically we have to solve

Aw = cew in D, c > 0

w = cp0 on 3D, <p0 being an unknown constant (̂  (4.1)

e" dx=M given.

M/y corresponds to the mass of the gas per unit length. Keller [7] showed that for
any given M there exists a unique solution w, which by the maximum principle is
bounded from above by <p0. The problem (4.1) is of form (1.2) with A(x) = A0 =

—c, v = <p0. Thus |3(x)= - - Rlev" and from Corollary 2.1(i) we then deduce
8

COROLLARY 4.1. For the solution of (4.1) we have

Equality holds if D is a circle and x is taken at its centre.

This result expresses the fact already observed by Keller [7] that the pressure at
inner points cannot be made arbitrarily large by putting more gas into the
container.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500017297
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:52:57, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500017297
https:/www.cambridge.org/core


A priori bounds for a class of nonlinear elliptic equations 79

A further consequence of Corollary 2.1 is the

THEOREM 4.1. Under the same assumptions as above we have

f f V2

M(4ir+|cM)|<|) ds | S e ^ g
"-JaD J SIT2R2 '

Equality holds on both sides for the circle.

Proof. The lower bound follows from Alexandrov's inequality (cf. Section 2).
Since a(0) = M, the lower bound for m(t) in Corollary 2.1(i) now gives

By inserting this expression into (3.1) and (3.2) we get

= 8TT +Me ( • '

which together with Corollary 4.1 yields

e °=-

Since this inequality holds for all x, the optimal choice is to take for Rx the
maximal conformal radius R. This completes the proof.

For some simple regions R can be computed numerically. A table of such
values is contained in [10].

5. Problems with \ , g 0

Let us consider Problem (1.2) and suppose that in addition to (Cl) and (C2) it
satisfies

(C4) Mx)^Aog0.

From (2.2) and (3.2) it then follows that

= A0[ a(t)dt

and from Corollary 2.1(ii)

+ /3(x)eu(x). (5.1)

This relation is trivial for x —* 3D. Inequality (5.1) can be written in the form

<n (5 2)
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From this inequality we deduce the

THEOREM 5.1. Let the assumptions of Section 5 hold. Then
(i) a necessary condition for (1.2) to have a solution is

(ii) for any solution u(x)

,u(x)/2<

For the special case v = 0 these results have already been proved in [3]. In
this case all inequalities are isoperimetric in the sense that the equality sign is
attained for the circle.

Remarks
1. All estimates remain valid, if Rx is replaced by any lower bound.
2. If x —> dD, then the lower bound tends to 1, and the upper bound tends to °°.

6. Remarks on the Gelfand problem

The Gelfand equation arises in combustion and in the theory of a chemically
active gas. It is of the form [6]

Au + Aoe"=0 in D, u = 0ondD. (6.1)

We assume D c R 2 t o be simply connected in order to apply the results of the last
section.

From Theorem 5.1(i) with v = 0 it follows that a necessary condition for (6.1)
to have a solution is \0S2R~2. In [2] it has been shown that a solution always
exists for Aoe[0, 2TT/A] where A is the total area of D.

Since we have Rx §S(x), we conclude from (5.1) that

82(x) =g 8Ao M<ru(x)/2 - e-uM}. (6.2)

Hence, if for fixed Ao there exists a solution such that max u is large, then it
attains its maximum at a point close to the boundary. Let us denote this point by
£. (It is possible that there are several of them.) For constructing a lower bound
for 5(f) we use a technique of Payne and Stakgold [9], which is based on the
maximum principle.

LEMMA 6.1. (Payne and Stakgold). If D is convex and u is any solution of
Problem (6.1), then the expression grad2 u+2A.oe

u assumes its maximum at a
critical point of u.

Let us abbreviate max u by u0. Then by the previous lemma

max {grad2 u + 2Aoe
u} = 2Aoe"°.

Consequently

|grad u(x)|sV2A0(eu»-cu(]c)). (6.3)
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A priori bounds for a class of nonlinear elliptic equations 81

Suppose that the nearest point from £ to dD is xx. With du/dr we denote the
derivative along the ray joining £ and x^ In view of (6.3)

du

dr

and

fu» du

Jo {2A0(c"°-cu)}1/2"

An explicit computation yields

Remark. The right-hand side tends to 0 as u0—»°°. Therefore this estimate
cannot be combined with (6.2) to yield an upper bound for u0. The question
remains open whether there exists a branch of solutions (u(x: A), A) whose
maximum norm tends to infinity for a positive value of A.
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