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A B S T R A C T
We investigate the effects of discontinuous mass loss in recurrent outburst events on the long-
term evolution of cataclysmic variables (CVs). Similarly we consider the effects of frictional
angular momentum loss (FAML), i.e. interaction of the expanding nova envelope with the
secondary. The Bondi–Hoyle accretion model is used to parametrize FAML in terms of the
expansion velocity vexp of the nova envelope at the location of the secondary; we find that small
vexp causes strong FAML.

Numerical calculations of CV evolution over a wide range of parameters demonstrate the
equivalence of a discontinuous sequence of nova cycles and the corresponding mean evolution
(replacing envelope ejection by a continuous wind), even close to the mass-transfer instability.
A formal stability analysis of discontinuous mass transfer confirms this, independent of details
of the FAML model.

FAML is a consequential angular momentum loss that amplifies the mass-transfer rate
driven by systemic angular momentum losses such as magnetic braking. We show that for a
given vexp and white dwarf mass the amplification increases with secondary mass and is
significant only close to the largest secondary mass consistent with mass-transfer stability. The
amplification factor is independent of the envelope mass ejected during the outburst, whereas
the mass-transfer amplitude induced by individual nova outbursts is proportional to it.

In sequences calculated with nova model parameters taken from Prialnik & Kovetz, FAML
amplification is negligible, but the outburst amplitude in systems below the period gap with a
white dwarf mass .0:6 M( is larger than a factor of 10. The mass-transfer rate in such systems
is smaller than 10¹11M( yr¹1 for .0:5 Myr (.10 per cent of the nova cycle) after the
outburst. This offers an explanation for intrinsically unusually faint CVs below the period gap.

Key words: binaries: close – stars: evolution – novae, cataclysmic variables.

1 I N T RO D U C T I O N

Cataclysmic variables (CVs) are short-period binary systems in
which a Roche-lobe filling low-mass main-sequence secondary
transfers mass to a white dwarf (WD) primary. The transferred
matter accretes on to the WD either through a disc or a stream and
slowly builds up a hydrogen-rich surface layer on the WD. With
continuing accretion the pressure at the bottom of this layer
increases, and hydrogen burning eventually starts. The thermody-
namic conditions at ignition determine how the burning proceeds
(e.g. Fujimoto 1982). If the degeneracy is very high, a thermo-
nuclear runaway occurs, leading to a violent outburst terminated by
the ejection of all or most of the accumulated envelope. Classical
novae are thought to be objects undergoing such an outburst (cf.
Livio 1994 for a recent review). Ignition at moderate or weak

degeneracy causes strong or weak H shell flashes, whereas stable or
stationary hydrogen burning requires fairly high accretion rates
*10¹7M( yr¹1, which are not expected to occur in CVs.

Mass transfer in CVs is driven by orbital angular momentum
losses, which generally shrink the binary and maintain the semi-
detached state. The observed properties of short-period CVs below
the CV period gap (orbital period P & 2 h) are consistent with
gravitational wave radiation as the only driving mechanism. A
much stronger angular momentum loss, usually assumed to be
magnetic stellar wind braking, is needed for systems above the gap
(P * 3 h). The assumption that magnetic braking ceases to be
effective once the secondary becomes fully convective in turn
provides a natural explanation for the period gap as a period
regime where the systems are detached and therefore unobservable
(Spruit & Ritter 1983; Rappaport, Verbunt & Joss 1983). The
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resulting typical mass-transfer rate X in CVs is X.
5 × 10¹11M( yr¹1 below the gap and X . 10¹9 ¹ 10¹8M( yr¹1

above the gap (see e.g. King 1988, Kolb 1996 for reviews).
For negligible wind losses from the system the accretion rate is

essentially the same as the transfer rate. With the above typical
values the H ignition on the WD turns out to be degenerate enough
to cause more or less violent outbursts (e.g. Prialnik & Kovetz
1995). As the mass to be accumulated before ignition is very small
(DMig . 10¹6 ¹ 10¹3 M() the outbursts recur on a time
trec ¼ DMig=X much shorter than the mass-transfer time-scale,
which determines the long-term evolution. Studies of the secular
evolution of CVs make use of this fact and replace a sequence of
nova outbursts with given recurrence time trec and ejected envelope
mass DMej by a continuous isotropic wind loss from the WD at a
constant rate DMej=trec.

Such a procedure obviously neglects any effect that nova out-
bursts may have on the long-term evolution. These are in particular
as follows.

(i) The evolution of the system is not continuous but character-
ized by sudden changes of the orbital parameters, causing the mass-
transfer rate to fluctuate around the continuous wind average value
(see Section 2). It is not a priori clear if the continuous wind average
properly describes the evolution of the system close to mass-
transfer instability.

(ii) At visual maximum (and the following decline) nova envel-
opes have pseudo-photospheric radii of typical giants, i.e. much
larger than the orbital separation. Therefore the secondary is
engulfed in this envelope and possibly interacting with it. Drag
forces on the secondary moving within the envelope can lead to
frictional angular momentum loss (FAML) from the orbit, and
accretion of envelope material on to the secondary could increase its
photospheric metal abundances (pollution).

(iii) The H-burning hot WD is extremely luminous (,104 L(,
compared with accretion luminosities ,1L() for as long as a few
years. This might drive additional mass loss from the secondary star.

In this paper we will focus on the effects of mass-loss disconti-
nuities and FAML. We neglect irradiation as it does not last long
enough to influence the long-term evolution. Pollution is expected
to be important only for metal-poor secondaries (Stehle 1993); we
neglect it altogether.

In Section 2 we formally derive the continuous wind average and
consider the stability of mass-transfer in the presence of nova
discontinuities analytically, with FAML of arbitrary strength. We
review previous studies on FAML and follow Livio, Govarie &
Ritter (1991) to derive a simple quantitative model for FAML in
Section 3. Using this description we perform numerical calculations
of the long-term evolution of CVs with various strengths of FAML,
both for sequences of nova outbursts and the continuous wind
average. Results of such computations where the FAML strength
and the ejected mass per outburst have been varied systematically
are shown in Section 4. Sequences with FAML parameters taken
from the consistent set of nova models by Prialnik & Kovetz (1995)
are shown at the end of Section 4. Section 5 discusses our results.

2 M A S S - T R A N S F E R S TA B I L I T Y A N D
C L A S S I C A L N OVA E

We begin by investigating how mass-transfer discontinuities
induced by nova outbursts affect mass-transfer stability. Introdu-
cing the well-known conservative mass-transfer stability criterion

we develop a formalism to extend its applicability to the discontin-
uous case. The strength of FAML enters as a free parameter.

2.1 Conservative and continuous CV evolution

Following Ritter (1988) the mass-transfer rate X in a CV can be
approximated by

X ; ¹Ṁ2 ¼ Ṁ0 exp
R2 ¹ RR

Hp

� �
; ð1Þ

(note that X is always positive). Here both Ṁ0 . 10¹8M( yr¹1 and
the ratio e ¼ Hp=R2 . Hp=RR . 10¹4 of the photospheric pressure
scaleheight Hp to the radius of the donor R2 are roughly constant for
the secondaries under consideration. The Roche radius of the
secondary RR can be written as a fraction f2 of the orbital distance
a,

RR ¼ f2ðqÞa : ð2Þ

f2 depends only on the mass ratio q ¼ M1=M2 and is for q > 1:25
given by f2ðqÞ . ½8=81ð1 þ qÞÿ1=3 to better than 2 per cent
(Paczyński 1971).

To assess how X changes with time and to find a stationary value
for X (where Ẋ ¼ 0) we have to consider both Ṙ2 and ṘR. From the
total orbital angular momentum J,

J ¼ M1M2

������
Ga
M

r
; ð3Þ

and the derivative b2 ¼ d ln f2=d ln q [. ¹ q=3ð1 þ qÞ] we find with
(2)

ṘR

RR
¼ ðb2 ¹ 2Þ

Ṁ1

M1
¹ ðb2 þ 2Þ

Ṁ2

M2
þ

Ṁ
M

þ 2
J̇m þ J̇sys

J
; ð4Þ

where M1, M2 and M ¼ M1 þ M2 denote the primary mass, donor
mass and total mass, respectively. In (4) we formally separate
‘mass-loss related’ angular momentum loss J̇m, caused by mass
which leaves the binary and carries a certain specific angular
momentum j ¼ nðJ=MÞ (quantified by the dimensionless parameter
n), i.e.

J̇m ¼ jṀ ¼ n
J
M

Ṁ ; ð5Þ

and ‘systemic’ angular momentum loss J̇sys which operates without
(noticeable) mass loss, e.g. gravitational wave radiation and mag-
netic braking. By combining the mass-changing terms, equation (4)
is usually rewritten as

ṘR

RR
¼ zR

Ṁ2

M2
þ 2

J̇sys

J
; ð6Þ

thus defining the mass–radius exponent zR of the Roche radius of
the secondary. In the simple case of conservative mass transfer
where M ¼ constant, i.e. Ṁ2 ¼ ¹Ṁ1, we find from (4)

zc
R ¼ 2

M2

M1
¹ 1

� �
¹

M
M1

b2 .
2
q

¹
5
3
: ð7Þ

In the more general case of an isotropic wind loss at a rate
Ṁ ¼ ð1 ¹ hÞṀ2, i.e. Ṁ1 ¼ ¹hṀ2, we obtain

zR ¼ ð1 ¹ hÞ
2n þ 1
1 þ q

þ h
2
q

¹ 2 ¹ b2 1 þ
h

q

� �
; ð8Þ

an expression especially useful when h and n are constant. Fig. 1
depicts zc

R and zR with h ¼ 0 and either n ¼ 1=q or n ¼ q as a
function of M2 for M1 ¼ 1:2 M(.

Similarly, it is standard practice to decompose the radius change
of the secondary into the adiabatic response zadṀ2=M2 and the
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thermal relaxation K ; ð∂ ln R2=∂tÞM¼constant,

Ṙ2

R2
¼ zad

Ṁ2

M2
þ K: ð9Þ

Fig. 2 shows the adiabatic mass–radius exponent zad as a function
of stellar mass for low-mass ZAMS secondaries (Hjellming 1989).

Fully convective stars and stars with deep convective envelopes
(M2 & 0:5 M() have zad . ¹1=3.

Using these definitions the time derivative of X according to (1)
becomes

Ẋ ¼ X A ¹ BX
� �

; ð10Þ

with

A ¼
1
e

K ¹ 2
J̇sys

J

� �
ð11Þ

and

B ¼
1

eM2
zad ¹ zR

ÿ �
: ð12Þ

The binary attempts to settle at the stationary mass-transfer rate

Xs ¼
A
B ¼ M2

K ¹ 2J̇sys=J

zad ¹ zR
ð13Þ

(Ẋ ¼ 0 for X ¼ Xs). The stationary rate is stable if ∂Ẋ=∂X < 0 at
X ¼ Xs, i.e. if the system opposes any instantaneous perturbation in
X. This translates into B > 0, hence the familiar criterion

zad ¹ zR > 0 ⇔ mass transfer (dynamically) stable: ð14Þ

A similar stability criterion, ze ¹ zR > 0, against thermal time-
scale mass transfer can be derived (see e.g. Ritter 1996), where ze is
the thermal equilibrium mass–radius exponent (.0:85 for low-
mass main-sequence stars, see Fig. 2).

2.2 Non-stationary mass transfer

The differential equation (10) governs the evolution of the mass-
transfer rate as a function of time t. For constant A and B the
solution of (10) is

1
XðtÞ

¼
1
Xs

¹
1
Xs

¹
1

X0

� �
exp ¹Atð Þ; ð15Þ

where X0 ; Xðt ¼ 0Þ denotes the initial value of X. Hence any
changes of the transfer rate proceed on the characteristic time-scale
tc ¼ 1=A , OðetJÞ, i.e. tc is a small fraction e of the systemic
angular momentum loss time-scale tJ ¼ ¹J=J̇sys.

In reality both A and B change with time, typically on a the
secular time-scale tJ , but for most practical cases where we
investigate mass-transfer stability against short time-scale pertur-
bations A and B can be considered as constant.

Formally (15) is a solution of (10) even if A < 0 (i.e.
Kj j > 2J̇sys=J

�� ��). In this case, assuming dynamical stability
(B > 0), Xs is negative and no longer a stationary value for the
mass-transfer rate. Rather equation (15) shows that in this case X
decreases exponentially, i.e. the system detaches (note that X0 is a
physical mass-transfer rate and as such is always positive). If finally
the mass transfer is unstable (B < 0) then we see from (10) that
unless A has a large negative value the transfer rate grows. The
growth time-scale is initially tc, but becomes shorter and shorter
with further increasing X.

2.3 Nova-induced discontinuities

So far we considered only continuous (although not necessarily
stationary) mass transfer. Events that change orbital parameters on a
time-scale much shorter than the characteristic time etJ . 104 yr for
re-establishing the local stationary value Xs may be regarded as
discontinuous and instantaneous. Nova outbursts certainly belong
to this category; the nova envelope expands beyond the orbit within

Discontinuous and nova-amplified mass transfer 635

q 1998 RAS, MNRAS 297, 633–647

Figure 1. Reaction of the secondary’s Roche radius to mass transfer and
mass loss, as a function of M2 for fixed M1 ¼ 1:2 M(. Plotted is the mass–
radius exponent for conservative mass transfer (zc

R; full line), isotropic wind
with h ¼ 0, n ¼ 1=q (zR from (8); long dashed), and isotropic wind with
h ¼ 0, n ¼ q (short dashed). Also shown is zF

R for various values of K1 (see
Section 3.1).

Figure 2. Reaction of the secondary’s radius to mass loss as a function of
stellar mass M2. Full line: adiabatic mass–radius index zad; dotted line:
thermal mass–radius index ze.



fewer than ,102 d after ignition and returns within 1¹10 yr
(actually these are upper limits for the slowest novae). In the
following we apply the above formalism separately to the outburst
phase and the inter-outburst phase, then combine them to describe
the full nova cycle.

2.3.1 Outburst phase

As a result of the outburst the envelope mass DMej is ejected. We
expect that the specific angular momentum carried away by DMej is
higher than the specific orbital angular momentum of the WD
owing to dynamical friction of the secondary orbiting within the
envelope (FAML). Hence we write for the discontinuous change of
the orbital angular momentum

DJ ¼ ¹ðn1 þ nFAMLÞ
J
M

DMej ; ð16Þ

where n1 ¼ M2=M1 accounts for the specific orbital angular
momentum j ¼ j1 of the WD (represented as a point mass). The
free parameter nFAML measures the strength of FAML and will be
estimated in terms of a simple model for the frictional processes in
Section 3 below.

Correspondingly, using (4) with DM ¼ DM1 ¼ ¹DMej and
DM2 ¼ 0 (i.e. neglecting the small amount of mass accreted on to
the secondary as well as any mass transfer during this short phase),
the change DRR ¼ RRðpostÞ ¹ RRðpreÞ of the Roche radius is

DRR

RR

� �
out

¼
DMej

M1

q
1 þ q

¹ b2 ¹
2q

1 þ q
nFAML

� �
: ð17Þ

2.3.2 Inter-outburst phase

After the outburst mass transfer continues. Once the mass accreted
on to the WD exceeds the critical ignition mass DMig > 0 the next
outburst occurs. For simplicity we assume conservative mass
transfer during the inter-outburst phase. According to (6) the total
change of the Roche radius in the inter-outburst phase is

DRR

RR

� �
inter

¼ zc
R

¹DMig

M2
þ 2

DJsys

J
; ð18Þ

where DJsys is the total change of the orbital angular momentum
resulting from systemic losses between outbursts.

2.3.3 Combined description

For the study of the long-term evolution of CVs it is convenient to
replace the sequence of nova cycles with mass-transfer disconti-
nuities by a mean evolution where the mass DMej is regarded as
being lost continuously at a constant rate over the cycle in form of
an isotropic stellar wind carrying the specific orbital angular
momentum n1 þ nFAML

ÿ �
J=M. If zF

R denotes the corresponding
Roche lobe index then we have from (6)

DRR

RR

� �
total

¼ zF
R

DM2

M2
þ 2

DJsys

J
; ð19Þ

again with DM2 ¼ ¹DMig because we neglect any change of M2

during outburst. As the total change of the Roche radius over a
complete cycle is DRRðtotalÞ ¼ DRRðoutÞ þ DRRðinterÞ, compari-
son with (17) and (18) gives

zF
R ¼ zc

R þ
DRR=RR

ÿ �
out

¹DMig=M2
: ð20Þ

This can be written as

zF
R ¼ zc

R ¹
1 ¹ hn

q
q

1 þ q
¹ b2 ¹

2q
1 þ q

nFAML

� �
ð21Þ

. zc
R ¹

1 ¹ hn

1 þ q
4
3

¹ 2nFAML

� �
:

Here 1 ¹ hn ¼ DM1=DM2 ¼ DMej=DMig specifies the change of the
WD mass during outburst in units of the mass lost from M2 during
the inter-outburst phase. Equation (21) in fact is equivalent to (8)
with h ¼ hn and n ¼ n1 þ nFAML; hn determines if the WD mass will
grow or shrink in the long-term evolution.

The generalization of (21) which allows for non-conservative
mass transfer between outbursts and a change of M2 during outburst
is given in the Appendix.

2.4 Stability of discontinuous mass transfer

As was shown in Section 2.1 mass transfer in the fictitious mean
evolution which mimics the effect of nova outbursts by a continuous
wind loss is dynamically stable if

zad ¹ zF
R > 0: ð22Þ

Clearly, in the case of discontinuous mass transfer with nova cycles
the stability considerations leading to this criterion are no longer
applicable, as the system never settles at a stationary transfer rate.
After an outburst the transfer rate X follows the solution (15) and
approaches the conservative stationary rate Xc

s ¼ A=Bc (where Bc

is B according to (12) with zc
R). At the next outburst X changes

discontinuously from the pre-outburst value Xpre to the (new) post-
outburst value Xpost, i.e. increases (or drops) by a factor

Xpost

Xpre
¼ exp ¹

1
e

DRR

RR

� �
out

� �
; ð23Þ

see equations (1) and (17). In the following we consider mass-
transfer stability in the presence of nova cycles and derive a
generalized stability criterion that reduces indeed to the simple
form (22).

In our approach we compare the mass-transfer rate Xi
pre and Xiþ1

pre

immediately before subsequent outbursts i and i þ 1 in a sequence
of cycles with constant DMig, DMej, Bc and A. Equation (15) with
X0 ¼ Xi

post describes X as a function of time between outbursts. At
time t ¼ trec when the outburst i þ 1 ignites, the mass transferred
since the last outburst is just DMig, i.e.�trec

0
XðtÞdt ¼ DMig: ð24Þ

This can be solved for the outburst recurrence time trec (cycle time)

trec ¼
1
A ln 1 þ

exp BcDMig

ÿ �
¹ 1

Xi
post=X

c
s

" #
: ð25Þ

Inserting trec for t in (15) gives the new pre-outburst value
Xiþ1

pre ¼ XðtrecÞ,

Xiþ1
pre ¼ Xc

s 1 ¹ expð¹BcDMigÞ
� �

þ Xi
pre exp ¹BFDMig

ÿ �
; ð26Þ

where we used (23) to replace Xi
post by Xi

pre, (20) and the definition of
BF analogous to Bc, i.e. BF ¼ ðzad ¹ zF

RÞ=eM2. Hence the relative
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change of the pre-outburst value is

F ðXiÞ ¼
Xiþ1 ¹ Xi

Xi

¼
Xc

s

Xi ½1 ¹ expð¹BcDMigÞÿ ¹ ½1 ¹ expð¹BFDMigÞÿ ð27Þ

. DMig
A
Xi ¹ BF

� �
(the subscripts for all X have been dropped as they all read ‘pre’).
We will refer to F as the growth function.

For F > 0 the mass-transfer rate grows from outburst to outburst,
for F < 0 it decreases, on a time-scale trec=F . Formally, F ¼ 0 for
X ¼ X̃, with

X̃ ¼ Xc
s

1 ¹ exp ¹BcDMig

ÿ �
1 ¹ exp ¹BFDMig

ÿ �.
A
BF : ð28Þ

X̃ represents the stationary pre-outburst mass-transfer rate if it is
positive, i.e. if A and BF have the same sign. For it to be stable we
require ∂F =∂Xi

< 0 at Xi ¼ X̃ so that the system evolves back to X̃
after a perturbation increases/decreases X. This is the case if, and
only if, A > 0. Then the stationary solution exists only if BF

> 0, in
all other cases the system either detaches, or the transfer rate grows
unlimited. Fig. 3 summarizes schematically the formal functional
dependency of F on Xi for various combinations of the signs of A
and BF (see Table 1). Hence the generalized stability criterion for
discontinuous nova-amplified mass transfer is BF

> 0, which is
indeed equivalent to (22). Remarkably, this condition is indepen-
dent of the sign of Bc, i.e. the system can evolve in a stable manner
with formally dynamically unstable conservative mass transfer
between subsequent outbursts.

The analysis of the behaviour of the system once it violates
condition (22) is not straightforward. The main problem is that A is
expected to change its sign (from positive to negative) at about the

same time as BF . This can be seen from an estimate of the thermal
relaxation term K if the real evolution is replaced by the continuous
wind average: Stehle, Ritter & Kolb (1996) have shown that the
secular evolution rapidly converges to an attracting evolutionary
path characterized by

Ṙ2

R2
¼ ze

Ṁ2

M2
; ð29Þ

whatever the initial configuration of the system. Assuming station-
arity, equating (29) with (6), and (9) with (6) gives after elimination
of Ṁ2=M2

A .
¹2
e

J̇sys

J
zad ¹ zF

R

ze ¹ zF
R

ð30Þ

as an estimate for A. Hence A > 0 during a phase of stable,
stationary mass transfer, but A < 0 once zad < zF

R.
In practice this means that when a stable system, characterized by

the full line in Fig. 3, approaches instability, the curve becomes
flatter and flatter with X̃ almost constant, and then inverts to the
(unstable) long-dashed line.

3 A S I M P L E M O D E L F O R FA M L

In the previous section we derived analytic expressions describing
stationary mass transfer and mass-transfer stability in the presence
of nova cycles. A non-zero FAML effect was allowed, and the
strength of FAML was treated as a free parameter nFAML. To proceed
further and underline the above findings with numerical examples
we quantify nFAML by adopting a model for the frictional processes
leading to FAML.

MacDonald (1980) discussed for the first time the possibility that
an interaction between the secondary and the extended envelope
might tap energy from the orbit and thereby reduce the nova decay
time. He determined the angular momentum transferred from the
orbit to the envelope by describing the nova envelope as a polytrope
with index 3 at rest, and restricting the combined nuclear, internal
and frictional energy generation to the Eddington luminosity
(MacDonald 1986). Shara et al. (1986) and Livio et al. (1991)
used a more direct way, based on Bondi–Hoyle accretion, to
estimate the transfer of angular momentum. Their approach
(which we adopt below) offers a very simple analytic treatment,
as the explicit expression for FAML has only one free parameter,
the envelope expansion velocity vexp, measuring the strength of
FAML. More recently, Kato & Hachisu (1994) have again con-
firmed their earlier result that FAML has only minor influence on
the decay phase of nova outbursts. This can be understood in terms
of the high expansion velocities in their models and will be
discussed in Section 5. On the other hand, Lloyd, O’Brien &
Bode (1997) showed that common enevlope evolution can con-
tribute to the shaping of the nova remnant.

Discontinuous and nova-amplified mass transfer 637

q 1998 RAS, MNRAS 297, 633–647

Figure 3. Growth function F , defined in equation (27), as a function of pre-
outburst mass-transfer rate Xi (schematically). See Table 1 for a description
of the different curves. Only the solid curve represents a stable stationary
solution X̃ (marked by a filled diamond), all other cases lead to a runaway or
a turn-off.

Table 1. Branches of possible solutions of
equation (27) as shown in Fig. 3

Line Sign of Stationary
style A BF solution

full + + yes (stable)
long dashes – – yes (unstable)
dotted + – no
short dashes – + no



3.1 FAML description according to Livio et al. (1991)

In Bondi–Hoyle accretion linear momentum is transferred through
the drag force

Fdrag ¼ ¹cdragðM;ggasÞ
1
2

pR2
Arvrelvrel; ð31Þ

where vrel is the gas stream velocity at infinity, RA the accretion
radius (see below) and r the density of the accreted medium. The
dimensionless drag coefficient cdrag varies with Mach number M
and specific heat ratio ggas and is of order unity. Equation (31) is
strictly valid for the highly supersonic case, but also applicable for
M * 1 if an adequate interpolation for the accretion radius is used,
e.g.

RA ¼
2GM2

v2
rel þ c2

S

ð32Þ

(Shima et al. 1985); cS is the local sound speed. Detailed 3-
dimensional hydrodynamical calculations summarized in Ruffert
(1995) confirm that (31) describes the subsonic case as well when
pR2

A is replaced by the geometrical cross-section. However, these
simulations also reveal additional complexities not represented in
the simple form (31), e.g. the influence of the size of the accretor,
even in the supersonic case. Most important, the drag coefficient
can deviate significantly from unity. Kley, Shankar &
Burkert (1995) point out that radiation pressure may reduce cdrag

by a factor of ,20 because it increases the sound speed and thus
lowers M to the subsonic case.

Given these uncertainties, and the fact that idealized Bondi–
Hoyle accretion is merely a rough approximation to the situation of
a secondary orbiting in an expanding nova envelope, the quantita-
tive expressions for FAML derived below are order of magnitude
estimates only.

We now consider the FAML situation in a simplified
geometry (Fig. 4): the WD is at rest in the centre of a spherically
symmetrical expanding nova envelope. Then the secondary’s

orbital velocity

vsec ¼

��������������������������
G M1 þ M2

ÿ �
a

s
ð33Þ

(typically vsec . 400 ¹ 500 km s¹1) is perpendicular to the wind
expanding with vexp. Hence the velocity of the accretion flow with
respect to the secondary is

vrel ¼

���������������������
v2

sec þ v2
exp

q
: ð34Þ

As M2=M( . R2=R( the ratio of accretion radius (32) to stellar
radius R2 is

RA

R2
.

360 km s¹1

v

� �2

ð35Þ

(where v is the quadratic mean of vsec, vexp and cS), suggesting that
RA < R2 for most cases.

Setting cdrag ¼ 2 and RA ¼ R2 we obtain for the loss of angular
momentum owing to friction from the tangential component of the
drag force (31)

J̇FAML ¼ ¹ja × Fdragj ¼ ¹apR2
2rvsecvrel: ð36Þ

Using the continuity equation

¹Ṁ1 ¼ 4pr2rvexp ð37Þ

to eliminate r, (33) and (2) then give

J̇FAML ¼
1
4

f2ðqÞ
� �2 vrel

vexp
Ṁ1

����������
GMa

p
: ð38Þ

If most of the mass and angular momentum can be assumed to be
lost at a roughly constant rate and velocity (Livio et al. 1991) we
finally obtain the total FAML, integrated over the outburst,

DJFAML ¼ ¹J
DMej

M1
AðqÞBðK1Þ; ð39Þ
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Figure 4. Sketch of the simplified geometry assumed to derive nFAML. The WD (M1) is at rest and orbited by the secondary (M2) at distance a with velocity vsec.
The envelope expands spherically symmetric from the WD, and has constant expansion velocity vexp at the location of the secondary.



where

AðqÞ ¼
1 þ q

4
f2ðqÞ
� �2

; ð40Þ

BðK1Þ ¼

��������������
1 þ K2

1

p
K1

¼
vrel

vexp
; ð41Þ

and

K1 ¼
vexp

vsec
: ð42Þ

Comparison with equation (16) then shows that

nFAML ¼
1 þ q

q
AðqÞBðK1Þ; ð43Þ

i.e. the mean specific angular momentum jej of the ejected material
is

jej ¼
1
q

þ nFAML

� �
J
M

: ð44Þ

The functional dependence on K1 in equation (41), shown in
Fig. 5 (top panel), leads to the unphysical limit ¹DJFAML → ∞ for a
very slow envelope expansion vexp → 0. This is mainly a result of

the neglect of the envelope spin-up, which would effectively reduce
the relative velocity (Livio et al. 1991).

The secondary cannot spin the envelope up to speeds faster than
corotation, so jej is certainly smaller than j1 þ a2q (where q is the
angular velocity of the binary). If only a certain fraction of the
envelope is spun-up to corotation this upper limit is correspondingly
smaller, e.g.

jmax ¼ j1 þ ðR2=aÞa2q ð45Þ

if only the torus traced by the secondary’s orbital motion corotates.
Equation (43) specifies our model of FAML in terms of a single

parameter, K1 (or vexp) and determines the value of zF
R according to

equation (21). We use (45) as a physical upper limit on the effect of
FAML.

3.2 The effect of individual nova outbursts

To illustrate the effect of FAML in the parametrization (43) we
consider the resulting relative change Dx=x ¼ ½xðpostÞ ¹ xðpreÞÿ=x
of a system parameter x as a result of the nova outburst. For the
orbital distance we obtain, similar to (17),

Da
a

� �
out

¼
DMej

M1

q
1 þ q

¹ 2AðqÞBðK1Þ

� �
ð46Þ

. 10¹4 1 ¹ 0:2BðK1Þ
� �DMej=10¹4M(

m1
;

which translates into

DP
P

� �
out

¼
DMej

M1
2

q
1 þ q

¹ 3AðqÞBðK1Þ

� �
ð47Þ

. 10¹4 2 ¹ 0:6BðK1Þ
� �DMej=10¹4M(

m1
;

for the orbital period P. The approximate expressions in (46) and
(47) make use of the weak dependence on q; m1 is M1=M(. For a
given ejection mass and white dwarf mass, BðK1Þ critically deter-
mines the magnitude of the orbital change. From (23) and (17) the
change of the mass-transfer rate X ¼ ¹Ṁ2 is

DX
X

� �
out

. ¹
DRR

Hp

¼ ¹
DMej

M1

q
1 þ q

¹ b2ðqÞ ¹ 2AðqÞBðK1Þ

� �
RR

Hp
ð48Þ

. ¹ 1 ¹ 0:2BðK1Þ
� �DMej=10¹4 M(

m1
;

where we used e . 10¹4 to obtain the last line. Fig. 6 illustrates
equation (48).

Depending on the strength of FAML and the mass ratio the
changes in system parameters can be either positive or negative.
The critical K1ðqÞ where the amplitudes vanish are shown in Fig. 7.
The critical lines for P and X almost coincide and separate the two
different outburst types, those which increase the mass-transfer rate
and decrease the orbital period, and those which decrease the
transfer rate and increase the period.

3.3 The effect on the long-term continuous wind average

To consider the effect FAML has on the continuous wind average
evolution we first note that FAML is a consequential angular
momentum loss (CAML; cf. King & Kolb 1995) as J̇FAML is
proportional to the mass-transfer rate, see (39) with DMej ¼

XFAMLtrec (where X denotes the continuous wind average
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Figure 5. Top panel: the function BðK1Þ defined in (41). Lower panels: the
specific angular momentum jej of the ejected matter as a function of K1 (or
vexp, obtained by assuming a constant vsec ¼ 400 km s¹1), measuring the
strength of FAML, for different mass ratios q ¼ M1=M2, according to (44).
The dashed lines mark the specific angular momentum j1 and j2 of the WD
and the secondary, respectively.



mass-transfer rate). As such FAML amplifies the transfer rate,
which would be driven by systemic angular momentum losses
alone in the absence of FAML.

An analytic estimate of this amplification factor, the ratio
XFAML=X of the mass-transfer rate with and without FAML, can
be obtained if we assume that the system follows the corresponding
uniform evolutionary track found by Stehle et al. (1996) also in the
case with FAML. This is a reasonable assumption as long as the

amplification is moderate and the resulting mass-transfer time-scale
longer than the thermal time of the secondary. The radius reaction of
the secondary along its track is given by (29). Hence using
ṘR=RR ¼ Ṙ2=R2 and (6) we have

XFAML

X
.

ze ¹ zR

ÿ �
ze ¹ zF

R

ÿ �. 1 ¹
2 1

q AðqÞBðK1Þ

ze ¹ zR

" #¹1

: ð49Þ

Here ze . 0:85. constant and zR is from (8) with h ¼ 0, n ¼ 1=q.
We emphasize that the ratio XFAML=X does not depend on the mass
DMej ejected per outburst, rather only on K1 and the mass ratio q.
Fig. 8 shows XFAML=X as function of 1=q for various values of K1.
Obviously FAML amplification is always small for large q (small
M2=M1). For a given K1 it increases with decreasing q and formally
goes to infinity where the system approaches thermal instability
(ze ¼ zF

R).
The full line in Fig. 8 indicates the upper limit for XFAML=X if the

specific angular momentum the ejected envelope can carry is
limited by jej & j1 þ ðR2=aÞa2q (see Section 3.1).

4 N U M E R I C A L E X A M P L E S

Here we apply the FAML description introduced in the previous
section and test the analytical considerations of Section 2 and 3
explicitly with numerical sequences of the secular evolution of
CVs.

The above FAML model contains K1, DMig and DMej as free
parameters. Unfortunately both observations and theoretical
models describing the outburst itself yield often contradicting
and inconsistent estimates for these parameters. Therefore we
restrict the following investigation to a simple parameter study to
obtain a systematic picture of the effect of FAML with a given
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Figure 6. Outburst amplitude of the mass-transfer rate according to (48) for
various strengths of FAML (as labelled) and DMej ¼ 10¹4 M(,
M1 ¼ 1:2 M(, Hp=RR ¼ 1:4 × 10¹4.

Figure 7. Critical values of K1 where outburst amplitudes resulting from a
nova event just vanish, plotted as function of M2 calculated with
M1 ¼ 1:2 M(. Shown are the lines for orbital separation a (full), orbital
period P (dotted) and Roche radius RR (dashed, same as for mass-transfer
rate ¹Ṁ2).

Figure 8. FAML amplification factor XFAML=X, defined in (49), as a function
of M2=M1 ¼ 1=q, for various values of K1. The vertical lines indicate
(thermal) instability. The full line is an approximate global upper limit,
independent of K1.



strength on the secular evolution. In particular we present calcula-
tions with constant DMig (¼ DMej) and K1, for various values of
DMig and K1.

4.1 Computational technique

To model the binary evolution numerically we describe the sec-
ondary star by either full stellar models using Mazzitelli’s stellar
evolution code (e.g. Mazzitelli 1989), or by a simplified bipolytrope
structure using the generalized bipolytrope code (Kolb & Ritter
1992). Both codes have been modified to include FAML and to
resolve individual nova outbursts.

The bipolytrope code is about 4 orders of magnitude faster than
the full code and allows one to compute the secular evolution for
several Gyr with every single nova outburst fully resolved. Several
sequences calculated with the full code serve as an independent
check of the simplified description. Despite a careful calibration of
the bipolytrope model to full stellar models, allowing a quantitative
match of the results to usually better than 10 per cent, there are well-
known limitations of the simplified description (see Kolb & Ritter
1992), e.g. the increasing deviation of zad from the values of actual
stars for M2 * 0:6M(. However, these effects are negligible for the
purpose of this paper.

In all the examples shown below we compute magnetic braking
according to Verbunt & Zwaan (1981) with the calibration para-
meter set to unity.

We have performed calculations with the following two modes.

(i) Fully resolved. Mass transfer is conservative until the mass
accreted on the WD exceeds the ignition mass. In the time-step
immediately thereafter the ejecta mass and the angular momentum
(39) is removed from the system. Thus fully resolved evolutions are
discontinuous and show repeating nova cycles.

(ii) Continuous wind average. Mass loss from the system is
continuous at a rate equal to the transfer rate, carrying the increased
specific angular momentum according to (44); hence the secular
evolution is continuous.

4.2 Detailed examples for individual outbursts

We generated short stretches of fully resolved evolutionary
sequences with full stellar models by switching into the fully
resolved mode in the middle of a continuous wind average calcula-
tion for a typical CV above the period gap. The mode switch was
made from a model well-established on the uniform evolutionary
track characterized by (29).

Fig. 9 shows for the case of weak FAML with K1 ¼ 0:5 a
‘sawtooth’ (or ‘shark-fin’) like modulation of the mass-transfer
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Figure 9. Section of a fully resolved evolutionary calculation with nova
outbursts after DMig ¼ DMej ¼ 10¹4M( with M1 ¼ 1:2 M(, M2 . 0:6 M(

and weak FAML (K1 ¼ 0:5). Crosses indicate time intervals of 1000 yr, the
filled diamond shows the post-outburst model from which initial values for
the analytical approximation (dotted line) were taken. The additional
horizontal lines are explained in the text.

Figure 10. As Fig. 9, but with strong FAML (K1 ¼ 0:1).

Figure 11. Averaged mass transer rate X versus orbital period P for a CV
with M1 ¼ 1:2 M( and M2 ¼ 1:0 M( at turn-on without FAML (full line)
and with strong FAML (K1 ¼ 0:1, corresponding to vexp . 40 km s¹1;
dotted line). Computed with full stellar models.



rate over the orbital period (full line). The system evolves from
right to left; the crosses mark intervals of 1000 yr. As
expected from Fig. 7 the outburst results in a longer period and a
lower mass-transfer rate with this choice of parameters. In the case
of strong FAML with K1 ¼ 0:1 (Fig. 10) the outburst leads to a
shorter period and a higher mass-transfer rate.

The approximate time evolution according to equation (15), with
A and Bc evaluated from the full sequence at the post-outburst
position, marked with a filled diamond, is shown as a dotted curve
and matches the full sequence very well. The dash–dotted line in
Figs 9 and 10 indicates the level of the ‘local’ stationary conserva-
tive mass-transfer rate as given by equation (13) with zR ¼ zc

R. Note
that there is a difference between this value and the mass-transfer
rate of a completely conservative evolution with the same initial
values (but no outbursts) as the system here does not evolve
conservatively on average but loses mass together with angular
momentum. The averaged stationary mass-transfer rate which
includes FAML with zF

R according to equation (21) is shown as
a dashed line. This value is identical to the mass-transfer
rate calculated in the averaged mode and to the time average
of the full evolution. The system approaches the conservative

value between outbursts and oscillates around the average transfer
rate.

Note that if, beginning with negligible FAML, the strength of
FAML is continuously increased, the outburst amplitudes will
decrease until the stationary (local) conservative transfer rate and
the continuous wind average (which grows with FAML) are equal.
Further increase of FAML will now lead to growing amplitudes, but
with opposite signs.

4.3 Long-term evolution with FAML

Fig. 11 compares the continuous wind average evolution for a
reference system (M1 ¼ 1:2 M(; M2 ¼ 1:0 M( at turn-on; h ¼ 0)
with strong FAML and without FAML, computed with full stellar
models. As expected from Fig. 8 the mass-transfer rate with FAML
is significantly larger than in the case without FAML only at long
periods, where the system is close to (but not beyond) thermal
instability. Owing to the higher mass-transfer rate the secondary in
the FAML sequence is driven further out of thermal equlibrium and
therfore larger at the upper edge of the period gap. At the same time
the secondary’s mass is smaller upon entering the detached phase.
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Figure 12. Set of fully resolved secular evolutions of a CV with M1 ¼ 1:2 M( (left) and M1 ¼ 0:65 M( (right), computed with the bipolytrope code. From top to
bottom the strength of FAML increases as labelled. The evolutionary tracks connect the location immediately before and after an outburst, but not for subsequent
outbursts! Rather only every every 1000th outburst (thick line, corresponding to DMig ¼ 5 × 10¹6 M(), or every 100th outburst (thin line, corresponding to
DMig ¼ 10¹4 M() is shown. The initial secondary mass at turn-on was M2 ¼ 1:0 M( for the top three sequences on the left, and 0:4 M( on the right. For the
sequences in the lowest panel the initial secondary masses were 0:85 and 0:25 M(, respectively.



Both effects, well-known from systematic studies of CV evolution
(e.g. Kolb & Ritter 1992), cause a wider period gap by both
increasing the period at the upper edge and decreasing the period
at the lower edge of the gap.

The analytical considerations of Section 3.3 are confirmed by a
parameter study performed with the bipolytrope code. The evolu-
tionary sequences with all outbursts resolved depicted in Fig. 12
summarize the results. The reference system is shown in the left
column, a less massive system in the right column. The strength of

FAML increases from top to bottom, with consequences for the
outburst amplitudes as discussed in Section 3.2 and in the previous
subsection. Note that the ‘sawtooths’ here do not represent single
outburst cycles, but arise because we connect the pre- and post-
outburst values for every nth (n ¼ 1000 or 100) outburst only. The
advantage of this display method is that both magnitude and sign of
the outburst amplitude (the vertical flanks) can be followed through
the evolution. In reality the system undergoes many individual
cycles like those in Figs 9 and 10 between subsequent outbursts
depicted in Fig. 12. The two evolutionary tracks plotted in each
panel differ only in the ignition mass DMig (here ¼ DMej). The thick
line corresponds to DMig ¼ 5 × 10¹6M(, the thin line to
DMig ¼ 10¹4 M(. In the scale used the low-ignition mass
sequences are practically indistinguishable from the continuous
wind average evolution (remember that both oscillate around the
same average value, cf. Section 4.5). Inspection of Fig. 6 shows that
the growth of amplitudes towards shortest periods is mainly a result
of the increase of q. Only in the high FAML (low vexp) case, i.e. in
the very steep region of equation (41), there is an additional
contribution from the increasing orbital velocity (hence decreasing
K1) at short P.

4.4 FAML-induced instability

To illustrate and test the analytical mass-transfer stability consid-
erations of Sections 2.3 and 2.4 explicitly we consider the secular
evolution of a system which runs into an instability, i.e. which
violates the formal stability criterion (22) at some point of the
evolution.

To establish this situation we artificially increase the strength of
FAML along a fully resolved evolutionary sequence (computed
with the bipoltrope code, with constant DMig ¼ DMej ¼ 10¹4 M(),
starting from a small value at the onset of mass transfer. As a
consequence zF

R becomes larger than zad at some intermediate
secondary mass. In particular, we adopt

vexp

km s¹1 ¼ 180
M2

M(

¹ 50 ð50Þ
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Figure 13. Fully resolved secular evolution of a CV with M1 ¼ 0:8 M( and
M2 ¼ 0:7 M( at turn-on, computed with the bipolytrope code including
FAML based on (50) and DMig ¼ DMej ¼ 10¹4 M(. For logðP=hÞ > 0:67
every 100th outburst is shown, for logðP=hÞ < 0:67 every outburst.

Figure 14. Evolution of the mass-transfer rate X with time during the final
phase (approximately 2 Myr) before the runaway (dotted, filling the grey-
shaded area). Overplotted in full linestyle is the stationary value
XF

s ¼ A=BF for a continuous FAML-increased mass loss, indicating an
instability at .12:1Myr.

Figure 15. Growth function F [cf. equation (28) and Fig. 3] calculated with
data taken from the evolution shown in the previous figures for different
times as labelled.



as the functional form of the envelope expansion velocity. (M2 will
be large enough to avoid negative vexp). The corresponding zF

R with
nFAML from (43) becomes larger than zad at M2 . 0:55 M(, and the
mass-transfer rate indeed begins to grow without limit at about this

mass well above the period gap (Fig. 13). A closer look at the final
phase immediately before the runaway (Fig. 14) shows that the
system evolves beyond the formally unstable point apparently
unaffected and enters the runaway mass-transfer phase only
.106yr later. In fact this is just as we would expect if the evolution
were replaced by the corresponding continuous wind average. In
this case (10) with B ¼ BF describes the variation of the (average)
mass-transfer rate X. The characteristic time-scale on which X
changes is X=Ẋ ¼ 1=ðA ¹ BFXÞ, which becomes very large when
BF . 0, i.e. around zad ¼ zF

R at the instability point; note that A is
also small at this point, see (30). Proceeding further increases the
strength of FAML even more and makes BF more negative, hence
the time-scale jX=Ẋj progressively shorter. The time delay until the
runaway finally begins is essentially determined by the crossing
angle between the functions zadðM2Þ and zF

RðM2Þ and the value of X
at this point.

Fig. 15 shows the growth function F defined in (27) for selected
models immediately before the runaway for the evolutionary
sequence depicted in Fig. 14. The different curves are computed
with data from the run taken at the times as labelled (cf. Fig. 14). As
discussed in Section 2.4 the change of F from a stable curve with
negative slope to an unstable curve with positive slope occurs when
zad ¼ zF

R.
The sequence shown in Figs 13–15 is typical of the behaviour of

evolutionary sequences with nova cycles and very strong FAML. It
convincingly demonstrates that the FAML-amplified istropic wind
average properly describes the effect of a sequence of nova out-
bursts, even in the most extreme case when the system approaches a
FAML-induced instability. A more systematic investigation of the
significance of this instability for the secular evolution of CVs will
be published elsewhere (Kolb et al., in preparation).

4.5 Evolution with FAML parameters from theoretical nova
models

The FAML parameters K1, DMej and DMig are certainly not
constant along the evolution but depend on the actual state of the
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Figure 16. Averaged maximal expansion velocity of the ejecta taken from
nova models of Prialnik & Kovetz (1995), with T1 ¼ 107 K and
M1 ¼ 0:65 M( (full line) or M1 ¼ 1:25 M( (dotted line). Diamonds mark
real data points. A maximum value of 105 km s¹1 has been inserted if no
ejection occurred to mimic negligible FAML.

Figure 18. As Fig. 17, but with M1 ¼ 0:65 M(, M2 ¼ 0:4 M( at turn-on,
and every 20th outburst shown. At the period minimum the WD mass has
decreased to M1 . 0:635 M(.

Figure 17. Secular evolution of a CV with fully resolved nova cycles and
M1 ¼ 1:2 M(, M2 ¼ 1:0 M( at turn-on (thin line), computed with the
bipolytrope code. Ignition mass, ejection mass and velocities are taken
from Prialnik & Kovetz (1995). Similar to Fig. 12 only every 100th outburst
is shown, and straight lines connect post- and pre-outburst points. For
comparison the continuous wind average evolution without FAML (thick
line) is also shown. At the period minimum the WD mass has decreased to
M1 . 1:1 M(.



outbursting system. The three governing parameters which cru-
cially determine the outburst characteristics of thermonuclear run-
away (TNR) models for classical novae are the WD mass M1, the
(mean) accretion rate X and the WD temperature T1 (e.g. Shara
1989). Both the mass and the temperature of the WD change only
slowly during the binary evolution, thus the dominant dependence
of vexp is from the (mean) mass-transfer rate. As FAML itself drives
the mass-transfer this could lead to an interesting feedback and
possibly self-amplification in the system, a question considered in a
separate paper (Kolb et al., in preparation).

Although published TNR models mostly give values for DMig

and estimates for DMej, few or no data are available on K1.
Unfortunately this is also true for the most complete and consistent
set of published nova models (Prialnik & Kovetz 1995) which we
chose to use as input to the FAML description derived in Section
3.1.

These authors tabulate only the average expansion velocity vav,
the time average of the maximum velocity in the flow during the
whole mass-loss phase. In the absence of more relevant velocity
data we simply set vexp ¼ vav, but we are aware that this choice
represents an upper limit for vexp (which has to be taken at the
position of the secondary). Two exemplary relations vexpðXÞ are
shown in Fig. 16, for a low- and a high-mass WD, complemented by
large values (105 km s¹1, hence negligible FAML) when no
envelope ejection was found in the hydrodynamical simulations.

The evolutionary sequences obtained with M1 ¼ 1:2 M( (using
the velocity data for nova models with a 1:25-M( WD) and with
M1 ¼ 0:65 M( are shown in Figs 17 and 18. The changes of M1

during the whole evolution are very small (h . 0). As in Fig. 12 the
‘sawtooths’ result from connecting only every nth outburst. For
comparison a standard continuous wind average evolution without
FAML but otherwise identical parameters has been overlaid in thick
linestyle. As expected from the high expansion velocities FAML
has very little effect on the global evolution. By choice we under-
estimated the strength of FAML in the sequences shown above.
However, although the expansion velocity at the location of the
secondary is indeed smaller than vav in the models by Prialnik &
Kovetz (1995) they currently appear to be too large to cause a
FAML effect with significance for the long-term evolution of CVs
(cf. also discussion in next section).

Perhaps the most interesting feature of the sequences presented in
this paragraph is the large outburst amplitude of the mass-transfer
rate in low-mass WD (0:65 M() systems below the period gap. The
reason for this lies mainly in the fact that DMej and DMig to a first
approximation scale like R4

1=M1 (Fujimoto 1982, R1 is the WD
radius), i.e. increase with decreasing WD mass (and to a lesser
extent, increase with decreasing X). Moreover the slow but con-
tinuous decrease of the WD mass leads to a further increase of the
outburst amplitudes towards shorter orbital period in this sequence
(Fig. 18). Note that this effect adds to the ones observed before
(lowermost panels of Fig. 12) which were caused by the change of q
because of decreasing M2, and to a lesser extent to the slowly
increasing orbital velocity vsec, mimicking increasing FAML
strength.

Such amplitudes account for a non-negligible time interval with a
secular mean mass-transfer rate significantly below the continuous
wind average transfer rate, i.e. below .5 × 10¹11M( yr¹1, the
typical value for non-degenerate CVs below the period gap driven
by gravitational radiation alone. As an example Fig. 19 plots for a
model at P ¼ 1:23 h from the sequence shown in Fig. 18 the time
spent with a mass-transfer rate below a value X, as a function of X.
One nova cycle lasts .6:5 Myr, and the mass-transfer rate remains

for 0.5 Myr after the outburst below 10¹11M( yr¹1. Intrinsically,
these CVs with low-mass and moderate-mass WDs form the vast
majority (e.g. de Kool 1992, Politano 1996). Thus, ignoring selec-
tion effects, we would expect to observe 1 out of 10–20 short-period
CVs with small sub-GR driven mass-transfer rate.

This seems to offer an alternative explanation for the low mass-
transfer rate Sproats, Howell & Mason (1996) claim to find
observationally in so-called tremendous outburst amplitude
dwarf novae (TOADs) which Howell, Rappaport & Politano
(1997) interpret as post-minimum-period systems. As the secular
mean mass-transfer rate is predicted to drop substantially
(&10¹12¹10¹11M( yr¹1) CVs which have evolved past the mini-
mum period would be even fainter than the above post-outburst
CVs, and it is unclear if they are detectable at all.

We note that at least four objects in the list of Sproats et al. (1996)
have been labelled as novae (cf. Duerbeck 1987): AL Com (orbital
period 0:0566 d, outburst suspected 1961), VY Aqr (0:0635 d,
1907), RZ Leo (0:0708 d, 1918) and SS LMi (no period known,
1980). With exception of SS LMi they are now firmly considered to
be dwarf novae. This does not exclude a priori that the first recorded
outburst (e.g. in 1907 for VYAqr) or even earlier ones were actually
novae. Hence it is at least conceivable that the present low mass-
transfer rate and the TOAD characteristics might be a consequence
of this last nova event. The three systems with known orbital period
are located at the extreme end of fig. 4 of Sproats et al. (1996),
showing large outburst amplitude and low quiescence magnitude.
Moreover, among the open square symbols indicating DNe in their
fig. 3 they are also those with lowest period and absolute magnitude
in quiescence (mass-transfer rate p10¹11M( yr¹1). The fact that
the claimed deviation from the secular mean magnitude is shrinking
with the time elapsed since the potential nova outburst (1961–
1918–1907) is probably just a coincidence.

We caution that it is difficult to decide if the set of models by
Prialnik & Kovetz (1995) properly describes classical nova out-
bursts on WDs in CVs below the period gap. Observationally, only
four out of 28 classical novae with determined orbital period are
below the gap (e.g. Ritter & Kolb 1995). This is in conflict with
standard population models of CVs if the Prialnik & Kovetz (1995)
ignition masses are used to predict an observable period distribution
for novae (Kolb 1995).

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we considered the effects of nova outbursts on the
secular evolution of CVs. As a result of these outbursts the secular
mean mass-transfer rate and the orbital period are not continuous
functions of time but change essentially discontinuously with every
nova outburst by an amount proportional to the ejected envelope
mass. In addition, energy and angular momentum can be removed
from the orbit owing to dynamical friction of the secondary orbiting
in the expanding nova envelope.

The discontinuous evolution with a given strength of frictional
angular momentum loss (FAML) is usually replaced by the corre-
sponding continuous wind average evolution, where the mass and
angular momentum loss associated with a nova outburst is assumed
to be distributed over the inter-outburst time and to form an
isotropic wind from the white dwarf. We showed analytically that
the well-known mass-transfer stability criterion for the latter case
can also be derived from a proper analysis of the real, discontinuous
process, for an arbitrary strength of FAML amplification.

We specified a quantitative model for FAML within the frame-
work of Bondi–Hoyle accretion following Livio et al. (1991). In
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this model the strength of FAML depends crucially on the expan-
sion velocity vexp of the envelope at the location of the secondary,
being stronger the smaller vexp is. We expect that the resulting
simple one-parameter description properly describes the order of
magnitude of the FAML effect and, more importantly, the differ-
ential dependences on fundamental binary parameters. Hence
although it is a useful way to study the potential influence of
FAML systematically, it certainly cannot replace a detailed model-
ling of the frictional processes.

Calculations of the long-term evolution of CVs verified the
validity of the replacement of the discontinuous sequence of
nova cycles with the continuous wind average, even for situ-
ations close to mass-transfer instability, whatever the strength of
FAML. The mass-transfer rate in the continuous wind average
evolution is FAML amplified, i.e. by the factor (49) larger than
the transfer rate driven by systemic angular momentum losses
alone. For a given CV this factor is determined by K1 alone, i.e.
independent of the ejection mass. We emphasize that FAML only
amplifies the transfer rate caused by systemic losses, it does not
add to them. Hence FAML is a particular example of conse-
quential angular momentum losses (CAML) investigated in
detail by King & Kolb (1995).

In general, the FAML amplification factor turns out to be large
only when the envelope expansion is very slow (K1 & 0:5, i.e.
vexp & 200 km s¹1) and when the system is already close to thermal
mass-transfer instability (Fig. 8). This latter condition means that
e.g. for an evolution with strong FAML K1 ¼ 0:1 ¼ constant the
averaged mass-transfer rate is significantly affected only at long
orbital period, P * 5 h.

The magnitude and direction of the outburst amplitudes of the
mass-transfer rate X and the orbital period P depend on both the
ejection mass DMej and the FAML parameter K1. For weak (or

negligible) FAML the outbursts are towards lower mass-transfer
rate and longer orbital period, for strong FAML towards larger X
and shorter P. There is an intermediate regime where the outburst
amplitudes essentially disappear.

Theoretical models for nova outbursts generally find larger
expansion velocities (e.g. Prialnik 1986; Prialnik & Kovetz 1995),
typically K1 * 1. This is certainly true for the terminal velocities,
but in more recent models probably also for the crucial velocity at
the location of the secondary, i.e. closer to the WD. Kato &
Hachisu (1994) argue that in the wind mass-loss phase of a nova
outburst the main acceleration (at about the sonic point) takes
place at a temperature where the opacity has a maximum. Thus
the introduction of the OPAL opacities had the effect of moving
this point closer to the WD. A comparison of the radial velocity
profiles found by Kato & Hachisu (1994) with those obtained
previously (e.g. Prialnik 1986; Kato 1983) confirms this. As a
result, in the newer models the velocities at the location of the
secondary are already quite close to their terminal values. This
explains why Kato & Hachisu (1994) find only marginal effects
from dynamical friction.

This seems to suggest that the overall influence of FAML on the
long-term evolution of CVs is small. However, in view of the
considerable simplifications of our FAML description and the
uncertainties of theoretical TNR models for nova outbursts, it is
worthwhile to investigate sytematically mass-transfer stability with
FAML, and to consider the role of a feedback between outburst
characteristics (hence FAML strength) and the mean mass-transfer
rate prior to the outburst. We will study this in a forthcoming paper
(Kolb et al., in preparation).

To illustrate further the effect FAML might have on the secular
evolution of CVs we have calculated evolutionary sequences with
envelope expansion velocities, ignition and ejection masses taken
from the extended set of nova models by Prialnik & Kovetz (1995).
As expected, the continuous wind average evolution hardly differs
from the standard CV evolution without FAML. As a consequence
of the large ejection mass (several .10¹4M( yr¹1) the outburst
amplitudes become very large (a factor *10) below the period gap
for intermediate mass WDs (M1 . 0:6 M() – even more so as the
outburst-induced decrease of the mass-transfer is largest if FAML
vanishes.

Such systems have a mass-transfer rate less than 10¹11M( yr¹1

for .0:5 Myr after the outburst, and could account for
intrinsically faint CVs below the period gap. We speculated
(Section 4.5) if TOADs (e.g. Sproats et al. 1996) could represent
such systems.

We finally note that the apparent scatter in observationally
derived values for the mass-transfer rate of CVs with comparable
orbital periods, well-known since the review of Patterson (1984), is
unlikely to be a result of outburst amplitudes. First, we expect from
Fig. 17 that these amplitudes are small or negligible above the
period gap, and secondly that the systems spend most of the time
close to the continuous wind average mass-transfer rate (cf.
Fig. 19). A more promising explanation for this scatter assumes
mass-transfer cycles which could be irradiation induced (e.g. King
et al. 1995, 1996).
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Figure 19. A typical inter-outburst low-mass WD CV below the period gap
(M1 ¼ 0:6382 M(, M2 . 0:1 M(, DMej ¼ DMig ¼ 2:9 × 10¹4 M() accord-
ing to nova parameters from Prialnik & Kovetz (1995). Shown is the time
spent with a mass-transfer rate below a value X, as a function of X (in M(

yr¹1). Diamonds indicate the immediate post- or pre-outburst state. The
dashed line indicates the continuous wind average mass-transfer rate.
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A P P E N D I X A : G E N E R A L I Z AT I O N O F zF
R

Starting from the fundamental equation (4) one can derive a more
general expression for the relative change of RR during both the
outburst and inter-outburst phase. Specifically we allow a small
fraction a of the mass ejected during the outburst to accrete on to the
secondary, i.e. DM2 ¼ aDMej. This gives

DRR

RR

� �
out

¼
DMej

M2

2 ¹ b2

q
¹ aðb2 þ 2Þ

�
ðA1Þ

¹
1 ¹ a

1 þ q
ð1 þ

2
q

þ 2nFAMLÞ

�
instead of (17), which is obtained in the case a ¼ 0.

Additionally we allow a wind (or other) mass loss during the
inter-outburst accretion phase. Thus we use the general zR from (8)
rather than the conservative one to generalize (18). This results in
two additional parameters, hw and nw, describing the system’s
"wind" mass and corresponding angular momentum loss during
the inter-outburst phase. Hence we obtain [using g ¼ ðhw þ 1Þ=hw]

DRR

RR

� �
inter

¼ 2
DJsys

J
þ

DMig

M2

b2 ¹ 2
q

�
ðA2Þ

þ ðb2 þ 2Þðg ¹ 1Þ ¹
g ¹ 2
1 þ q

ð1 þ 2nwÞ

�
;

which with (A1), (19) and DM2 ¼ aDMej ¹ ðg ¹ 1ÞDMig gives the
generalized zF

R

zF
R ¼

1
DM2

DMej
2 ¹ b2

q
¹ aðb2 þ 2Þ

��
¹

1 ¹ a

1 þ q
1 þ

2
q

þ 2nFAML

� ��
ðA3Þ

þ DMig
b2 ¹ 2

q
þ ðb2 þ 2Þðg ¹ 1Þ

�
¹

g ¹ 2
1 þ q

ð1 þ 2nwÞ

#)
:

Six parameters describe the system: DMig and DMej (ideally
taken from nova models), nFAML and a (requiring the specification
of a particular FAML model), and g (or hw), nw (characterizing the
wind loss during accretion).

The ratio of mass retained by the WD to that lost by the secondary

h ¼ ¹
DM1

DM2

� �
total

¼
DMej ¹ DMig

aDMej ¹ ðg ¹ 1ÞDMig
; ðA4Þ

which relates DMej and DMig similar to the simple case hn in the
main body of the paper, now depends on a and g. Using a weighted
n to describe the average specific angular momentum gives

n ¼
ða ¹ 1ÞDMej

1
q þ nFAML

� �
¹ ðg ¹ 2ÞDMign

w

ða ¹ 1ÞDMej ¹ ðg ¹ 2ÞDMig
; ðA5Þ

and inserting these values into equation (8) would also have directly
led to equation (A3).

This paper has been typeset from a TEX=LATEX file prepared by the author.
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