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1. Introduction. In (1) Dvoretsky proved, using very ingenious methods, that every
centrally symmetric convex body of sufficiently high dimension contains a central
k-dimensional section which is almost spherical. Here we shall extend this result
(Corollary to Theorem 2) to k-dimensional sections through an arbitrary interior point
of any convex body.

In a survey article(2), Dvoretsky mentions the possibility that every centrally
symmetric convex body of sufficiently high dimension has almost all, in the sense of
Haar measure, of its k-dimensional central sections almost ellipsoidal. However, this
was shown not to be so by Straus(3) who mentions that the problem is not well posed
inthat ellipsoidality is an affine invariant whilst the Haar measure of its k-dimensional
central sections is not.

Dorn(4) overcame this objection by standardizing a centrally symmetric convex
body by first mapping its Lowner ellipsoid onto the unit ball by a non-singular affine
transformation. However, Dorn’s results are weakened by the strong assumption
that the centrally symmetric convex bodies should have unellipsoidality bounded
above by some constant. Here, (Theorems 1 and 2) we shall eliminate this assumption.
We shall not, however, standardize by the Lowner ellipsoid, but instead use an ellip-
soid which is more appropriate to the simultaneous existence of almost spherical sec-
tions and projections of convex bodies. We mention that it would be sufficient to use
the Lowner ellipsoid if we were only interested in almost spherical sections. Our
methods will also prove (Theorem 3) anextension of aresult of Dvoretsky [(2), Theorems
2, 4, 5]. A simpler proof of Dvoretsky’s theorem has recently been given by A.Szan-
kowski(7).

2. Definitions. Let C be a convex body in Euclidean space, and let p erelint C be
a point in its relative interior. We say that C is ellipsoidal to within ¢(0 < ¢ < 1),
with respect to p, if there exists an ellipsoid D in the affine space aff C generated by
C, whose centre is p, and for which we have

(1—e)D+ep<C < D.

If D is a ball, then C is called spherical to within ¢, with respect to p, and we define
the asphericity «(C, p) of C with respect to p, by setting a(C, p) = inf{e: C is spherical
to within ¢ with respect to p}. If relint C contains the origin 0 of the Euclidean space,
we set a(C) = «(C, 0).
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530 D. G. Larman anp P. MANI
If C is a centrally symmetric convex body with centre p, we define
B(C) =min{A:D < C < AD}

where. the infimum is taken over all ellipsoids D with centre p. Certainly S(C) is
attained and we call any ellipsoid D with centre p and

DecC<pO)D

a standard ellipsoid for C. Any non-singular affine transformation 7' of € which carries
a standard ellipsoid onto the unit ball is called a standard transformation of C.

If Cis a convex body, not necessarily centrally symmetric, and p any interior point
C then a standard transformation of C with respect to p is defined as a standard trans-
formation of C' n (2p - C).

Let M, , be the Grassmann manifold of all k-dimensional subspaces of £, and
V,..x the Stiefel manifold of all orthonormal k-frames in E™. Let u,, ; be the Haar mea-
sure in M,, ;. If C is a convex body in E” and E an element of M, ,, let C|E denote the
orthogonal projection of C onto E. If we do not mention the centre of a symmetric
body C in this paper, it is always understood to be the origin of the space containing C.

3. Theorems and Lemmas.

THEOREM 1. Given e, 0 <e < 1, 6,0 < & < 1 and an integer k > 1, there exists an
integer N = N (¢, 8, k) such that for all centrally symmetric convex bodies C of dimension
n = N and for oll standard transformations T of C

U {EEeM, ,,a(T(C)n E) < €,a(T(C)|E) < €} > 1-4.

i.e. all but & of the k-dimensional orthogonal projections and corresponding central
sections of T(C) are within e of being spherical. The corresponding sections and pro-
jections of C therefore will be within ¢ of being ellipsoidal.

THEOREM 2. Given ¢, 0 <e < 1, §, 0 < § < 1 and an integer k > 1, there exists an
integer M = M(e, 8, k) such that, for alln > M, all n-dimensional convex bodies C in E™,
all interior points p of C, and all standard transformations T of C with respect to p

o {E:EeM, ,, o(T(C)NE)<e}>1-6.
Using Lemma 5 we have

COROLLARY. Givene, 0 < € < 1and aninteger k > 1,there exists an integer M = Me, k)
such that, for all n = M, all n-dimensional convex bodies C in E™ and all interior points
P of C, there exists a k-dimensional subspace E, depending on p, such that

a((E+p)nC) <e.

THEOREM 3. Given ¢,0 <e< 1, 8, 0 < 6 <1, an integer k > 1 and a function g
defined on the positive integers and satisfying

gn)>1 (n=12,..), limnign)=0
N—>0
there exists an integer N = N(k,¢, 8, g) such that
b ilBEcM, ,,(CNE)<e€,a(ClE)<e>1-6
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Almost ellipsoidal sections and projections of convex bodies 531

foralln > N(k,e, 8, g) and all convex symmetric bodies C in E™ satisfying

Br < C < g(n) B",
where B™ is the unit ball in E™.

In the proofs of Theorems 1-3 we shall use extensively the lemmas and techniques
developed by Dvoretsky in (1). To make the present paper more readable we first
restate some of the definitions given in (1). In E” let B™ denote the unit ball, and 7!
its boundary sphere. For any subset 4 of S*~1 we define

Vn,k(A) = ﬂn’k{E:EEMn,k,EnA =i= g}.

In particular, if 4 is symmetric, we have v, ;(4) = A,,_;(4)[o,, where A, _, is the
ordinary (n— 1)-dimensional measure of 4 and o, = A,,_;(8§*71).
We also define
v o(A) = po {E:EcM, ,, EnS* 1< A4}

Fort > 0,let 4;be the set of all points on S»—1 whose geodesic distance from 4 does not
exceed .
We state, without proofs, five lemmas established in (1).

LemMma 1. For every Borel subset A of S*~1 and every positive number t we have
Vp1(4e) = v, 1(4) (1 —exp (—c(k)ndt))k, (n=3,4,..;k=2,...,n).
where c(k) is a positive number depending only on k.

LEemMMA 2. For every Borel subset A of S*—1 and for every positive number t we have

vpal(dy) = [vnlz(A)]é (1 —exp (—2t (@;2)2—;’&)1}))2, (n=38,4,...,)

Vpo{Ay) 2 vy 1 (4) (1—exp (—(kftm(”%@)é))bz (n=4,5,....k=3,..).

Recently T. Figiel(5) has pointed out that an approximation procedure, used in the
proofs of Lemmas 1 and 2, is not quite obvious. He has shown an elegant way to
overcome this difficulty.

Lemma 3. For every Borel subset A of S*1 we have
Vi u(4) < [vn (A, (k=1,2,..,n—1).

Lemma 4. Let C be a convex body in E™ such that B* < C. Let x be a boundary point
of Candlet r, 8 be real numbers, r > 1,8 > 0. We denote the projection of X from the origin
into r8™ 1 by X'. If | x| = r(1+ &), all the points of r8™1 whose geodesic distance from x
i8 not greater than 8[(1+ &) are interior points of C. If, on the other hand, ||x| < r(1+4),
all the points of r8™—1 whose geodesic distance from X is not greater than & do not belong to
C.

Levma 5. Let L be a proper ellipsoid with the origin as centre in E*m-1, There exists a
subspace E™ such that E™ n L is an m-dimensional ball.
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532 D. G. LarMaN AND P. MANI

For any centrally symmetric convex body C in E™ we define y, = y,(C) by
Y.(C) = B(C) n~%, ie. y, is the last of those numbers y for which there exists an
ellipsoid D < E™ with centre at the origin such that

D cC cyntD.

Then we have, see for example F. John (e),

LEeMMmA 6. Let C be a centrally symmetric convex body in E™. Then 0 < vy,(C) < 1.

We note that if C* is the polar reciprocal of C then v, (C*) = y,(C).

If T: E» — E™ is a linear transformation, we denote by T*: E»* - En* its adjoint.
Ifa = (a,,...,a,) €V, , is an orthogonal n-frame in E* and k{0, 1, ..., n} an integer,
we denote by 7(a,k): E® - lin{a,,...,a,} the orthogonal projection of E” onto the
linear hull of the first k vectors in a, and by W(a, k) the k-dimensional cube

W(a, k) = {x:x€lin{a,,...,a;}, [{x,a;)| <1, for 1<i<k}
Lemma 7. Let C be a centrally symmetric convex body in E™ and set n = [p], where p
18 the positive root of the quadratic
1622+ 82(2+yn N¥)—3y%4 N = 0.
where yy = yn(C). Then every standard transformation T' of EV carries C into a centrally
symmetric convex body T(C) with the following properties
®) BY < T(C) < yyNiBY,
(ii) there is an element a€Vy v such that
m(a,n) (T(C)) <« 2W(a,n),
(iii) there is an element beVy y such that
7(b, n) (yy NYT*(C*)) = 2W (b, n).

LemwMa 8. Let  be a fixed positive real number and let A(r) be the subset of S*?

consisting of all points X = (x4, ..., x,) €S 1 for which there is a number
te{l,...,m},m = [Bfn], suchthat |z;|>7.
Then, putting for arbitrary € > 0,

—(1— 3
’ o= logn—(1—e¢)loglogn (n=23,..)
n

we havelim v, ,(A(r,,)) = 0.

n—w

On the other hand, if we put
_ 3
,, (logn (1+e)10glogn) ( 3,..)

we have lim v, ,(4(r,)) = 1.

n—>0

As an immediate corollary to Lemma 8 we have

Lemma 9. Let o, § be fixed positive numbers and let F, , 5 be that portion of S}

lying in the region
{(x:xeB" |z, <afyn, i=1,..,[Bn]}
Thenlimv, {(F, , 4) = 0.
Nn—>x
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Almost ellipsoidal sections and projections of convex bodies 533

Let C be a centrally symmetric convex set in £™ with S»~1 contained in C. Let
A(C,r) denote, for every real number » > 1, the subset of §*~1 obtained by projecting
into S»-! from the origin those boundary points of C which belong to rB*. Let D(C, )
denote the complement of 4(C,7) in 8*-1. For everyt, 0 < t < 1, we define areal number
R(C,t) by the inequalities

v (4(C,7) <t for 7 < R(C,t),
v, (4(C,r)) =t for r> R(C,1).

Let T, be a standard transformation for C and, for 0 < § < 1, let
Rn(a) = sup {R(TC(C)a 8)}’

where the supremum is taken over all centrally symmetric convex bodies C in E™ and
all standard transformations 7 of C.

Lemma 10. If 0 < 8 < 1, R,(8) = o(nd), i.e.
lim»—3R,(5) = 0.

n—>c0

4. Proofs of Lemmas 7 to 10.

Proof of Lemma 7. Let T' be a standard transformation of C and, for ease of notation
we identify € and 7'(C) and have

BY < O < yyNBY.

As yy is minimal there exist points a,, — a, on the boundary of both C and y, N*BY.
We proceed by induction and suppose, for m < n, we have constructed points + a,
in C for 1 <41 < m—1 such that {a;a;) =0 for ¢ +j and |a,| > {yyNt. We may
assume that a; = «;e;, where e is the /th coordinate vector in E¥ and «; > }yyN*.

Then the set

%)
Cn{x:X=(2,...,%4), %y, = ... =2y = 0}

contains an (m — 1)-ball B of centre 0 and radius 4y, N¥(m —1)-3.So0,if y = (y,, ..., yy)
is on the boundary of both C and BY then y is not in the interior of the convex hull of

Bwith BY, .
Hence 0 2 4(m—1)
Yit+...FYma S AN (1)
We choose a, # > 0 so that
g 4m 5
atB AN @)
and consider the ellipsoid E(a, 8,¢),e > 0,
(1+e)y*(@i+...+22_)+(1+e)f(ad+... +2%) < 1. (3)

We shall show that there exists ¢, > 0 such that for all € < ¢,
E(x,f,€) = C. (4)
For suppose that (4) is false. Then there exists

0 1 p—
{exfi=1 €.> 0, Ihmek =0
—> 0
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534 D. G. LarmMaN aND P. Man1
and corresponding points b(e,) in E(a, B, €;) but outside C. So, if
b(ex) = (by(€x)s ---» buler)),

b3(ex) +... +bk(er) = 1. (5)
Combining (3) and (5),

(1 +€)72 — 1) 03(ex) + ... +DFus(6r)) + (L +€)F — 1) (Bulex) + .. +DR(€r)) < 0, (6)

k=1,2,....
So, picking subsequences if necessary, we may suppose that

b(e,) >b = (by,...,by) as k- oo,
where b belongs to the boundaries of both BY and C. So
b3+...+b% =1
and combining this fact with (6) we obtain
—ab3+... +b5 )+ (1 —(b3+... +DE, 1)) <0

am _ p

YeN  a+p
As (1) and (7) are contradictory we deduce the validity of (4).
Now, for 0 < € < ¢, consider the ellipsoid F(«, £, ¢), defined by

or <bi+...+b% ;. (7)

(1+e)(@2+...+a, )+ (L+e)f (25, +... +2%) < (1—-€3)y% V. (8)

Then F(a, B,¢) = (1—e3)}yy NtE(x, B,¢) and E(a, B,¢) < C.
Consequently, by the minimality of vy there must exist a point d(¢) = (d,(¢), ..., dy(€))
in C but outside F(a, f,€). So :

die)+ ... +d%(e) < YA N, €> 0. (9)
Letting € - 0 we may suppose, choosing subsequences if necessary, that
d(e) >d = (dy,...,dy) where deC.

After a suitable orthogonal transformation, which leaves lin{e,, ..., e,,_,} pointwise
fixed, we may suppose that d = (d,, ...,d,,, 0, ..., 0) and hence, since E(«, §,¢) - BY,

d3+...+d% = Y4 N. (10)
By using (8) and (9) we have, for 0 < € < ¢,
((1+e)~2—1)(d3e)+... +d2_1(€)) + (1 +€)f — 1) (d2fe) + ... +d%(€)) > — >4 N.
So, letting € — 0 and using (10),

—a(d3+... +d% )+ (YW N —di—...—d%_;) > 0,
or, using (2),
m>dd+...+d2_,. (11)
Now consider the two dimensional plane 7 through the z,,-axis and the point d,
and let 7 meet the (m—1)-dimensional subspace E™1:z, = ... = xy = 0 in a line
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Almost ellipsoidal sections and projections of convex bodies 535
which we call the y-axis. Then, as C' n E™! contains a ball B of centre 0 and radius
$ynN3(m —1)-2, the interval

I=[~yyNhm—1)3, JyyNim—1)4]

on the y-axisis contained in C. So the triangle A in 7 with apex d and base I is contained
in C. As C is centrally symmetric we may suppose that d,, > 0. Then the triangle A
contains the interval [0, ze,,] on the x,,-axis where, by similar triangles, '

dp—z (d3+...+d3 1)} 4m
z  dyyNim—1)7 < Yy N

by (11). So
dp—2 < }%z,
or (YL N —4am)t < d,, < 2(1 +4m(yyN¥H)-2).
Hence (Y& N —4m)t (1 +4m(yy NH 1)1 < 2. (12)

Asm < n = [p] where p is the positive root of

1622+ 8x(yy Nt +2)—3y3 N = 0,
16m2+ 8m(yyN¥+2)—3y% N < 0,

or (ywNVE+4m)? < 4(y} N — 4m),
or Ly NE < (Y3 N —4m)t (1 4 dm(yy N3)-1)-1, (18)
So, combining (12) and (13),
‘ yvNi<a

Hence C contains the point a,, say whose mth coordinate is 1y, N* and the rest
are zero.

Repeating this construction for m = 1,...,%n we obtain 2n points +a,,..., +a,,a;
having the ith coordinate equal to }yy N?* and the other coordinates equal to zero. So
C contains a crosspolytope of dimension n, with vertices +a,,..., +a, and

BN < C c yyNiBY,

Hence, taking the polar reciprocal C* and multiplying by yyN?* we conclude that
(iii) holds.

As yn(C) = yn(C*) we can construct points +b;, 7 = 1, ...,7 such that (b;, b,> =0
for ¢ +j and |b;| = yyN3, in yyN?C*. So, multiplying the polar reciprocal
(Y N3)=1C of y5 N2C* by yy Nt we deduce that (ii) holds.

Proof of Lemma 8. The details of the proof will be similar to those used by Dvoretsky
(1), Theorem 3 B. However, the aims of Theorem 3 B of (1) were different and the num-
bers used in the proof were also different. So we feel it necessary to repeat the somewhat
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tedious calculation involved in the proof. We write m = [#./n]for ease of notation, and
use spherical coordinates in £” defined by

x, = psinb,,
x, = psinf,cos b,

z, ;= psing,_ cosd

g -+ COS O,

x, =pcosl,_ cosf, ,...cosb,,

where 0<p<oo, —}n<b,<%¥m k=1,...,n-2, —w <0, ,<m where, in
general, 8, is the angle made by the orthogonal projection of x onto the plane

x;=..=2, ;=0 withtheplane 2, =...=2,=0, k=1,...,n—-2.
Then, on the unit sphere $7~1 an element of (» — 1)-area is given by
dA,_, = (d6,) (cos 0,d0,) ... (cos8,_,...cos6,d0, _,)
= cos® 20, cos"30,...cos0,_,db;...d0,_;.

Let o,, be the surface area of the sphere 8*~! and y,, = o,,_,/0,,. Then

1_ On _ 2J‘1}n 5" =200 — nt T((n—1)/2)
[ T IGn
SO Va+1 =z Vs 7n+17n = (n_ 1)/2"' (14)
Hence (n—1)[2mE > v, = ((n—2)/2m)k. (15)
Let, forie{l,...,n}, 4, ={x:xe81 |z;| >},
} (16)
and, forke{l,...,n}, B p=vp1d,10n...0n4,,).
m
Then A(r) = U 4, ; and it follows that for every integer &, 2k < m,
i=1
m m m
M, > 1o ud0) > mBa= () Bt () Bom o= (5 B (17

We now give explicit formulae for the F, ;. The condition for |z;| > r, xeS"1,
can be written in spherical coordinates as |sin6,| > r and, in general, if

|| =7,y |2y =7

i in@;| > j=1,...,k.
we require |sin 6] 5050, cos 0 j=1,..,k
27
Thus F,=2y, f cos ™26, d0,
h
and

in in in
B =201 Vs f dﬁlf... cos™ 20, ... cos™*-16,d0,

" 'I,Ir(al) E"r(ol CERT) ak—n)
k=2,3,...,n,where

0< ¢r(01) reey 0’-_1) < %_7;
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. r
and s 1,&"(01, . 0’-_1) = max {1, m}.
Substituting ¥, = cos f, in the formula above we obtain
ar ar(1) Y1, o0 k1) n—2 n—k—1.7
P, =25y y. ..y, f d f d f Yk Yre __
r.k Yn¥Vn-1- VYn-kn 0 Y1 0 Y2 0 [(1—y§)+---+(1—y§)]5
(18)
(gl
e PoE— i Yy BT,
where AYys - Yjo1) = l (Y1 ¥j1)? Yi---Yi1
0 otherwise,
a:nd ar = (1 —7‘2)%_
Now let &, be defined by

1 _kn =(1- (7":7.)2)4é = &pro
For n large enough the definitions of 7, and &, imply that
3logn — (4 — 1e)loglog n)

h, > po .

Now using (18) for &£ = 1 we obtain, for » > n(e),
2my, fl—"*n
(1—-(1—=R)5% o
_ 2my,(1—h, )" !
T (n—1)(2h, - k)t
mntexp (— 4logn + (3 — 1€)loglogn)
nt (logn)t

m.Pr’:, 1 s y‘n—Z dy

< ¢4(€)
< cole,B)(logn)—t >0 as n— oo
Thus, using (17),
Vo 1(A(r7)) < mPy; 1 < cofe,f) (logn) 3 >0 as n—>o0
which proves the first part of Lemma 8.
For the proof of the second assertion of Lemma 8 we define functions f(») and g(n)
by fn) = o = (1=73R,
3logn—$loglogn
p .

g(n) =
Then, for = sufficiently large,
1—fn) <
Hence, using (18) with &k = 1,

}logn— (3 +3e) loglog
£ :

f(n)
mE,., > 2my, f Yy i1 —y?)tdy

1-g(n)
> 2my,(g(n)— (1 —f(n)) (1 —g(r))*~?) [1 — (1 - g(n))*}
> ¢4(€, B)loglog n(exp (— 4 log n+ % loglogn)) nt (logn)—3
= ¢c4(¢, f)loglogn - +00 as n-—>o0.
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So mE.,~ +00 as n->o0. (19)

Let 9 be a positive number. We define p,, = p,,(7) by

mPpm,1= 7, 0<9y<oo. (20)
We now show that
P
pmk 4, = , (k7 fixed). 21
e B Pm = Pn(n), (k,7tixed) (21)
Since for every j,1 < j < n, &,(yy, --., ¥;_3) < a,, it follows from (14) and (18) that
i 7 y;b—2 759 y‘;cb—k—-l
'PPm,k <2 ynfo 1- yz)é dy, .. fO (1— y )édyk (22)

AsmF,; ; > 0 as n > 0, p, < r, forn sufficiently large. Consequently

> (1=ry)t = (1_ (logn—(l—e)loglogn))§

n

logn
n

>1-

b4

for » sufficiently large.

So, if 1 < j < k and » sufficiently large we have, writing f(n) = 1 — lo&z

9 'n-j—] d 9 £(n) Cpn yn—7—1
y"fo (- = y"U .[(m(l yz)* ]

< 27, (n))~0- f . (1 ) sy dy + 2y, [1—£(n)]} f yr—i-1dy
= (1+83) P, 1+cy(j)/n(logn)t,

where 8L, — 0 as n —> o0, k fixed.
Therefore, using (20),

ap, yn—j—l
2ynf0 = 2)#dy <(1+64H)P Y, 18 (23)
where 62 - 0 as n — o0, 7, k fixed. So, substituting (23) in (22) we see that

B e < (B, )F (14 8,), (24)

where 8, - 0as n - o0, k, 7 fixed.
In order to complete the proof of (21) we have to reverse the inequality in (24).

From (18),
@pn (1) Cpn(V1s o ees Vk—1) (y Y )n—2
P> 2%, Y. _ Lok dyy, ..., d
Pm, K Ya¥n-1---Vn k+1J‘ f fo [(1 ) . (1 — ylzc)]ﬁ Y1 Y
=4y, Say.

Now I, 125V V-1 -+ Ynts1) " differs from (F,  ,/2y,)* only by the integral of

(1. Yu)"°
S oo ye) = [(1—-¢d)...(1—y2)}
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Almost ellipsordal sections and projections of convex bodies 539

k
on the set 7' defined 7' = {J T}, where

i=2

T={y:0<y; <, (¥, Y;) for 1

<i<j,
o YY) SY; S, 0<y;<ea,, for j<i<hk}

We decompose further each 7} into two subsets
Ty = T()UT(2), j=2,...k
where Ti(1) = {y:yeT;,0 < y; <f(n) for at least one 7 < j},
T(2) ={y:yeT;y;, >£{(n) for i=1,...,j-1}
Since, as shown in establishing (23),
jf(n)ﬂ—dy < cgnt(logn)—t
o (1—g™ =7 ’
it follows, using (15) and (20), that

i due < £(n) yn—2 i Xy yn—Z P k~1
ff(yla'--,yk) Y-+ CYg \fo m y[f (l—yz)% y]

Ty(1) °
< cgnH(logn)~H (P o, 12V ) E 1

< c4(1,8) ( Py )k (nlogn)-? (25)
’ 2 '

It remains to give a similar estimate for

ff(yp s Y)Yy - Ay
T«2)
Now as mF,; ; > 0asn — co and mFE,. ; 00 as n - 00, we deduce from the definition

of p,,(7) that for » > n(y),
Tn < Pm < Tn
or, explicitly,
- 3 logn—(1— 3
(logn (1 -i:)loglogn) < py < (ogn ( ne)loglogn) (26)

for » > n(y). Now for = sufficiently large and j fixed,
log n\*
i-1 5 (=222
oy > (<£2)

and so, using (26), @)y > p, (27)
for n > n(n,j) say. So that if y € T}(2) we obtain from (18) and (27),

_ _ _.ﬂz'"_ i
apm(yl’ (XX y]'—l) - (1 (v, ... yj—l)z)
P\t
> (1 B ({(n))zj—z) ' =
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540 D. G. LaArMAN AND P. Mant
Thus, using (18) and (28), for large » and y € T}(2),

2 3
=050 € (1= = (1 = L) (29)

However, it is easily shown that

1\? 1\t z,—z
1——) —(1—-=) =22 .
( xz) (1 xl) < = 2 <x; <Xy (30)
So, applying (30), with x, = p;2, x, = ;2% ({(n))*~2 to (29) we conclude that, using
Iso (26), _ _ .
also (26) ¢ —a b < Pt — pk (f(n))-2
pm ™ Somt b2+ it S D )3
_ pp (L= i
"y

<atin) (7). (31)

So, using (26) with (30),
[ Y ol 1) L0ge (s
apmtrs ooy (L= Y3 n¥(1—a2 )t
logZn
n2

<ol (£2Y', (32)

< 2¢4(3,7) (1—rp2t

for n sufficiently large. So, using (32),

0 (1 —?/ )é aPm(Uh'",VJ——l)(l —y2)é

Ty(2) P \klook
< auljn) () £
Yn n
for n sufficiently large. The estimates (24), (25) and (33) establish (21).
The second part of Lemma 8 now follows easily from (21). Given 6,0 < 6 < 1 we
choose 7 so large that 1 —e~7 > 0+ 2(1—6)/3, and then k so large that

, (33)

. ind 1
NG+ 57—~ > 0+3(1=0). (34)

Now, fixing 7, k we have, using (21), forj = 1, ..., k,

. (m o M (m—j+1)
miP,_ .
oo J!

[
=
B

=37,1! by (20). (35)
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Almost ellepsoidal sections and projections of convex bodies 541

So, using (17), (34) and (35), there exists n(f, 5) such that for n = n(d, )

Va,1(A(pm,1) 2 0. (36)
So, using (26) and (36) limv, ,(A(ry)) = 1

Lemma 9 immediately follows from Lemma 8.

Proof of Lemma 10. We suppose that Lemma 10 is false for some 8,0 < &, < 1.
Then there exists 2¢ > 0 and a subsequence {R,, (8,)}7-, such that

R, (6,) > %nt for o=1,2,....
So there exists C,, < E" with
R, (C,.. %) > en! for o=1,2,.... (37)

Let @,,, denote the subset of S7e—! obtained by projecting on 8%~ from the origin,
the boundary points of C,, which are at least a distance en? from the origin. Then, by
(37),

V’na,l(Qn‘,) Z 1_80: g = 1’2’ reey (38)

and we also notice that Yno(Cry) > €- (39)
In Lemma 7, relative to C,,_, p = p, is the positive root of
1622+ 8x(y, nt+2)—3y2_n, = 0,

- (Yna + 2 + ‘\/{(yno + 2) + 3711,0 o'}

ie. Py =

4
So, using (39),
2
_%(en§+ 2)+i(en5+ 2)A/(1 +(—i§%'2?) > jen} forall o> o, say.
eng

Hence, using Lemma 7(ii) we have that, subjecting C,, to a suitable rotation, if

necessary, (2, ..., %, ) €C, implies [z,| < 2,¢=1,...,[} ent], o > o, Consequently

Qn, (XX = (4, .-, %), [25] < 2fen}, i=1,..., [3end]}.

But then, using Lemma 9, with « = 2/e, # = ¢ we conclude that v, ,(@, )~ 0 as
o — 00, which contradicts (38) and completes the proof of Lemma 10.

5. Proof of Theorem 1. For each centrally symmetric convex body C in E* let T, be
the associated standard transformation. The lemmas we have established will now
allow us to argue in the same way as Dvoretsky [(1), Theorem 4]. For ease of notation
we identify C and T;(C) in E™ and use

A(r) = A(C,r), D(r)= D(C,r), E()= E(C,1).
We first show that for 0 < & < § and for n > Ni(e, 8)
(L+€)R(}) = R(1-9). (40)
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542 D. G. Larman anxD P. MawNt

We shall suppose that (40) is false and show that a contradiction arises for large n.
By definition of R(}),

Vo, (D(1+3€) B(})) < }
and so, choosing k, so large that
(B < (1-0)f < }4 (41)
we deduce from Lemma 3 that
Vi (D(1+3€) B(3)) < 46
and hence Vi k(A(1+3€) B(})) > 1 —40. (42)
Now, using Lemma 4,
A((1+3€) B(}),0 = A((1+€) B(})), (43)

where 7(e} = t(e)/R(%) and {(¢) is a positive number depending only on €.
Also, using Lemma 10,
niR(}) - 0 uniformly with =. (44)

If we apply Lemma 1, using (43), we obtain
1—8 > v, (A((1 +6) R®))
2 Vp,1(A((1+3€) B(})),0)
2 [Vn 1 (A(1+3€) B(3))1[1 —exp (—c(ko) t(e) (n2R(3))~1)]o, (45)

where c(k,) is a positive number depending only on k,. But, using (44), we see that (42)
and (45) are contradictory for » sufficiently large, which establishes (40).
We next show that there exists N,(¢, &) such that

(1—€) R(}) < R(S) (46)
for all » = Ny(e, 8).
Again we shall suppose that (46) is false and show that a contradiction arises for
large n. From (41) and Lemma 3 we deduce that

Vi io(D(1—€) B(3))) < 48

and hence Vi, k(A (1 —3€) R(3))) > 1 - 10. (47)
Also, using Lemma 4,

A((1—€) B@))o = A((1—3€) E(3)), (48)

where 7(¢) = t(e)/R(%) and #(¢) is a positive number depending only on e.
Using (48) in Lemma 1,

1—0 2 v, (A((1—3€) B(3))) 2 vp1(A((1 =€) B(3))0
2 [V, i, (A((1—€) BE)N][1 —exp (— (ko) ¢(e) (nER(3))~)]%.  (49)

Using (44) we see that (47) and (49) are contradictory for « sufficiently large, which
establishes (46).
So, from (40) and (46), there exists N,(e, ¢) such that

(1—1e) B(3) < R(6) < R(}) < R(1-96) < (1+3¢) R(3), (50)
provided n = N4(e, 6).
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Now, if boilE-EeM, ,c(CNE)<ef<1-4§ (51)
then at least one of A((1—4e) B(3)), D((1+ 4¢) B(})) has at least v, , measure }d.
Suppose first that il A((1-16) R) > 38
Then, as A((1—3e) B($))ro < A((1—$€) B(3)),

where 7(¢) = t(c)/R(}) and (e} is a positive number depending only on €, we have,
using Lemma 2, Lemma 10, and (50),
> Vp,1(A((1—1€) B(3)))

> Vp,1(A(1—-3€) B(3)):0
> 3(vn (A((1 - 36) R(3)))?
> 3446

foralln = Ny(e, 8, k), say. As & < }, this inequality is contradictory for n > Ny(e, 6, k).
So we conclude that

vulA((1—3e) BA)) < 36, 7 > Nyfe, 8, ). (52)
Suppose now that v (D((1+36) B(3)) > 36.
Then, as above, 0> v, (D((1+ 1) B(3)))
> v 2(D((1+ 36) B(3))) i
> 3 DU+ 36) RE)) i
> 3419,

for all n > Ny(e, 6, k) say. As & < %, this inequality is contradictory for Ny(e, 6, k).
So we conclude that v (D(1+16) R(E)) < 36, (53)

if n > Ny(e, 8, k). Hence if Ny(e, 8, k) = max {Ny(e, J, k), N (€, 8, k)}, we deduce from (52)
and (53) that (54) does not hold for n > N,(e, d, k), i.e

. o idB:EeM, ,,a(CNE) <€} >1-96, (54)
n 2 Ny(e, 6, k).
Arguing with yy N*C* instead of C we also ensure that there exists Ny(e, 6, k)

such that Y B BeM, . alyyNIC*nE) <&} > 1—
for all n > Ny(e, 8, k). But, by duality, we can interpret this as

Moy, k{E Ee nk:a(OIEk) < 6} >1-6
for all n > Ny(e, 0, k).
So, using 46 instead of & we conclude that there exists Ny(e, 8, k)lsuch that

boilB:EeM, ;,(CNE) <e,a(C|E) <€} >1-34,

for all n > Ny(e, 6, k).
This completes the proof of Theorem 1.
35 PSP 77
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6. More Lemmas. Let C = E™ be a convex body, containing the origin in its interior.
We set 0,(C) = O n (—C) and then o,(C) is the largest body contained in C, which is
symmetric about the origin.

For xe 8™ we denote by 7,(x) the point on bd C which is contained in the ray
posx. We set

Ta(C) = {x:x €81, mp(X) = —7me(—X)},

and,forxeS"—l, bA(x ()]
c(X) = inf{||7o(y)|: yeS™1}

LEMMA 11. Given A > 1, there is a number & = 8(A) in (0,1) such that for every
n = 2 and every n-dimensional convex body C in E™ with 0€int C and a(o,(C)) < 6, we
have bp(x) < A, for all X in [7,(0)]; < S

Proof. We want to show that
8 = 1op (min{1, A —1})?

satisfies the conditions of our lemma. Let C < E* be a convex body with 0eint C,
and let B < E™ be a ball of radius p > 0, such that

Bco,0) < (1_i8) B.

We suppose that there exist points xe7,(C) and ye 8! such that the spherical
distance between x and y is at most §, and by(y) = A. Set X' = 7m,(X), ¥ = 7(y).
Since B < 0,(C) < C we have

inf{|mo(2)]: ze 8% > p
and, therefore, ||y’| > Ap. As x belongs to 7,,(C), the point x’ lies in ¢,(C), and we find

' p
X < =5-

Consider the two-dimensional plane E formed by the linear hull of x’, y'. Let T < E
be a tangent line to B n £ which contains x'. Let u’ be the point 7' n B, and choose
v’ €T such that x’e[u’, v'], and such that the angle between X’ and v’ is exactly §.
Here, [u’, v') denotes the half open segment with end points u’ and v’. Since x’ belongs
to the boundary of C, and since B = C, we have |y’| < | V'[. Let € be the angle between
x’ and u’. We have

cose = [/,

cos (8-+¢) = [w//|v].
Since |u’]| = p, |x'|| < I_’i—a, [v] =|y’| = Ap, the above equations yield

(cos ) (1—-48)—sind < 1/A
which is incompatible with our definition of §.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:05:14, subject to the Cambridge Core terms of use,
available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100051355


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100051355
https:/www.cambridge.org/core

Almost ellipsoidal sections and projections of convex bodies 545

Lemya 12. Given ¢,€(0,1), 8,€(0,1) and an integer k > 1 we find a number
€, = €,(€, 6y, k) in (0, 1) and an integer n, = n,(¢,, 0y, k) such that for all integers n > n,
and all convex bodies C < E* with 0€int C and a(0,(C)) < €, we have

U {EEeM, ;,a(CnE) < e} >1-6,

Proof. Assuming that Lemma 12 is false we choose a sequence {n,}p_, of integers
with n,, > coasw — o0, a sequence {¢,};2_, of numberse¢,, (0, 1) withe,, > 0 as w — oo,
and a sequence {C,}w_,, where C, is a convex body in E™ with 0eint C,,,

(00, (Cpp)) < €5

and by B EeM, ,a(C,0E)<e}<1-4, (55)
Forw=1,2,...,set Ty = Ty, (Cy) < S™o L.
We first show that there is an integer w, and a number p > 0 such that for allw > w,
and all ¥ in M, , with
En8mt<[T,], wehave «C,nE)<e¢,. (56)

Choose w, such that €, < }¢, for all w > w,, and set A = (1 —1¢,) (1 —€,)~2 > 1. Set
p = 8(A), where §(A) € (0, 1) is the number mentioned in Lemma 11.
Assume w > w,, and let EeM, , be such that En 8" < [T,], Let B < E™w
be an n,, ball with centre in the origin and radius r > 0, such that
(1-¢,)B<o,(C,) < B
Let x be a point in £ n.bd C,,. Since by, (x/|x||) < A and o, (C,,) < B, we find
Ix]| < Ainf{||y|: yebd C,}
= Ainf{|y||: yebd (02, (Cu))}

< Ar.
This means (1—e,)(BNE)<C,nE<ABnNE)
or oc(OwnE)<A+i{”_1<A+%A€°—1<eo,

and (56) is established.
It follows from continuity arguments that 7,, n F + &, for each w and each 2-dimen-
sional subspace ¥ of E™. Hence

V’nw,Z(Tw) =1, w=1, 2: cee e (57)
By Lemma 1 we have, forw = 1,2, ...,

Va1 l(T)go] 2 Vay, o T,) (1 —€Xp (—cpo/n,))?
= (1—9XP(—CP~/"'w))2: (58)
where cis a positive constant. Forw = 1,2, ...,and X < S lweset X' = S\ X. By

(55) and (56) we conclude

12

mo il Do)y = 8 for all  w > w,. (59)

35-2

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:05:14, subject to the Cambridge Core terms of use,
available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100051355


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100051355
https:/www.cambridge.org/core

546 D. G. LarMax AND P. MANI

Since (Tw)3p) = UT)plypr
we find, again by Lemma 1,

Vi 1[(Ti0)gp]" 2 Vi il ((Te))3)
2 (Vng, k(1)) (1 —exp(— k)P«/nw))"
> 4, (1 exp (—d(k) paln,)) (60)
for all w > w,, where d(k) is a positive number dependmg only on k.
From (58) and (60) we deduce that, for some natural number w, we have

nw 1(( )&p) +v, ((Tw)ﬁ-p)l > 1’
which contradicts the fact that (7,,);, and ((Tw)gp)’ are disjoint symmetric Borel
subsets of S™—1,

7. Proof of Theorem 2. Itis enough to consider the case where p is the origin of B,
Using the notation of the statement of Theorem 2, we determine 8;,0 < 8, < 1 such
that (1—6,)2 > 1 §. We determine the numbers ¢, = ¢,(¢, 8;, k) €(0, 1) and

N, = ny(€, 81, k)
a natural number according to Lemma 12. Then we set
M(G, 8’ k) = N(el (6, 81’ k)a alinl(el 81’ k))’

where the integer IV is determined according to Theorem 1.
Assume n > M(e, 0, k), and let C < E™ be a convex body containing the origin 0 of
E" in its interior. Let 7' be a standard transformation of C with respect to 0. Then,

by Theorem 1,
:un,nl{E: EEMn, ny? a((TO-n(C)) n E) < 61} >1- 81' (61)

By Lemma 12 we have, for each ¥ in M, , with
((To,(O) nE) < ey,
e FeMg ., a(T(C)nF)<e >1-46y, (62)

where My, ,, is the space of all k-dimensional subspaces of E™ contained in E, and
Mg, 1 is the Haar measure on My, ;.. Then (61) and (62) give the desired result

Mo i FeM, ,,a(TO)NF)<e>1-62>1-6.
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