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SUMMARY
The displacements of a vehicle on a plane can be subject
to constraints depending on the nature of the vehicle.
One can, for instance, think of the existence of a smallest
turning circle for a car.

In this paper our purpose is to show, on a simple
example, how such constraints can be handled. We, in
fact, consider the case of a vehicle the motions of which
consist of a finite sequence of rotations, each rotation
being subject to the following constraints.
1) The radius of the circles along which the displace-

ments of the vehicle take place are larger than a
critical radius.

2) The centers of the successive rotations are located
along a straight line defined by the geometry of the
vehicle.

The mathematical analysis of this problem relies on a
suitable choice of frames of reference in which the
expression of the constraints is particularly simple. It is
then shown that, under the above constraints, an
arbitrary displacement can always be achieved by three
approriate rotations.

KEYWORDS: Successive rotations; Vehicles; Constraints;
Arbitrary displacements.

1. INTRODUCTION
In robotics the displacements of objects, vehicles or,
more generally, systems are defined by a number of
controlled axes. For a given position of the system the
controlled axes allow, in general, to define a restricted
family of possible trajectories in such a way that it will
frequently be impossible to pass from an initial position
to an arbitrary one without performing displacements
along successive trajectories. For instance, an aeroplane
will not be able to reach the same location in space, but
with the reverse direction, with a single displacement. In
this paper we will be mainly interested in the motions of
vehicles on a plane.

The displacements of vehicles as, for example, mobile
robots on a plane are subject to a set of constraints
restricting the types of motions which can effectively be
performed. These constraints can be of different natures.
Some of them are imposed by the mechanical system
allowing the robot to move on the plane. We can, for
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instance, think of a car the motions of which are
naturally limited by its smallest turning circle.

Some other restrictions may result from obstacles
located on the plane. In other words, there may exist
domains of the plane through which the robot is not
allowed to run.

It may be of interest to know to which extent a robot
can, under some specified constraints, move, from a
given position of the plane to an arbitrary one, with the
smallest number of displacements. In this study we have
been interested in the displacements of a vehicle on a
plane which can be expressed with the help of a finite
number p or rotations (performed successively). We
assume that each rotation satisfies the following
requirements:

1) The radius of the circles along which the
displacements of the vehicle take place is larger than a
critical radius Ro.

2) The centers of the successive rotations are located
along straight lines defined by the geometry of the
vehicle.

In the example of the displacements of a car, given
above, the first requirement corresponds to the
restriction imposed by the smallest turning circle,
whereas the second expresses the fact that the center of
rotation must be located along the straight line defined
by the rear wheels.

In summary, our problem is thus to determine the
least number p of rotations, satisfying conditions 1) and
2) and allowing to pass from a given position of the plane
to another one, given but arbitrary.

It is easy to imagine that the above restrictions are
more easily expressed in a frame of reference which
occupies a special position with respect to the vehicle.
We consequently devote the second section to a
derivation of the general transformations allowing to
pass from a fixed frame of reference to another one in
which the rotation automatically fulfills the second
requirement.

The effects of these constraints on these transforma-
tions are studied in the third section and a general
expression, corresponding to p rotations, successively
performed, is derived. Making use of this result, we
show, in the fourth section, that the problem can always
be solved for p ^ 3. Special situations corresponding to
p = 2 are studied.

The existence of such transformations for p = 3 being
established, we give in the fifth section a procedure
allowing one to geometrically build a solution. In the last
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410 Vehicles displacements

section, we finally consider some possible generaliza-
tions of the present work.

2. GENERAL TRANSFORMATIONS BETWEEN
FRAMES OF REFERENCE
As already pointed out in the introduction our purpose
in this section is to derive the form of a general
transformation from a fixed frame of reference to a
"moving one".

Let us recall that in many cases constraints depending
on the nature of the vehicle are expressed in a simpler
way in some special frames of reference directly related
to the displacements and to the geometry of the vehicle.

Having in mind the derivation of such transformations
we introduce the following notations:

E2: classical Euclidian plane (dimension 2),
2: fixed frame of reference with an orthonormal

basis (e,,e2),
2y: frames of reference with origin aw with respect

to 2 and orthonormal basis (e^, e.2
y)), / =

1,2, ... ,p.
Let Q be a point of Ez described by the vectors x with
respect to 2 and xw with respect to 2y. From the above
definitions we have that:

We thus get

x = x0) aO) ; = (2.1)

We denote by D, a rotation around the origin of 1/ and
look for the mapping Pjt of E2 into E2, which
corresponds to Dt when considered from the fixed frame
of reference 2. We have:

: = D;(x - a0)) + a0). (2.2)

The general mapping we are interested in is obtained by
successively performing the rotations Dx, D2,. . . , Dp in
the corresponding frames 2 1 , . . . , If. In 2 this leads to
the mapping P defined by:

>. (2.4)

As already mentioned in the introduction the frames of
reference 21 to 2P are not arbitrary but depend on the
successive positions of the vehicle. In order to take this
fact into account, we introduce some additional
notations. We set:

3', frame of reference bound to the vehicle, with
orthonormal bases (e^, £2

y)), before performing
the rotation by Djy

b0), origin of Ey from 2;,
c^, origin of E; from 2.

Recalling that a0) is the origin of 2 ; from 2, we see
(Figure 1) that

cw = aw + bw. (2.5)

In summary, the 2 ; are the frames of reference from
which the displacements of the vehicle will be easily
described; there origins are given by the a0).

The positions of the vehicle are described by a frame
of reference bound to it. Its locations will successively
correspond to the E', the origins of which are given,
from 2, by the c0).

We note that the rotation DJt performed in 2y, sends
3/ into S/+I. This implies that

or, taking (2.5) into account, that

Pi- (2.3)

g0) _ (/ _ D.^(j) (2.7)

One easily checks that this recursive relation allows us to
derive an explicit expression for cw. We have:

>j-i-I)bu~l). (2.8)

— it-

g. 1. Displacement corresponding to three successive rotations.
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Vehicles displacements 411

With this result we also draw from (2.5) that

aO) = c (0 _

(2.9)

Without loss of generality we identify 2 with S1 that is
we consider that, in its initial position, the frame of
reference bound to the vehicle is the fixed frame of
reference 2.

From now on we will thus assume that

c»> = 0. (2.10)

Taking (2.9) into account we obtain from (2.4) with an
induction procedure the following expression for P.

Px = DPDP.X • • • Dxx - £ (/ - £>,)b« (2.11)

or, with (2.8)

Px = DpDp_,- • •D1X + Q(P+1). (2.12)

In fact, for p = I, (2.4) reads

Px = D1x + (/-D,)a( 1 ) (2.13)

and, with (2.10), (2.9) becomes

a<1)=-b}1). (2.14)

(2.11) is thus satisfied for p = \.
We assume that the result is valid for p — 1 and prove

it for p. In order to show this we put (2.4) in the form

Px = Dp[Dp_, • • • D,x + Dp.x • • • D2(I - D,)a(1) + • ••

+ (/ - J V O a ^ 0 ] + (/ - Dp)aw, (2.15)

or, with the induction hypothesis and (2.11),

Px = DP\DP.X • • • Dxx -"f, (/ - D,)b«l
L ;=1 J

- (/ - Z)p)(bw + "£ (/ - Oy)bw). (2.16)

This expression immediately leads to (2.11).
From a geometrical point of view the mapping P

performs a rotation by Dp • • • Dx of the position vector
x, followed by a translation which corresponds to the
evolution of the origin of the frame of reference bound
to the vehicle through the different rotations.

Remarks
1. Let us note the expression

( / -D y )b w (2.17)

is precisely the translation allowing to pass from E' to

2. The general expression for P, given by (2.11), is
important for it directly depends on the b0), that is
on the relative position of E' with respect to 2y. We
will see that the restrictions imposed on the rotations
will take a particularly simple form when expressed in
terms of the bw.

3. All the results derived up to here remain valid for
motions in £3.

3. THE CONSTRAINTS
Up to here no restrictions have been enforced upon the
transformations Py defined above. Our next task will be
to give a precise definition of the constraints imposed on
the mapping. We require that:

|bw|>K0, j = l,2,...,p, (3.1)

(b( / ) ,_4/ )) = 0, y = l , 2 , ...,p, (3.2)

where Ro is a positive number , known as the critical
radius.

b w being a vector of 2y, denoting the origin of "3, we
see that (3.1) means that the radius of the circle
described by the vehicle, when moving through the
rotation Djt must be larger than the critical radius Ro.
The second requirement corresponds to the fact that the
direction defined by the first basis vector of the frame of
reference bound to the vehicle must be identical to the
direction defined by the tangent to the circle on which
the displacement takes place.

In the example of the car moving on a plane, the first
condition means that the turning circle must have a
radius larger than Ro whereas the second tells us that this
circle must be orthogonal to the straight line defined by
the axle of the rear wheel.

Condition (3.2) is not very convenient for it directly
depends on the bases (ejl\ e}2)) of zl. In order to
remove this dependence we note that, with the
identification of 2 and S1, previously done, (e)" = §,, j =
1, 2), by (2.12), for p=j,

Pek = Dr-Dxck + c'+l (3.3)

or c/+1 being the origin of Ey+I.

£ P = D l - l D j . 2 - - - D l § k , j = l , . . . , p , k = l , 2 . ( 3 . 4 )

Taking account of (3.4) we thus find from (3.2) that

b</> = bpV = D,.XD,.2 • • • Dtbfr, (3.5)
where the first equality can be considered as a definition
of bj.

Defining the vectors

d w = - 6 y 6 , , j = l,..-,p. (3.6)
We can finally write (2.11) in the form

Px = Dp • • • Dxx + £ (/ - D,)D,.X • • • D,d0 ) . (3.7)

By (3.5) (and (3.6)), (3.7) represents a transformation
for which condition (3.2) is satisfied for each rotation; it
moreover depends on vectors which are all defined in the
frame of reference 2.

The only requirement we still have to fulfill is (3.1).
With (3.5) and (3.6) again it reads

|fc,.| = | d w | > « 0 . (3.8)

Gathering the obtained results we see that we are led to
find solutions of the following problem:

Problem (P)
Let 2 and 2 ' be two arbitrary frames of reference of E2

with orthonormal bases respectively given by (e,, e2) and
(si.si).
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412 Vehicles displacements

Find the smallest integer p for which the mapping P of
E2 into E2 defined by

Fx = Dp • • • D,x + £ (/ - Dy)Dy_, • • • D,dw, (3.9)

sends e* into §*, for A; = 1,2, under the following
conditions:

where b, satisfies

3; e 50(2), 7 = 1, . . . , p,

(3.10)

(3.11)

(3.12)

where 5O(2) is the group of orthogonal transforma-
tions with unit determinant (rotations without
inversion).

4. SOLUTIONS OR PROBLEM (P)
In the search for solutions of the above problem, to
which this section is devoted, we will use the following
classical result.

Theorem 1. Every displacement of a rigid body in the
Euclidian plane E2 can be expressed by a transformation
P, of E2 into E2 of the form

Dx + t, (4.1)

where D e SO(2) and t e U2.

Proof: See for example Whittaker.1

We recall that a rigid body is geometrically
represented by a finite domain of E2 the shape of which
is not changed by the displacements; in other words, in a
frame of reference bound to the rigid body the
coordinates of its points, which constitute the body, are
independent of the displacements.

With this result problem (P) reduces to

Problem (P1)
DeSO(2) and telR2 being given, find the smallest
integer p for which there exists a mapping P of E2 into
F2 defined by

Dp • • • AX + 2 (/ - D,)D,_X • • • A d w (4.2)

satisfying (3.10) to (3.12),

D = D P - D X (4.3)
and

In the following the transformations D and Dv

j = 1,. .., p will be identified with their corresponding
matrices computed in 2. That is

where

In order to solve problem (P') we will consider
separately the cases p = 2 and p = 3.

I) Case p = 2
When D and t are such that the smallest p is equal to 2,
we find from (4.3) and (4.4) that

D = D{D2, (4.7)

t = d(1) + A(d(2) - d(1)) - DS2\ (4.8)

or in components, with (3.10) (6y = —djj = 1, 2) that

, (4.9)

(4.10)

Taking the square of (4.9) and (4.10) we get, with (4.6),

it, - dx+cd2y+(t2 - s

Two cases must be considered:
a) D = I, i.e. c = 1 and s = 0.
(4.11) thus becomes

b) £>¥=/, i.e. c # l .
In this case (4.11) can be written in the form

(4.

(4.12)

- c)2

2(1-c) 2

(4.13)

Several results can be drawn from (4.12) and (4.13) they
are contained in the next theorem.

Theorem 2
i) When a displacement is reduced to a non-vanishing

translation without rotation, the direction of which is
different of the one given by e2, the smallest p is
equal to 2 and the equation

di = d2 + -j- (4.14)

always admits solutions satisfying the conditions

\dj\>R0, / = 1,2. (4.15)

ii) When the displacement is not reduced to a
translation and when

k=^-
2(1-c) 2

is not vanishing, conditions

ct i — st2

or
1-c

t.

>Ro

1-c
>R0.

(4.16)

(4.17)

(4.18)

c2 + s2 = 1 and cf + sj = 1. (4.6)

are sufficient for the existence of solutions satisfying
(4.15).

iii) When the displacement is reduced to a rotation
without translation (4.15) can never be fulfilled (for
p = 2).
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Vehicles displacements 413

Proof: i) t being non-trivial, with tx ¥=0, (4.12) yields
the relation

di = d2 + - y . (4.19)

We choose d2 such that \d2\ = Ro and sgn d2 = sgn tx. This
choice implies that |d,| > Ro whence (4.15) is satisfied,
ii) Let

from which we find

a = — 1 - c

b =
1 - c '

With these notations (4.13) becomes

{dx-a)(d2-b) = -k.

(4.20)

(4.21)

(4.22)

Assuming that (4.17) is satisfied, we see from (4.22) that,
k being different of naught, we can choose d, arbitrarily
close to a and such that |d,|>/?0- This implies that
|<i2| > RQ for an appropriate choice of dx.

This proves the existence of solutions for which (4.15)
is satisfied. The case, where (4.18) is fulfilled, is handled
in the same way.
iii) When the displacement consists of a non-trivial
rotation (without translation) (4.11) reduces to

(4.23)

so that (4.15) can never be satisfied.

II) Case p = 3
When p = 3, (4.3) and (4.4) become,

t = (/ -

Let us set:

D = D3D2DU (4.24)

- £>2)D,d(2) + (/ - D3)D2D,d(3).

(4.25)

D = D2DU

t = t -Dd ( 3 ) + Dd(3).

With these notations (4.25) takes the form

£>,(d(2) - d(1)) - Dd(2).t = d(

(4.26)

(4.27)

(4.28)

Comparing (4.26) and (4.28) with (4.7) and (4.8) we see
that the problem for p = 3 is reduced to the problem for
p = 2 but for the translation t which is defined by (4.27)
and consequently depends on d3 and D3. Our task is thus
to show that it is always possible to choose d3 and D3 in
such a way that
l)\d3\>R0.
2) The resulting problem for D = DXD2 and t, which is a

problem for p = 2, has a solution.
We obtain this result in two steps:
• Similarly to (4.5), we denote by s and c the coefficients

of the matrix D and show that the condition (4.18) can
always be satisfied. In fact, with (4.27)

1 - c 1 -c 1 -c
c
zd3, (4.29)

h
1-c

c — c
1-c \d3\

t-i

1-c
For any value of c, such that

Since we can thus find d3 such that

1.

2.
1-c

>Ro,

(4.30)

(4.31)

(4.32)

(4.33)

This shows that, if k given by (4.16), with tx, t2 and c
instead of tu t2 and c, is non-vanishing, Theorem 2
applies.

• We now have to see that the k just defined can
effectively be chosen different from zero. From (4.16)
we have that

k=^-
c)22(1-c)

and from (4.27) that

From (4.34) k # 0 means that

or with (4.35) and (4.36) that

(1 + c)t, - t2s + d3(c -c-cc *d3

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Since the only conditions on d3 are (4.32), which is
derived from (4.30), and (4.33), we see that it will always
be possible to choose d3 in such a way that (4.38) be
effectively different from zero, as long as

( c - c - c c + s i ) = £ l . (4.39)

The only conditions on c (and s = Vl - c2) are given by
(4.31) so that there always exists a possible choice of c
for which (4.39) is satisfied (if c = 0, then ^ 0 and (4.38)
is easily satisfied). With these different results we see
that the solution of our problem can be obtained in the
following way:
• Choose c, and thus s, in such a way that (4.31) and

(4.39) are fulfilled.
• Define D3 by

D3 = D~'D. (4.40)
• Choose d3 such that (4.32), (4.33) and (4.38) are

satisfied.
• Compute t given by (4.28).
• The condition (4.32) being verified Theorem 2 applies

and possible du d2, D, and D2 can be computed
through formula (4.13) where tut2,s and c are
replaced by t,, t2,s and c.

We summarize our results in the next theorem.

Theorem 3
i) The value of the integer p defining the number of

necessary rotations of problem (P) (or (P')) is always
smaller or equal to 3.

ii) In the absence of translation p is always equal to 3.
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414 Vehicles displacements

Proof: i) results from the above derivation whereas ii) is
a consequence of Theorem 2 and of i).

5. SOLUTIONS DERIVED BY GEOMETRICAL
MEANS
Having shown that a displacement of a vehicle subject to
the constraints defined by (3.1) and (3.2) can always be
achieved by three rotations we show in this section that
for some special choices of the rotations D\, D2 and D3

geometrical solutions can be easily obtained.
We consider separately again the p - 2 and p = 3

cases.

I) Thep=2 case
We recall that, according to (2.10), we have, forp = 2, a
general transformation of the form

Px = D2D,x -(I- D,)b(1) - (/ - D2)b<2>. (5.1)

Pure translations
We have shown that translations of a vehicle in a
direction different of the one given by e2 can always be
achieved by two rotations. In our model the different
positions of a vehicle are entirely defined by the unit
vector bound to it which is, before the /th rotation,
perpendicular to bw.

Let e2 and e2 be two unit vectors of E2 corresponding
to two positions of a vehicle. We now show how it is
possible to geometrically derive a mapping P (of the
form (5.1)) sending e2 into e2 and satisfying (3.1) and
(3.2).

Let e2 and e2 be parallel unit vectors (not linearly
dependent) which are sent into one another by a
translation (not in the direction defined by e2).

In order to build the transformation sending e2 into
e2 we draw a circle S{ of radius b{ > Ro, tangential to e2

and not involving e2 (Figure 2). The straight line passing
through the origins of e2 and §2 crosses 5] at a point m.
We now define the center C2 of the circle ^ as the
intersection of the straight line joining m with the center
Cx of 5, and the straight line orthogonal to e2; the radius
b2 of 52 being equal to the segment from C2 to m. This
construction is the well known homothetic transforma-
tion of center m and ratio b2lbx.

Fig. 3. p = 2 case. Arbitrary displacement but for two positions
which are "sufficiently far away".

It is clear, by the properties of homothetic
transformations, that the rotation angles corresponding
to the passage from e2 to e2 and from e2 to e2 are, but
for the sign, equal. We have thus built a transformation
for which /?, and b2 are larger than Ro and where
Dx = Dr ' as it should.

It is now an easy matter to see that the transformation
we have just built is the same as (5.1), for D2 - D\~l.

General transformation
We have seen that, under some circumstances, when the
distance between e2 and §2 is sufficiently large, p = 2
solutions can exist.

e2 and §2 being given as in the Figure 3, we take the
center Ct of the circle 5, as the intersection of the
normals to e2 and e2; the radius of 5, being given by the
segment joining Cx to the origin of e2.

We define e2 as the unit vector tangent to 5, and
located on the normal to e2 • e2 and e2 are then prallel
but of opposite directions so that there exists a circle 52

which is tangent to these two vectors.
The process will be possible when fe, and b2 are larger

than Ro. If this is the case the rotations D, and D2 are
defined by the motions of respectively e2 to e2 on 5, and
e2 to §2 on S2.

The correspondence with (5.1) is now immediate.

Fig. 2. p = 2 case. Translation in a direction which is not
parallel to e2.

II) The p = 3 case. Translation
As shown in section 3 the translation of e2, along a
straight line carrying e2 itself, has no solution for p = 2.
We first consider this special case.

We assume that the two vectors e2 and e2 are carried
by a straight line, as in Figure 4. We now carry e2 along
a circle 5t, tangent to §2, with radius fc, > Ro through a
rotation of JT/2. The image e2 of §2 is then rotated along
a circle S2 the center of which is defined by the
intersection of the normal to e2, with the normal to e2.
The rotation performed is again of JI/2 and the image e2

of e2 is a unit vector, located on the normal to §2 and
parallel to e2 but with opposite direction. It is then clear
that e2 can be carried into e2 by a motion along the circle
S3 which is tangent to these two vectors.
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C,

Fig. 4. p = 3 case. Translation in a direction parallel to e.2.

We point out that the radius b2 and b3 of the circles S2
and S3 can always be chosen larger than Ro for an
appropriate choice of b\.

It is now an easy matter to see that this construction
corresponds to the relation (2.11) for p = 3, DX = D2,
rotations of nil, and D3, rotation of —n.

General transformation
We finally consider the case of a general motion for
which £>#/, the translation being arbitrary. Let e2 and

§2 be two unit vectors of E2, not carried by parallel
straight lines, as in Figure 5. By a displacement on a
circle of radius bx>Ro, tangent to e2, we send e2 into a
vector e2 parallel to e2. If e2 is not carried by the same
straight line we are back to one of the p = 2 cases
handled above.

Finally we remark that by an appropriate choice of bx

we can always avoid the case where e2 and e2 are carried
on the same straight line.

The correspondence with (2.11) for p = 3 is again
immediate, the rotations being such that D = Dt and

6. CONCLUSIONS
Our purpose in this paper is to show, on the basis of a
simple example, how motions of vehicles subject to
some constraints can be handled.

It may, however, be worthwhile pointing out that the
first two sections have been written in a form which can
immediately be generalised in the Euclidian space E".
From the above results it is apparent that a certain
amount of freedom still remains on the choices of the
possible motions. This freedom could be used to impose
some additional conditions on the motions suggested by
the operations a given robot is supposed to achieve. We
think for example, of the presence on the plane of
circular obstacles, that is of circular domains, the vehicle
cannot cross, or of a choice of a path for which the
covered distance is minimal.

We, however, think that such studies should not be
pursued any further on general situations but must be
handled in the case of some specific problems.

In this paper we have been considering operations of
rotation only. It is easy to see that translations could be
included without difficulties, as a limit of a rotation the
angle of which is then a function of this radius tending to
zero.

In fact, when the rotation angle is small enough an
increase of the radius by a factor A > 1 leads to a
decrease of this angle by a factor A"1, so that the
expression

in. (/-D(f))«. (6.1)

Fig. 5. Arbitrary displacement.

where d is a given vector and a a given rotation angle, is
well defined and corresponds to a translation.

Such limits could be introduced in (3.7), allowing one
to combine rotations and translations.
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