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The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human sub-

jects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in

short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, mag-

netic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy,

positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan,

brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional

outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate

instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little

information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally

cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli.

The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo infor-

mation on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers

within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural,

metabolic or functional) and anticipated timescale of the intervention’s effects, target population, availability and costs of the techniques.

The brain is the most complex organ in the human body.

It contains approximately 100 billion neurons, with each

being connected by synapses to several thousands of other

neurons. The brain controls physiological functions including,

but not limited to, the sleep/wake cycle, arousal/attention,

perception, mood, motivation, emotion, appetite/satiety,

reward, learning/memory, speech, planning/executive pro-

cesses and voluntary movements. The brain is a metabolically

highly active organ that utilises a relatively large proportion

of total nutrient and energy intake throughout the lifespan.

Furthermore, the development and repair of neural tissue

depends on the proper intake of essential nutrients, minerals

and vitamins. Therefore, what we eat, or refrain from eating,

may have an important impact on our cognitive ability and

mental performance. There are two key areas in which diet

plays an important role: supporting motor and cognitive

neurodevelopment in children and preventing neurodegen-

eration and cognitive decline during ageing.

Neuronal and behavioural responses to nutrients are com-

plex and their relationships to each other are often unclear.

Nevertheless, there are several well-described routes by

which diet may affect neurochemistry and brain function.

Food and nutrient intake can modulate the availability of

precursors or act as enzyme cofactors required for the syn-

thesis and function of neurotransmitters, neurotrophic factors

and psychoactive hormones. Dietary precursors participate

in the formation and composition of neural membranes and

synapses. Nutrients also affect cerebral blood flow (CBF),

with a direct influence on energy and nutrient availability in

the brain(1). Some of the nutritional effects on brain function

(e.g. changes related to cell signalling and energy supply)

may be short lasting. For example, acute tryptophan depletion

in women vulnerable to depressive symptoms has been

shown to provoke a short-term relapse of clinically significant

depressive symptoms(2). On the other hand, supplementation

of nutrients might have long-term effects on brain structure

and function. For example, nutrient enrichment in preterm

infants can affect neurodevelopmental outcomes and brain

structure years, and even decades, after a short-term inter-

vention(3). During the last few decades, the body of evidence

from both observational and intervention human studies

investigating the modulation of brain function by nutrients

has grown dramatically. We now have a solid basis for

translation into hypothesis-driven intervention studies and,

ultimately, into evidence-based practices.

The magnitude of the economic and societal burden related

to brain dysfunction is becoming increasingly evident. A recent

study by the European College of Neuropsychopharmacology

has indicated that 38·2 % of the European Union population,

or 168 million people, suffer from a mental disorder(4). This

was estimated to cost e798 billion in 2010(5). The potential

of nutrition to reduce the burden of impaired brain function

has been illustrated by many studies reporting links between

either poor nutrient intake or nutrient enrichment and

brain function across the lifespan, from (pre)term infants to

the elderly, and in various neurodevelopmental, neurological

and psychiatric conditions(1,6–10).

Despite great progress in the fields of neuroscience,

neuropsychology and nutritional science in terms of under-

standing the relationships between brain function and

nutrition, research assessing these long-term relationships, as

well as human data regarding mechanisms of action, is

hindered by practical feasibility or methodological constraints.

In 2009, the Nutrition and Mental Performance Task Force

of the European Branch of the International Life Sciences

Institute (ILSI Europe) convened a workshop to evaluate the

methodological challenges and opportunities related to study-

ing the long-term effects of nutrition(11). One recommendation

from the workshop was to include brain imaging biomarkers

as secondary endpoints in future intervention studies to

produce study outcomes that supplement clinical or cognitive

measures. Brain imaging biomarkers might improve our

understanding of mechanisms of action and may potentially

provide more sensitive measures that predict long-term effects

earlier, thereby shortening the required trial duration(12).

The aim of the present review was to provide a com-

prehensive overview of brain imaging techniques and the

existing knowledge regarding the quality of imaging markers

commonly used to assess brain structure and functions in

human subjects. Specifically, we describe MRI and its multi-

modal assessment capacity, electroencephalography (EEG)/

magnetoencephalography (MEG), near-IR spectroscopy (NIRS),
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positron emission tomography (PET) and single-photon

emission computerised tomography (SPECT) from the per-

spective of how they could have a place in nutritional

intervention studies (Table 1). We have included a description

of the aforementioned brain imaging techniques, the bio-

logical relevance of their measures, their practical feasibility,

their sensitivity to age and in specific populations, and their

recommended use in nutritional intervention studies. Such

descriptions are expected to contribute to the identification

of an appropriate set of relevant imaging measures with

two main features. On the one hand, these techniques may

allow the measurement of neurostructural, neurophysiological

and neurochemical changes occurring over the lifespan and

after nutritional interventions. On the other hand, they may

elucidate the specific biological processes implicated in the

changes in brain function during development and ageing

and the means by which a nutritional intervention can modu-

late these changes. Of particular note, we have focused on the

general population, especially those age groups that may be

particularly sensitive to factors influential in periods of rapid

brain development or to deteriorating brain function (e.g.

infants and elderly).

MRI: brain structural, metabolic and functional
assessments for nutritional research

MRI techniques as a multimodal approach

The advent of non-invasive MRI was a breakthrough to assess

the human brain in vivo, greatly expanding the possibilities of

investigating brain structure and function. It was originally

developed as a medical imaging tool to provide detailed

scans of the structures of internal organs, using magnetic

fields and radiofrequency pulses. The MRI scanner uses a

very powerful magnetic field to align atoms in the body.

Radiofrequency pulses are then applied to disturb this align-

ment; as the nuclei return to alignment, they rotate and pro-

duce an electrical field that the scanner detects and uses to

produce images. In the case of the brain, MRI scans provide

detailed pictures of grey and white matter, vessels, cerebrosp-

inal fluid and bone. Clinically, neuroradiologists usually inter-

pret scans by visual inspection; however, in order to reveal

more subtle features, other techniques that depend on post-

acquisition processing of the scans have been developed.

The combination of MRI as a multimodal tool with post-

acquisition processing techniques provides a powerful

technology for the study of the effects of nutrition on brain

development and ageing. Within the broad divisions of

macro- and microstructural, metabolic and functional imaging,

a variety of techniques have emerged from magnetic reson-

ance (MR), leading to a multimodal assessment of the brain.

For the examination of overall brain structure, a three-

dimensional anatomical dataset of T1- and T2-weighted

images, basic scans that provide a good contrast between

grey matter and white matter, is collected, allowing recon-

struction of the brain in three planes. Diffusion-weighted

imaging and diffusion tensor imaging (DTI) datasets provide

measures of water diffusion properties within the tissue and

determine the microstructural characteristics of white and

grey matter. In addition, magnetic resonance spectroscopy

(MRS) based on proton (1H-MRS) and 31P (31P-MRS) magnetic

properties measures the levels of different metabolites in body

tissues, and functional MRI (fMRI) can be used to reveal brain

structures and processes associated with perception, thought

and action in response to sensory stimuli. The neural activity

of the brain is closely linked to changes in blood flow and

blood oxygenation in the brain (known as haemodynamics).

Additional details on these measurements are given in Table 1.

Costs of MRI may vary regionally but are relatively high, not

only due to the scanning time (depending on the number of

MR sequences needed) and the cost of the equipment, but

also in terms of image post-processing and analysis.

MRI acquisition, post-processing and MRI-derived
measures

In human subjects, MRI scans are most commonly obtained

using a scanner with a magnetic field strength of 1·5 or 3 T.

All studies begin with the acquisition of scans using an imaging

protocol designed to provide the information best suited to the

chosen method of analysis. In order to compare different

groups of a clinical/research study, the image signal and its

properties need further post-processing operations to gather

useful, reliable and comparable data. Different types of data

are provided by the different methods. Some of the most

widely used protocols and their respective post-processing

considerations are described in the following sections.

Structural MRI. Morphometry and volumetrics refer to the

measurement of physical form characteristics such as volumes

of brain structures or thickness of cortices. Originally, these

could only be measured manually by drawing about the

perimeter of a structure on a series of T1–T2 conventional

scans and then calculating the volume. Because it was time

consuming and prone to error in some instances, its use was

also restricted to structures that were clearly delineated (e.g.

the hippocampus) rather than to those with less clear bound-

aries (e.g. some frontal lobe areas). Semi-automated and fully

automated methods that label the neuroanatomical structures

on the basis of probability information obtained from a train-

ing set of images that have been manually labelled have now

become available(13). The volumes of these structures (Fig. 2)

are calculated and can then be used in statistical analyses. Cor-

tical thickness can be estimated by means of an automated

surface reconstruction scheme(14–20), and scans from different

time points or individuals can be compared at each vertex

across the entire cortical mantle and may be related to other

variables of interest. These techniques have been validated

via histological(21) and manual measurements(22). The cortical

surface can also be parcellated into a number of different

regions of interest, for which information on surface area,

thickness and volume can be estimated(23).

Voxel-based morphometry (VBM)(24) was designed to inves-

tigate local differences in the distribution of grey and white

matter in the brain. The scans are segmented into separate

grey and white matter images and entered into the VBM anal-

ysis; for analytical purposes, the brain is divided into small
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Table 1. Summary of the key features of imaging measurements

Method Measures
Structure, function
and metabolism

Biological and
clinical relevance Acute/chronic Temporal/spatial Age Availability Cost Remarks

MRI, fMRI and MRS
Structural 3D MRI Grey/white matter density

and volumes and
cortical thickness and
folding; proton charac-
teristics, e.g. density
and relaxation times

Gross neural
macrostructure

Overall brain growth
or atrophy; brain
maturation

Acute/chronic.
Excellent for
studying the long-
term effects of
early intervention

Good spatial
resolution

0–6 months;
$4 years*

High Medium Non-invasive; becoming
more available as
scanners proliferate;
variety of analysis
tools available; high
reliability

DTI Diffusion measures
(ADC and FA)

Neural microstruc-
ture and tissue
properties

Degree of diffusivity and
alteration of micro-
structure in correlation
with development,
ageing and interven-
tion

Acute/chronic.
Excellent for
studying the long-
term effects of
early intervention

Good spatial
resolution

0–6 months;
$4 years*

High Medium As given above

fMRI Neuronal function (VO2) Neural activity in
resting state or
in response to
stimuli

Neuronal activation Acute/chronic Low temporal resol-
ution and good
spatial resolution

0–6 months;
$4 years*

Average Medium As given above

H-MRS Metabolic profile: cre-
atine; lactate; N-acetyl
aspartate; myoinositol;
choline; glutamate/
glutamine

Energy metab-
olism; neural
integrity; mem-
brane com-
ponents; neuro-
transmission

Currently exploratory:
changes in brain
metabolism during
development, ageing
and intervention

Probably excellent
for studying the
acute effects of
intervention. Not
clear for long-
term changes

Good temporal and
spatial resolution

0–6 months;
$4 years*

Average Medium As given above

P-MRS Phosphomonoesters;
phosphodiesters;
phosphocreatine; ATP;
energy phosphates

Neural membrane
formation and
breakdown and
cell energy
metabolism

Currently exploratory:
during development,
ageing and disease,
metabolite changes
measured in 31P-MRS
have been monitored
and normative curves
for normal develop-
ment have been
established

Probably excellent
for studying the
acute effects of
intervention. Not
clear for long-
term changes

Good temporal and
spatial resolution

0–6 months;
$4 years*

Low Medium As given above

EEG/MEG Resting-state brain
activity/ERP/ERF

Electrical curren-
ts/magnetic
fields mainly
generated by
synchronised
activity of corti-
cal neurons

Changes in brain activity
during rest, sensory
stimuli and cognitive
tasks in healthy and
diseased states as
well as during devel-
opment and ageing

Acute/chronic Very good temporal
resolution and poor
spatial resolution
(standard EEG);
moderate spatial
resolution (high-
resolution EEG)
and high spatial
resolution (MEG)

All ages High Low/
medium

Non-invasive, inexpen-
sive, high temporal
resolution, low-to-
moderate spatial
resolution, highly
translational, neural
correlates of resting
state and cognitive
function

NIRS Oxygenated and deoxy-
genated Hb in the
upper layers of the
cortex

Neural activity
and/or simple
cerebral blood
flow and oxy-
genation

Varies with age and
within neurodevelop-
mental and neuro-
pathological groups

Early systems most
suited to acute
studies, but
newer quantitative
systems are well
suited to acute or
chronic designs

Poor spatial resolution
and high temporal
resolution

All ages Low Low NIRS has shown utility
in some relatively
simple nutritional
intervention studies,
and the newer
quantitative systems,
combined with the
employment of
multiple channels, will
make this a practical,
low-cost technique
in future studies
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cubic elements called voxels. Most commonly, groups of scans

are compared on a voxel-by-voxel basis to determine where

significant differences in the concentration, volume and/or

density of grey or white matter occur between groups.

Voxel-by-voxel correlations with other variables (e.g. beha-

vioural) can also be determined. These analyses produce

statistical parameter maps showing where differences between

groups (if any) and significant relationships with other variables

occur.

Sulcation and gyrification index analysis can be used to

assess cortical folding in vivo and to define a sulcation

index during development or disease. The analysis uses the

white matter and cortical grey matter contrast intensity inter-

face(25). A dramatic increase in the sulcation index, corre-

sponding to brain maturation from an unfolded state to its

gyrificated mature state near term, has been demonstrated

between 26 and 36 weeks of gestation(25).

Diffusion-weighted imaging/DTI captures microstructural

characteristics not apparent in standard anatomical images

by utilising the restricted water diffusion in biological brain tis-

sues. Depending on microscopic tissue characteristics (e.g.

properties of cell membranes, tissue orientation and myelina-

tion), water diffusion will differ by degree and direction. In

DTI, a first pulse introduced to the magnetic field determines

the initial position of the protons carried by water, while a

second pulse detects how far they have moved in space and

in which specific direction(26). In this way, we obtain a

metric of water diffusion, sensitive to structural characteristics.

The number of directions of diffusion measured varies from

a minimum of 6 to .100.

Several DTI metrics can be applied. Fractional anisotropy

(FA) is an intra-voxel index of the degree of diffusion

anisotropy (i.e. directionality of diffusion). Several features

contribute to FA, including myelin and axonal integrity(27,28),

and also complex structural features such as the degree

of fibre crossing(29). The constituents of FA are diffusion

measured parallel/axial to, and perpendicular/radial to, the

principal diffusion direction. In white matter, axial diffusion

usually means diffusion along the length of the axon. Any

neurobiological inference based on DTI measures must be

made with caution, since multiple features influence the

metrics(30). However, some hypotheses may be made,

depending on the group studied. For instance, to the extent

that a nutrient facilitates myelin or axon membrane integrity,

one might expect higher FA and lower diffusion measured

perpendicular/radial in selected regions in a nutrient-

facilitated group. Another commonly used metric is the

mean diffusivity, reflecting the degree of diffusivity in any

direction. This is an illustration of the tissue microstructure

and water content.

There are various ways of evaluating metrics and analysing

DTI data. One can delineate tracts of interest or define regions

of interest manually, or use automated tools, to conduct

voxel-wise statistical analyses of FA, diffusion measured

perpendicular/radial, diffusion measured parallel/axial or

mean diffusivity data. This can, for example, be done within

a white matter skeleton containing only voxels common toT
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groups of participants by using tract-based spatial statistics(31),

part of the FMRIB Software Library(32) (see Fig. 3 for an example).

MRS proton spectroscopy and phosphorus spectroscopy.

The MRS signal produces a spectrum of resonances that corre-

spond to different molecular arrangements of the 1H-proton

and 31P being excited. 1H-MRS and 31P-MRS measure different

metabolites that are respectively linked to specific brain com-

position and metabolism (Table 1). Because 31P is in lower

concentrations in the body than 1H, it has a lower signal:noise

ratio and therefore a higher magnetic field is required to

achieve a better spectral resolution (Fig. 1; Tables 2 and 3).

Furthermore, these techniques do require specific hardware.

It must be noted that with an increasing magnetic field,

spectral resolution is increased, allowing more precise

measurements of the targeted metabolites. Both can be used

to follow normal metabolic development and to detect

disorder-linked metabolic change. 1H-MRS allows neural

measurements of absolute metabolite concentrations during

development, such as choline, creatine, glutamine/glutamate,

lactate, myoinositol, macromolecular contributions, N-acetyl-

aspartate (NAA) and taurine(33–35). As gestational age incre-

ases, significant increases in NAA, glutamate and glutamine,

creatine, taurine levels, with decreases in lactate, myoinositol

and phosphoethanolamine levels, have been shown(33,34,36).

Regional differences are also present: subcortical areas such

as the thalamus showed early high levels of total creatine

and NAA, but, by contrast, periventricular white matter

showed very little NAA and lactate resonance(33,34,36). In the

adult and ageing normal brain, MRS has also been able to

characterise MRS-measured metabolite changes with age and

region. Mainly, NAA, NAA:choline and NAA:creatine ratios

are decreased in the hippocampus as well as in the semioval,

temporal and frontal regions in ageing brains(37,38). Further-

more, altered neuronal and glial mitochondrial functions are

also present in ageing brains and could be in part linked to

brain function decline(39,40). Glutamate, an important neuro-

transmitter, is reduced in the grey matter of the ageing

brain(41,42). White matter tracts also show altered NAA:choline

and NAA:creatine ratios for the corpus callosum and sple-

nium(43,44). These changes in grey and white matter metab-

olism appear to be linked to the reduction of cognition seen

in normal ageing(44–46).
31P-MRS specifically evaluates energy and phospholipid

metabolism by using phosphocreatine, ATP, inorganic phos-

phate, phosphocholine and phosphoethanolamine measure-

ments(35). In addition, the chemical shift of inorganic

phosphate is dependent on intracellular pH, allowing

tissue pH calculation. During development, ageing and dis-

ease metabolite changes measured in 31P-MRS have been

monitored and normative curves for normal development

have been established(35,47–51).

Functional MRI. Active neurons consume energy for the

duration of ongoing processing, resulting in a higher oxygen

need and a higher blood flow. This haemodynamic response

rises to a peak over 4–5 s, after which it normalises, leading

to local changes in the relative concentration of oxygenated

Hb (oxy-Hb) and deoxygenated Hb (deoxy-Hb) and changes

in local cerebral blood volume in addition to this change in

local CBF(52–54). fMRI measures these changes in blood

oxygen concentration by recording changes in blood oxygen

level-dependent (BOLD) signal. Oxy-Hb is a diamagnetic mol-

ecule and becomes paramagnetic when deoxygenated. The

(a1)

(a2)

(a3)

(a4)

4 3 2 1 0 20 15 10 5 0 –5 –10 –15 –20 –25

ppm ppm

(b1)

(b2)

(b3)

(b4)

PDE

Cho
(a) (b)

Cr
NAA

PME
PCr ATP

lac
pi

Fig. 1. 1H-MRS and 31P-MRS at 1·5 T. (a) Normal typical spectrum of proton spectroscopy of grey matter and changes during brain development. (a1) Normal

preterm infant born at 29 weeks of gestation (scan at 35 weeks), (a2) normal-term newborn, (a3) normal infant of 6 months and (a4) normal adult. (b) Normal typi-

cal spectrum of 31P spectroscopy of grey matter and changes during brain development. (b1) Normal preterm infant born at 29 weeks of gestation (scan at

35 weeks), (b2) normal-term newborn, (b3) normal infant of 6 months and (b4) normal adult. Cho, choline; Cr, creatine; NAA, N-acetylaspartate; Lac, lactate;

PME, phosphomonoesters; Pi, inorganic phosphates; PCr, phosphocreatine; PDE, phosphodiesters; NTP, nucleotide triphosphate. Reproduced from Robertson &

Cox(254).
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MR signal of blood is therefore slightly different depending on

the level of oxygenation in the local capillaries. These differ-

ential signals can be detected using an appropriate MR pulse

sequence (i.e. the BOLD signal mentioned previously).

Higher BOLD signal intensities arise from decreases in the

concentration of deoxy-Hb. These changes can be either posi-

tive or negative depending on the relative changes in both

CBF and VO2. Increases in CBF that exceed changes in VO2

will lead to an increased BOLD signal. In contrast, decreases

in CBF that outstrip changes in VO2 will cause decreased

BOLD signal intensity(55).

Eligibility for an MRI examination

MRI is a non-invasive technique involving the use of

magnetic fields and radiofrequency pulses and, hence, no

ionising radiation. No clinical side effects have been noted

after more than two decades of relatively broad use. As well

as making its use in research viable, this also means that scan-

ning can be repeated several times with the same persons,

which is important in studying the effects of nutrition on

development, ageing or the prevention of disease-related

changes.

Although it can be widely used in the population, there

are some contraindications to scanning. People with ferro-

magnetic implants are often unsuitable for scanning as the

images would be distorted, and pacemakers will be disturbed

by the magnetic field, making scanning not an option for

some groups. Dental braces in children may also result in

distorted images. Furthermore, persons with claustrophobia

or fear of narrow spaces often do not tolerate the typically

rather narrow space in the scanner. The ability of a person

to avoid moving in the scanner is critical for any type of MR

image to be obtained.

An important consideration when using imaging in infants

and children is the age at scan acquisition. Until a few

months after birth, MRI scanning is fairly accessible and can

be performed under natural sleep after feeding. In naturally

sleeping infants, fMRI can be performed and resting-state

activity, as well as response to light, auditive and smell stimu-

lation, can be measured. For older children, the sequences

used in structural imaging and DTI can be made quite short,

often less than 10 min. However, this may still be a long

Fig. 2. Whole-brain segmentation of a T1-weighted scan as implemented in FreeSurfer (a brain imaging software package)(24). The segmentation is shown in (a)

coronal, (b) horizontal and (c) sagittal views. Each image element (voxel) of the brain volume is labelled as belonging to different structures. For instance, the hip-

pocampus is labelled in yellow.

Fig. 3. From diffusion tensor imaging, measures of fractional anisotropy (FA) can be derived. Areas of higher diffusion directionality, or FA, are shown in a lighter

colour (a) coronally and (b) horizontally. The white matter skeleton created by tract-based spatial statistics as implemented in FSL(41) contains only tract voxels

common to all participants in a study and is shown here in green imposed on the FA volume. To the right (c), the direction of diffusion in different parts of the

brain is shown colour coded. Red colour denotes diffusion along the medial– lateral axis (such as in the corpus callosum connecting the hemispheres). Green

colour denotes diffusion along the posterior–anterior axis, while blue colour denotes diffusion along the inferior–superior axis.
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time for young children to keep still and the option of seda-

tion is only warranted in the case of clinical scans. The success

rate may increase in school-aged children. Some centres use

pre-scan training in a mocked-up scanner to reduce the age

limit of viability. To enhance cooperation, audio books/

music can be played at the time of scan, and if the equipment

allows, cartoons may be projected or viewed in special gog-

gles. For fMRI studies, stimuli–response paradigms have to

be adapted to the age of the children and their ability to

understand the task. Using MRI in the early years of childhood

is difficult but important due to the fact that great brain

development is ongoing during childhood and MRI could

thus provide crucial information on the effects of nutrition

during brain development. The plasticity of the brain during

this period indicates that it may be a likely time for nutrition

to influence structural changes. Studies that have followed

up subjects after early dietary intervention, however, have

shown that the effects tend to persist over time(3,56); thus,

brain scans obtained later in childhood may still be

informative.

From a broader point of view, due to reasons des-

cribed above, neuroimaging studies should include uniform

samples with regard to the age or, if subjects who vary

widely in age are included, age at the scan should

be used as a covariate in analyses. This is particularly true

in childhood, in which the development occurs over a rela-

tively short time span.

Use of MRI in nutritional studies

Past nutritional studies that have used MRI techniques. If we

discount studies in clinical populations, the number of nutri-

tional intervention studies using imaging measures is minimal.

This is not surprising since it has been unusual in the past for

research centres to collect both the nutritional and MRI data

necessary to conduct these studies, but a few reports have

started to appear. Nutritional studies tend to concentrate on

the two extremes of the age spectrum, infancy and old age,

periods in life with relatively large changes in brain mor-

phology and functionality. There is, however, a difference in

emphasis between the two. While studies in children have

investigated whether different nutrition regimens can enhance

brain development, studies in adults have tended to focus on

whether diet and nutrients may act to protect the brain from

age-associated atrophy or disease. It is important to keep in

mind that structural changes may not correspond directly to

changes in function and that such structural changes may

bias the results. Grey matter atrophy and sulcal expansion in

older adults may be responsible for a great anatomical varia-

bility between the brains of younger and older adults and

Table 2. Absolute concentrations of brain metabolites in individuals of different age groups in mmol/kg brain tissue and significance tests for
differences found*

(Mean values with their standard errors)

ROI (n)
GA (weeks)

pn age
(weeks) NAA Cr Cho ml

Groups Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

,42 GA 11 38·7 0·7 3·9 1·6 4·82a 0·54 6·33 0·32 2·41 0·11 10·0 1·1
42–60 GA 8 50·2 1·8 9·3 1·9 7·03 0·41 7·28 0·28 2·23 0·06 8·52 0·92
,2 pn 6 40·0 1·0 0·8 0·2 5·52 0·64 6·74 0·43 2·53 0·12 12·4 1·4
2–10 pn 7 41·9 1·5 3·8 0·9 5·89 0·21 6·56 0·44 2·16 0·09 7·69 0·62
Adult 10 1440 68 8·89 0·17 7·49 0·12 1·32 0·07 6·56 0·43
P

,42 GA v. adult ,0·0001 ,0·0001 ,0·0001 0·001
, 42 GA v. 42–60 GA 0·0007 0·02 0·07 0·10
42–60 GA v. adult ,0·0001 0·16 ,0·0001 0·0003
42–60 2 pn v. adult ,0·0001 0·005 ,0·0001 ,0·0001
2 pn v. 2–10 pn 0·7 0·8 0·02 0·004
2–10 GA v. adult ,0·0001 0·001 ,0·0001 0·007

ROI, region of interest; GA, gestational age; pn, postnatal age; NAA, N-acetylaspartate; Cr, creatine; Cho, choline.
* Reproduced from Ross & Bluml(35).

Table 3. Concentrations of 31P metabolites in healthy brains of human neonates, infants and adults†

(Mean values and standard deviations)

Concentration (mmol/l ¼ mmol/dm3)

PME Pi PDE PCr ATP 31P total

n Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Neonates 16 4·5** 0·7 0·6*** 0·1 3·2*** 0·8 1·4*** 0·2 1·6*** 0·2 14·9*** 2·3
Infants 17 3·6 0·9 0·6 0·1 4·2 0·7 1·7 0·3 1·8 0·3 16·1 2·5
Adults 28 3·5** 0·6 1·0*** 0·2 11·7*** 2·2 3·4*** 0·5 2·9*** 0·4 29·3*** 3·1

PME, phosphomonoesters; Pi, inorganic phosphates; PDE, phosphodiesters; PCr, phosphocreatine.
Mean values are significantly different: **P,0·01, ***P,0·001.
† Reproduced from Buchli et al.(255).
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within a single random sample of older individuals(57,58).

Therefore, it is important to define structure–function relation-

ships. Some examples of studies are presented below.

MRI studies of altered nutrition during fetal life: effects on

the brain during intrauterine growth retardation. Three-

dimensional MRI has been used to evaluate the effects of

intrauterine growth retardation (IUGR) on brain development.

IUGR can be considered as inadequate nutritional supply

during pregnancy. Preterm IUGR infants show altered brain

development with reduced cortical grey volumes(59), hippo-

campal volumes(60) and sulcation index(61) compared with

normally grown preterm infants. These changes are correlated

with altered neurodevelopmental scores. Thus, early cortical

development seems to be modified by altered intrauterine

nutritional environment(61).

DTI has also been used to assess the effects of IUGR on the

microstructural development of the brain. Results have shown

a higher apparent diffusion coefficient value in the internal

capsule of IUGR infants at birth compared with that of non-

IUGR infants. This change persists at term, indicating reduced

maturation in this area, which represents a major white matter

fibre tract that normally myelinates between 34 and 40 weeks

of gestational age. Further results have indicated reduced rela-

tive anisotropy with a less well-developed fibre tract system at

birth in the corpus callosum, the main interhemispheric

connection system(62). VBM has verified these findings by

revealing similar regions of microstructural changes in IUGR

preterm infants when compared with control groups(63,64).
1H-MRS has shown altered metabolites in grey and white

matter in preterm infants with IUGR(64,65). In grey matter,

NAA and myoinositol levels were reduced in the compro-

mised group and energy supply alteration with increased

creatine levels could also be measured. In white matter, similar

alterations were present in infants with IUGR; in addition, an

increased level of lactate was found, indicating altered metab-

olism, possibly due to astrocyte metabolism changes.

MRI studies of nutritional effects on the brain in children.

Very few reports exist, but a study by Taki et al.(66) has illus-

trated how MRI could be used. The authors divided 290

healthy 11-year-old children into three groups, depending

on their breakfast staple (rice, bread or both), and used

VBM to look for differences in grey and white matter and

also compared intelligence quotient (IQ) measures among

the groups, incorporating covariates such as socio-economic

class and age. Differences in both overall and regional grey

and white matter volumes among the groups have been

reported as well as a significant advantage for the rice group

in the Perceptual Organisation Index Score of the IQ test.

The glycaemic index has been suggested as a possible expla-

natory mechanism.

The best evidence for nutritional effects on the brain would

be to obtain MR images as an outcome measure for children

who had taken part in an earlier randomised controlled trial

of a nutritional intervention. For instance, two studies have

reported structural and cognitive outcomes at adolescence in

a subgroup of a cohort of preterm infants (all neurologically

normal) who had taken part in a randomised feeding trial peri-

natally(67). In one study, a high-nutrient diet was associated

with larger volumes of the caudate nuclei and a higher

verbal IQ, but only in boys(68). In a later report, the percentage

of maternal breast milk in the infant diet was associated with a

greater white matter volume and a higher verbal IQ; again, the

effects were stronger in boys(69).

VBM has been used to demonstrate relationships between

regional brain volumes and IQ(70) as well as more specific

cognitive functions such as reading(71), calculation(72) and

executive function(73). Likewise, other techniques, both

whole-brain segmentation and surface reconstruction, yielding

volumetric and cortical thickness measures, have also shown

sensitivity to differences in cognitive and behavioural func-

tions. These techniques could therefore be used to explore

whether a nutritional intervention affects such outcomes.

MRI studies of nutritional effects on the brain in adults.

There are multiple mechanisms by which nutrients or

supplements may serve to protect the ageing brain(74,75),

including by lowering cerebrovascular disease, inflammation

and/or oxidation. A recent, large study of elderly subjects

has shown associations between image measures of brain

health and cognitive function, on the one hand, and plasma

biomarkers of vitamin and fatty acid status and trans-fat, on

the other hand(76).

There is much literature showing that elevated homocys-

teine levels are negatively related to cognitive function in

ageing(77–80) with good indications from MRI studies that the

cognitive effects may be mediated through brain atrophy,

hyperintensities and/or subclinical infarcts(79,81–83). Still, it

may be that elevated homocysteine levels are not a causal

mechanism for brain atrophy and cognitive deterioration,

but rather a by-product. However, this possibility has recently

been weakened by a large well-controlled intervention

study(84). The study was a randomised double-blind controlled

trial using high-dose folic acid and B vitamins in persons aged

.70 years and categorised as having mild cognitive impair-

ment. MRI scans were performed at the start and end of the

study after 2 years. The mean rate of brain atrophy per year

was significantly lower in the treatment group than in the

placebo group and the treatment response was related to

baseline homocysteine levels. The greater rate of atrophy in

the placebo group, primarily seen in the images as an enlarge-

ment of the ventricles, was associated with a lower final

cognitive test score (Mini-Mental State Examination and

Telephone Interview of Cognitive Status).

A recent study on long-chain PUFA (LC-PUFA) has shown

that among older adults, dietary intake of fish with a higher

EPA and DHA content was associated with a lower prevalence

of subclinical infarcts and white matter abnormalities on MRI

examinations(76,85,86). This finding was extended by the obser-

vation that in middle-aged adults, DHA, but not EPA or a-lino-

lenic acid, in serum, was associated with improved non-verbal

reasoning, working memory and vocabulary(86).

Choline, a precursor of acetylcholine and phosphatidyl-

choline, is important for brain metabolism and is largely

obtained from the diet. Cohen et al.(87) measured plasma

and brain choline levels with 1H-MRS after a single choline

supplement in young and aged healthy subjects. The results

showed that despite a similar choline increase in plasma in
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both groups, the brain levels of choline measured by 1H-MRS

were lower in the aged group, indicating a decrease in choline

uptake into the brain with age(87). Given the role of choline in

cholinergic neuronal function, the reduced uptake of choline

may be involved in altered brain function in the elderly and in

neurodegeneration. Similarly, in a study on healthy adults using
31P-MRS, administration of uridine appeared to increase brain

membrane precursors (phosphomonoesters: phosphocholine

and phosphoethanolamine)(88). Furthermore, studies have

shown altered membrane phospholipids and fatty acid metab-

olisms in psychiatric or epileptic diseases using 1H-MRS and31P-

MRS(89,90). It has also been reported that citicoline improves fron-

tal lobe bioenergetics and alters phospholipid membrane turn-

over. It may therefore help to mitigate cognitive declines

associated with ageing by increasing energy reserves and utilis-

ation, as well as increasing the amount of essential phospholipid

membrane components needed to synthesise and maintain cell

membranes(91). In psychotic adults, ethyl-EPA supplementation

appears to improve symptoms in relation to an increase in brain

glutathione levels and glutamate:glutamine ratio measured by
1H-MRS, which can be linked to improved antioxidative defence

through astrocyte metabolism(92).

In the last few years, fMRI has been used to investigate the

mechanisms related to the physiological or pathological

regulation of food intake, as well as the cognitive/affective

processing of food-related stimuli(93). These studies have

identified a food-related functional recruitment in both

sensory processing and emotion-related structures, including

prefrontal, orbitofrontal temporal and cingulate regions,

amygdala and insula. Nonetheless, few fMRI studies have

tried to determine the role of nutrition in brain function.

Recently, fMRI has been used to examine the effect of

nutrition in young healthy volunteers who had a breakfast

including various nutrients (i.e. food containing proteins,

lipids, vitamins and minerals as well as carbohydrates) when

compared with when they skipped breakfast or had only

sugar for breakfast(94). When participants were performing

memory and attention tasks, significantly higher brain acti-

vation was observed in the medial prefrontal areas, but only

following the nutritionally balanced breakfast.

Methodological limitations and recommendations of
relevance to intervention studies

Any effects of nutrition found by MRI studies will need to be

interpreted with care. Ideally, all of the scans for one study

should be obtained using the same scanner and the same

imaging protocol, because variations can complicate the

interpretation of results. However, this is often not feasible

in large-scale studies, and therefore standardised protocols

across sites and scanner platforms allow data to be pooled.

This can greatly increase the number of subjects and hence

possible analyses. In recognition of this, multi-site initiatives,

such as the Alzheimer’s Disease Neuroimaging Study (http://

www.adni-info.org/), have been launched in recent years,

indicating that consistent and valuable results can be obtained

across sites and platforms(95). With standardisation criteria

carefully being tested and employed, multi-site initiatives

can be highly powerful.

Findings from structural studies can be used to illustrate the

complexities of linking structure to function. It is well known

that a reduction of MRI-derived volume is often observed

along with diminished cognitive function in injury or central

nervous system (CNS) disorders, such as Alzheimer’s disease

(AD). However, while a ‘bigger is better’ view has sometimes

been supported in the study of relationships between normal

brain structures and cognitive abilities, this is not likely to

hold independently of groups studied(96). For instance, a

decrease in cortical thickness is seen with increased cognitive

function in school-aged children(97,98), yielding a negative cor-

relation of cortical thickness and cognitive performance scores,

whereas a shift in the direction of this relationship is seen during

ageing(99–101), with thinner cortices usually being accompanied

by some reduction of cognitive speed performance scores.

This probably occurs because in children, cognitive develop-

ment is enhanced by pruning or fine-tuning of synaptic connec-

tion, along with intracortical myelination, processes that would

make the cortex appear thinner in MR images. On the other

hand, during ageing, loss of synaptic spines and synapses, as

well as neuronal shrinkage and possible neuronal loss, would

decrease both cortical thickness and cognitive function. Thus,

the relationship between volumetric/cortical surface character-

istics and cognitive outcome is not constant throughout life.

Due to the high sensitivity of MRI to blood flow, it is crucial

to recognise that not all interventions leading to a change in

the BOLD signal may necessarily also lead to a perceivable

behavioural change in examined subjects(102). Nonetheless,

several studies have identified an association between blood

flow and metabolic rate, suggesting that the blood supply is

tightly regulated in space and time to provide the nutrients

for brain metabolism(103). Importantly, structure–function

relationships need to be defined to better understand

disease- or nutrition-induced changes. This can be done

using a stimulus–response paradigm and correlation with

structural changes.

Furthermore, alterations in cognitive function due to ageing

may depend on the specific task or function explored and

may vary from one brain region to another. It is known, for

example, that brain activity may be reduced in older persons

when compared with younger individuals in prefrontal

cortex(104) or medial temporal areas(105) during different

memory tasks. On the other hand, an over-recruitment of the

prefrontal cortex has often been described in older healthy sub-

jects during execution of various cognitive tasks(106). Therefore,

participant selection and screening may be fundamental in

cross-section evaluations(107). For instance, the inclusion of

relatively high-functioning elderly individuals may bias the

cross-sectional results in such a way that the cross-sectional

analyses indicate an over-recruitment of the dorsal frontal

cortex, while the longitudinal analysis reveals an age-related

activity reduction in the same frontal regions(107).

Structural and functional data transformations should be

carefully verified and, when available, population-specific

templates should be used to optimise alignment and reduce

distortions(108). However, it is important that the variability
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between standard templates and the study group is not too

great. For example, it is necessary to take age into account,

especially when studying infant brains, which differ a great

deal in terms of gross morphometric features from those of

older children and adults. Intracranial volume and brain size

undergo dramatic changes in the first few years of life, and

slight changes are also seen throughout the teens, but the

overall intracranial and brain volume in school-age years is

very similar to that of adults(109) and standard templates may

be used. Moreover, some classification, averaging and match-

ing techniques used employ procedures shown to be well

suited to account for varying anatomies(110).

When fMRI is used to study brain functional organisation in

individuals of different ages, it is important to take into con-

sideration that methods for fMRI data analysis are exquisitely

sensitive to blood flow. This means that cerebrovascular

changes associated with ageing could alter one or more par-

ameters of the vascular regulation(111) and hence the results.

For instance, studies that evaluated the visual cortex response

during passive stimulation have reported a decreased fMRI

signal in older adults when compared with younger individ-

uals(112,113), and this was not caused by reduced neural

activity, but rather by differences in neurovascular local prop-

erties(114). One or more valid control tasks should be used as

age-related differences in neurovascular response should influ-

ence all conditions equally. Thus, an evaluation of the size of the

within-group effect should be safer than a direct comparison of

the BOLD signal change in two age groups(115). Other possible

solution is the normalisation of the task-related signal change

by the use of breath-holding to produce global changes in

BOLD signal(116) or with a simple sensory or motor task to esti-

mate the haemodynamic response function for each individual

included in the study(117).

We discuss here some of the issues pertinent to the

consumption of supplements (84), mostly using examples on

homocysteine. While the literature linking homocysteine

levels to brain measures is impressive, some inconsistencies

and nuances of general relevance to possible nutritional inter-

vention studies should be mentioned.

Age at intervention. First, since relationships between

neuroimaging markers and nutrition indicators in adulthood

have mostly been studied in middle-aged and older individ-

uals, it is unknown whether relationships exist throughout

the adult lifespan or at which point they may occur. The

relationship between homocysteine levels and cognitive func-

tion was confined to adults aged $60 years in a large-scale

study(80). To the extent that nutrients are tested for a protective

effect, they should be studied at an age span in which negative

influences come into play (i.e. at a stage where age-associated

atrophy has accumulated or become more marked or disease-

related changes are more likely to set in).

Sex effects. There is some indication that relationships

may be stronger in men(83). This is not established enough

to justify targeting only men for nutritional interventions, but

intervention studies need to be sufficiently powered to analyse

sex effects. Since evidence for sex effects has also been found

in early intervention studies(68,69), it is probably informative to

include planned analyses by sex in all nutritional studies.

Use of multimodal imaging markers. While many studies

have found effects of nutrition indicators on the brain, the par-

ticular measures that show effects may vary and are not always

consistent across studies. For instance, while many studies on

homocysteine levels have found effects on atrophy, one study

has found no effect on atrophy, but only an effect on white

matter hyperintensities(83). Similarly, a recent study has

reported associations between total cerebral brain volume

and biomarkers of vitamin (positive) and trans-fat (negative),

while fatty acid biomarkers have been reported to be related

only to white matter hyperintensities(76). This points to the

importance of including multiple imaging measures. In

addition, in line with recent studies pointing to the unique

explanatory power of different imaging modalities relative to

each other(118), one should include several types of scans

with respect to outcome measures (e.g. T1 weighted, T2

weighted, DTI and MRS).

Regional neuroanatomical specificity of effects. To the

extent that hypotheses can be made a priori, studies should

use analysis techniques that allow for testing effects located

in specific brain systems. For instance, if fatty acids are hypoth-

esised to affect the fibre integrity or myelination of major white

matter tracts, DTI measures sensitive to this may be employed.

It has been suggested that some discrepancies in the literature

regarding the effects of B6 and B12 vitamins and folic acid, and

by implication, homocysteine levels, may stem from differences

in the sensitivity of image analysis techniques, where global

measures of brain volumes will not necessarily capture region-

ally specific effects(119). In a small study using diet diaries, evi-

dence has been found for medial volumetric effects, including

anterior cingulate and parietal areas, as well as temporal and

superior frontal effects of B6 and B12 vitamin and folic acid sup-

plement intake. Hence, studies should include analyses sensi-

tive to localised neuroanatomical effects(119).

Electroencephalography and magnetoencephalography:
measuring brain electrical and magnetic activities

Electroencephalography and magnetoencephalography
techniques and electroencephalography/
magnetoencephalography-derived measures

EEG and MEG measure brain electrical and magnetic activities

recorded from scalp electrodes and extracranial sensors, respect-

ively. Scalp EEG activity is recorded as a voltage difference; thus,

different reference derivations provide diverse voltage values at

exploring electrodes. The general procedure for the recording

of scalp EEG activity involves the positioning of an elastic cap

with cabled cup electrodes or single-cup electrodes in standar-

dised locations of the scalp. EEG procedures are especially suit-

able for multicentric studies, since EEG systems are always

present inneurological departments and theEEGdataof different

recording systems can be harmonised using calibration signals of

a defined voltage amplitude (i.e. 100mV).

MEG activity is a reference-free measure recorded by

superconducting quantum interference devices, which are

sensors able to transform very small magnetic fields into

recordable currents. The general procedure for the recording
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of extracranial MEG activity involves the demagnetisation of

the subject and positioning of his or her head under a

helmet with superconducting quantum interference devices.

As a main merit, EEG and MEG signals have the highest

temporal resolution compared with all the current brain

imaging techniques (i.e. they can measure the amplitude of

brain electromagnetic activity with a sampling ,1 ms).

From a physiological point of view, EEG and MEG signals

derive from the post-synaptic ionic currents of synchronously

active pyramidal neurons over extended cortical regions (cm)

and reflect the integrative information processing of signals

originating in the thalamus, brainstem and other cortical mod-

ules. In these extended cortical regions, both tangentially and

radially oriented sources produce most of the scalp EEG sig-

nals, whereas only tangential sources produce MEG signals.

It is noteworthy that EEG is characterised by a low spatial res-

olution (i.e. the ability to localise the cortical source of scalp

EEG activity within several centimetres), since different con-

ductivities of head tissues (brain, meninges, skull and scalp)

attenuate and blur the spatial distribution of neural currents

from brain sources to scalp electrodes. To minimise these

weakness points, EEG activity can be recorded from 48 to

128 electrodes and can be processed to obtain reference-free

and spatially deblurred EEG activity. This can enhance the

spatial resolution of EEG to a few centimetres and eliminate

the need for a reference. With respect to EEG, the spatial

resolution of MEG is higher (several millimetres in the best

experimental conditions, namely simple evoked magnetic

fields), since magnetic fields are not affected by different

conductivities of brain, skull and scalp tissues.

The high temporal resolution of EEG and MEG signals is ideal

for investigating the emerging features of brain physiology,

namely awake resting-state brain rhythms. In this condition,

the subjects are minimally affected by anxiety, fatigue and

issues related to their cognitive–motor performance (task

difficulty, meta-learning, etc.). It is also ideal for investigating

immediate brain responses to sensory, cognitive or motor

events in short-term (acute) and long-term (chronic) interven-

tion studies. Spectral analysis methods allow the estimation of

EEG and MEG dynamics in terms of the dominant frequencies,

power (or amplitude), phase and coherence of EEG rhythms.

The background spontaneous oscillatory activity of brain neur-

ons at about 10 Hz generates the dominant alpha rhythm of rest-

ing-state EEG and MEG activities(120). Oscillations in other

frequency bands, such as d (1–4 Hz), u (4–7 Hz) and g (30–

70 Hz) bands, also exhibit complex patterns of power that are

modulated by cognitive processes such as attention, perceptual

binding and working memory(121). On the other hand, EEG and

MEG techniques can be used to study the fine timing (millise-

cond scale) of event-related or evoked cortical responses to

external stimuli, mental operations or movements (Fig. 4). Func-

tional connectivity between brain areas is crucial for perceptual

and cognitive processes that are intrinsically based on the inte-

gration of information represented in several cortical and sub-

cortical areas in the human brain. Both resting-state and the

mentioned event-related EEG/MEG measures can be used as

input for the evaluation of functional connectivity of brain net-

works. Spectral coherence (linear), directed transfer function

(linear) and synchronisation likelihood (linear and nonlinear)

techniques are typically used to do so from EEG/MEG rhythms

recorded during resting-state conditions, while event-related

covariance can be used from event-related potentials (ERP)/

event-related fields(122). The choice between EEG and MEG

techniques depends on the importance of spatial resolution

for testing the working hypothesis (effects of the intervention

on specific cortical regions).

Eligibility for an electroencephalography/
magnetoencephalography examination

EEG/MEG recordings are fully non-invasive and technically

easy procedures that can be easily repeated several times in

human subjects of any age (i.e. from newborns to elderly

people) and clinical status (i.e. patients in a coma or a vege-

tative state) without ‘repetition’ effects. It has been shown

that EEG variables correlate with individual subjects’ cogni-

tive state and specific intellectual abilities (e.g. reading)

during child development, including individuals with Down

Middle finger
extension

(a) (b)

(d)(c)

–3.5 –3.0 s

Alpha ERD Beta ERD

MRP (EMGo)

ERS ERSERD ERD

–100% 100%(EMGo) +1 s

ERD MRP

Fig. 4. Analysis in the time and frequency domains of electroencephalo-

graphic (EEG) data related to a motor event (i.e. voluntary self-paced right

middle finger extensions). (a) A schematic representation of ongoing EEG

rhythms at a frequencies (about 10 Hz) before, during and after the onset of

the electromyographic (EMGo) activity associated with voluntary self-paced

middle finger extensions. It can be seen that the amplitude of alpha rhythms

is reduced during the preparation and execution of the movement, the so-

called alpha event-related desynchronisation (ERD) and is enhanced after

the EMGo, the so-called event-related synchronisation (ERS). In the same

dataset, a slow negative shift is hidden in the EEG oscillations, namely the

movement event-related potentials (MRP). The example shows that the same

EEG dataset can be analysed in the frequency domain to compute the alpha

ERD and in the time domain to produce MRP. (b) A topographic map show-

ing cortical sources of the MRP as computed by a weighted, minimum-norm

linear inverse estimation. It can be noted that the maximum source amplitude

(red hot spot) is represented in the Rolandic region of the left hemisphere

contralateral to the movement side. (c, d) Topographic maps showing cortical

sources of the ERD at a (about 10 Hz) and b (about 20 Hz) frequencies. With

respect to the MRP, alpha and beta ERD were characterised by maximum

source amplitude (red hot spots) in the Rolandic regions of both hemi-

spheres. It is concluded that quantitative EEG techniques can reveal parallel

physiological processes underlying the activation of sensorimotor cortical

regions related to voluntary movements.
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syndrome(123); overweight or underweight adults(124,125); and

patients with disorders of vigilance, consciousness and

communication(126,127); as well as elderly subjects with intact

cognitive status or cognitive decline progressing to overt

dementia(128–134). Such a correlation is typically moderate

and emerges with relatively large populations (n . 30) and

a fine clinical and neuropsychological assessment. Further-

more, sex differences in ERP topography and amplitude

have been reported in children and adults(135,136).

EEG/MEG can be used for testing the neurophysiological

effects of pharmacological, rehabilitation or nutritional inter-

ventions immediately after an acute dose administration or

after long-term programmes. EEG/MEG recordings are suit-

able for studying the group differences in between-group

and within-group designs. Both techniques can be used in

multicentric trials since the hardware of different brands can

be easily calibrated and harmonised, although the availability

of EEG is much wider than that of MEG, largely due to the

much higher costs of MEG.

Use of electroencephalography/magnetoencephalography
in nutritional studies

In the following, we highlight a selection of EEG and MEG

papers to illustrate the resting-state, evoked potential (EP)/

evoked field and ERP/event-related field markers that capture

the short-term (acute) and long-term (chronic) effects of nutri-

ents on brain activity in healthy infants, children and adults.

Specifically, with regard to acute effects, we focus on caffeine,

and for the long-term effects of food interventions on brain

function, we focus on studies that have investigated the effects

of LC-PUFA as these nutrients have been repeatedly used to

supplement milk formulas for infants and children during

the developmental time course. Practically, no MEG studies

on the effects of caffeine and LC-PUFA have been found. In

the following paragraph, we summarise the main results and

conclusions (Babiloni et al., unpublished results, 2012).

Caffeine has evident psychoactive effects at doses compar-

able to one to ten servings of tea or cola(137) as assessed with

the behavioural measures of cognitive function. A series of

EEG and ERP studies have tested the effects of caffeine on

brain activity during wakeful resting, mainly in adults and

also in children and during ageing(138–144) (see Lorist &

Tops(145) for a review). In these studies, resting-state EEG

markers have been frequently used to study the psychoactive

effects of caffeine, mostly at relatively high doses (200–

500 mg) in adults. Generally, caffeine decreases a power,

which indicates increased alertness or arousal(146) consistent

with the behavioural literature (see Ruxton(137) for a

review). Both behavioural and EEG studies struggle with the

same fundamental questions such as how to correct for habit-

ual caffeine use and body weight and to what extent caffeine

effects can be attributed to the relief of withdrawal effects.

Therefore, traditional background EEG measures may not

add significant insights into the behavioural measures of caf-

feine effects, but it could be speculated that statistical func-

tional coupling of resting-state EEG rhythms at electrode

pairs as revealed by additional mathematical techniques, such

as spectral coherence (linear), directed transfer function

(linear) and synchronisation likelihood, might provide more

informative markers about the caffeine effects(122). These vari-

ables have been successfully used to disentangle abnormal

changes of functional connectivity in the resting-state condition

in elderly subjects suffering from preclinical or earlier stages of

AD(128–132) as well as after acute administration of nicotine,

cocaine, marihuana, alcohol or medications(147–151). The

changes in functional connectivity measures in mild AD have

been the target of a recent multi-country randomised con-

trolled trial with a medical food. The studied product provides

the nutritional precursors and cofactors for the formation of

neuronal membranes, aiming to improve synapse formation

and function in AD; hence, the study included EEG measures

as secondary outcomes as markers for synaptic connec-

tivity(152). Findings included significant amelioration in peak

frequency and functional connectivity in the d band over the

24-week intervention period in the experimental group

compared with the control, suggesting preserved and even

increased synaptic function resulting from the intervention(152).

In addition to resting-state EEG, several ERP studies have inves-

tigated the effects of caffeine on the brain using simple (e.g.

rapid visual information processing and oddball) or more com-

plex (e.g. switch task) attention tasks. ERP studies have added

more detailed insights into what aspects of attention are

improved by caffeine (generally processes following simple

stimulus processing) and at which level of information proces-

sing (complex tasks seem to show more benefits).

With regard to the effects of long-term food interventions,

LC-PUFA have been the subject of many studies, particularly

those on infant development. Several studies using ERP and

resting-state EEG measures have investigated diet-related

effects of n-3 and n-6 fatty acids in mothers and infants, as

well as in healthy adults(153–164). In summary, diets with n-3

and n-6 fatty acids can influence resting-state EEG, not only

in infants and children during development but also in

adults, suggesting increased plasticity of neuronal membranes

and synaptogenesis. The large majority of ERP studies have

focused on EP, especially visual EP have been used as func-

tional markers of the maturation of the visual system of infants

fed with a LC-PUFA-supplemented formula or a control for-

mula for 12 months(165,166). In the same vein, auditory EP or

brainstem auditory EP have similarly been used as functional

markers of the auditory system(167,168). Indeed, from a neuro-

developmental perspective, visual EP and brainstem auditory

EP are the measures of choice for probing the maturation of

the visual and auditory systems during development in infants

and children before the acquisition of the verbal skills

required for behavioural tests. Compared with the control

group, preterm infants with low birth weights (,1500 g)

receiving n-3 and n-6 supplementation for 9 weeks showed

a significantly lower amplitude of ERP in response to fre-

quently presented pictures, a possible reflection of a better

short-term recognition memory of these frequent pictures(169).

In school-aged children and adults, ERP during oddball tasks

(measuring sustaining attention to a continuous stream of

stimuli and responding to pre-specified infrequent target stim-

uli) and Go–Nogo paradigms (assessing sustaining attention
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to a continuous stream of stimuli and responding to all stimuli

except to predefined infrequent target stimuli) demonstrated

some effects of n-3 and n-6 fatty acids on visual and auditory

attention and motor processes. Sparse use of resting-state EEG

markers can be explained by the large variability of these

markers during development. Finally, the literature on the

effects of n-3 and n-6 fatty acids on resting-state MEG and

event-related fields is practically non-existent.

Methodological limitations and recommendations of
relevance to intervention studies

In the previous section, we had highlighted a selection of EEG

studies in healthy subjects on the effects of caffeine as an

example of short-term psychostimulant effects (having acute

effects on brain function) as well as LC-PUFA as examples of

nutrients that have a long-term effect on brain structure and

thus on function (chronic effects). Both resting-state EEG

and EP/ERP markers have been successfully used for this pur-

pose. For caffeine, the results are in line with the behavioural

literature, confirming that caffeine improves attention. The

majority of EEG studies on caffeine have used relatively

basic attention tasks with a large perceptual component; the

lack of use of more ‘cognitive’ attention paradigms such as

the Posner attention task(170) is striking in caffeine research,

but it is in fact present in other nutritional research. There

seems to be a disconnection between advances in behavioural

measure of attention and the development of EEG/ERP tasks.

The brain imaging area could benefit from the monitoring of

developments in the behavioural area.

For n-3 and n-6 fatty acids, visual EP and brainstem auditory

EP are even considered the gold standard for the assess-

ment of the maturity of the nervous system(168,171). In this

age group, adapted and validated behavioural measures of

development exist (e.g. the Bayley scales) and are the

preferred measures of neurodevelopment, especially in pre-

mature infants.

Moreover, we think that resting-state EEG and EP/ERP

markers could be greatly enhanced using advanced high-

resolution EEG techniques rather than simple computation

of power density spectra or amplitude/latency of EP/

ERP peaks at a few scalp electrodes. Another promising

perspective is the development of EEG markers probing the

functional coupling of EEG rhythms as revealed by spectral

coherence, directed transfer function and synchronisation

likelihood(128–132,147–151). Finally, it is expected that MEG

techniques could greatly contribute to an accurate modelling

of functional topography of the cortical sources of the

recorded MEG data in the near future, thanks to the increasing

availability of MEG systems worldwide.

Near-IR spectroscopy: measuring cerebral blood flow
and haemodynamic responses

Near-IR spectroscopy techniques and near-IR
spectroscopy-derived measures

NIRS involves the introduction of two or more wavelengths

of near-IR laser or light-emitting diode light through the

intact skull with subsequent measurement of light absorption

following diffusion through the upper layers of the cortex

by optodes positioned at a set distance from the emitter.

The differential intrinsic oxygenated and deoxygenated Hb

in the surface of the cortex give measures of oxy-Hb and

deoxy-Hb and their sum (total Hb), which represent proxy

measures of blood volume or blood flow in the interrogated

neuronal tissue; therefore, NIRS serves as a marker for

neural activation. Activity and blood flow in the brain are

inextricably linked by the neurovascular coupling of local

neuronal activity to blood flow, whereby a number of signal-

ling molecules and physiological mechanisms serve to

increase the delivery of blood-borne metabolic substrates to

active tissues(172,173). When assessed by NIRS, the haemo-

dynamic response to local neural activity will be seen as an

increase in CBF, which in turn will be evident as an increase

in the concentrations of both oxy-Hb and total Hb and a cor-

responding comparative decrease in deoxy-Hb level(174). NIRS

outcomes can therefore be taken to infer local neural acti-

vation or, alternatively, can be interpreted more directly as

simple changes in blood flow/volume in the underlying corti-

cal tissue. The latter is particularly pertinent as both CBF and

the magnitude of the haemodynamic response to neural

activity decrease with normal ageing and in neurological

disease(173). A large and expanding literature has described

the use of NIRS as a tool for multiple-channel imaging of

the haemodynamic correlates of neural activation across the

lifespan in healthy cohorts. As an example, in groups of neo-

nates, children and infants, NIRS has been used to investigate

neuronal activation across diverse cortical brain regions as a

consequence of auditory, visual and olfactory stimuli(175).

In adults, NIRS has been widely adopted to investigate the

location and extent of cortical responses during diverse

motor tasks(176), haemodynamic responses to sensory stim-

uli(177) and during cognitive tasks(178). Across these areas,

NIRS has shown itself to be sensitive enough to reliably illumi-

nate age-related changes in CBF. For instance, it has been used

to demonstrate an inverse correlation between age and hae-

modynamic response in non-elderly adults during verbal

fluency tasks(179) and hypoxia(180). Similarly, it has been uti-

lised to show reduced haemodynamic responses in older

adults in comparison with younger adults during verbal flu-

ency(181) and executive function(182) tasks, as well as during

postural changes(183) and simulated driving(184).

NIRS systems vary in complexity from single or dual chan-

nels to ‘whole-head’ arrays of several dozen channels and

fall into several categories depending on the measurement

technique that they employ: ‘continuous-wave’ systems emit

light continuously at constant amplitudes, and only the ampli-

tude decay is measured; ‘time-domain’ systems emit short

bursts of photons, with the temporal distribution providing

information about tissue absorption and scattering; ‘fre-

quency-domain’ systems emit amplitude-modulated light and

record amplitude decay and phase shift(185). Within these cat-

egories, there is a plethora of variants, and a number of new

techniques are in the process of development(186,187). Each

of these systems has its own advantages and disadvantages.

As an example, the most widely used system for brain imaging
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and clinical applications to date has been the continuous-

wave system, which provides continuous, extended recording

with a high temporal resolution, is easy to apply, allows move-

ment during measurement and is comparatively cheap and

portable and of very low running costs. However, its major

disadvantages include its limited depth of penetration and its

use of an arbitrary value for the (unknown) path length of

light in its calculation of Hb concentrations (using a modified

Beer–Lambert formula), therefore only providing ‘change in

concentration’ measurements rather than quantifying the

absolute levels of oxy-Hb and deoxy-Hb(188). It is therefore

only suited to measuring the haemodynamic responses to

task-related neural activation or the acute and chronic effects

of an intervention in terms of how it modulates the haemo-

dynamic response to task performance. It is also ideal for

continuous measurement of the very short-term (maximum

of several hours) effects of acute interventions. Recent ‘quan-

titative’ systems resolve this measurement issue by collecting

light at several increasing distances from the light source,

allowing the exact calculation of the path length and thereby

the absolute quantity of Hb in the underlying tissue. These

systems, which have advantages in terms of cost and practical

considerations similar to those of earlier continuous-wave sys-

tems, will be ideally suited to studies of either the acute or

chronic effects of an intervention in terms of both absolute

quantities and haemodynamic responses. While NIRS par-

ameters have been shown to correspond strongly with the

fMRI BOLD signal(174,189,190), there are advantages and disad-

vantages associated with the two imaging techniques. NIRS

has a high temporal resolution (up to 250 Hz) and is certainly

comparatively cheap, easy to use and suitable for measuring

during most tasks for long periods. It also generates data

that can be analysed using standard statistical methods.

However, it does not have the comparatively high spatial

resolution of fMRI, and it only provides information about

blood flow parameters in the upper layers of the cortex.

Eligibility for a near-IR spectroscopy examination

NIRS originated as a clinical tool(191) and continues to be

widely used across the lifespan in this context. For example,

its uses include the monitoring of cerebral haemodynamics

and oxygenation across critical illnesses in neonates, infants

and children(192). It is also used during anaesthesia(193) and

in clinical research into neurological conditions, including

perinatal asphyxia, epilepsy and brain development(194,195).

Similar applications in adults include use during surgery,

resuscitation and cardiac failure(196,197) and the identification

and rehabilitation of brain injury(176,196,198). NIRS has also

been used to demonstrate reduced CBF or haemodynamic

responses during cognitive tasks in groups suffering from a

number of neurological or neurodevelopmental conditions,

including age-associated cognitive impairment and demen-

tia(199), schizophrenia(200) and attention-deficit hyperactivity

disorder (ADHD)(201).

NIRS has also proven itself to be a sensitive research tech-

nique for assessing the modulation of CBF across the lifespan,

from neonates(175) to older adults(177,181), in diseased and

healthy subjects, and it reliably illuminates age-related

changes in CBF elicited by sensory stimuli or cognitive task

performance(179,180,182–184). In general, NIRS research has

been conducted in mixed-sex groups.

NIRS has rarely been employed in pharmacological trials in

adult samples. Beyond a number of drug trials related to its

clinical use in anaesthesia(202), it has been used to demon-

strate a reduced haemodynamic response in the prefrontal

cortex during cognitive tasks following methylphenidate use

in children with ADHD(203) and following sedating antihista-

mine use in children(204). Similarly, it has been used to

show decreased frontal lobe oxygenation following the

administration of sumatriptan(205) and phenylephrine(206)

and increased oxygenation following the use of the vasodila-

tor vinpocetine(207).

Use of near-IR spectroscopy in nutritional studies

NIRS provides an accessible measure of the CBF effects of the

many nutritional factors and dietary components that may

modulate blood flow either over the short term or indeed

across the lifespan. However, to date, only a handful of studies

have utilised NIRS to assess the cerebral haemodynamic

effects of nutrients and food components. The only such

study in infants(208) has demonstrated reduced CBF (tissue

oxygenation index representing the ratio of oxy-Hb:deoxy-

Hb) in the temporo-parietal region following the adminis-

tration of a single dose of caffeine, administered primarily as

a respiratory stimulant, to forty preterm infants. A number of

double-blind, placebo-controlled trials have also assessed

the effects of nutritional interventions on CBF/neural activity

in adults as measured by one or two channels positioned

over the frontal cortex during tasks that activate this brain

region. For instance, Kennedy & Haskell(209) confirmed the

vasoconstricting properties of caffeine in healthy adults (total

Hb, n 20, cross-over design). NIRS has also been used to

demonstrate a dose-related increase in CBF (total Hb) and

deoxy-Hb level in the frontal cortex during task performance

following the administration of single doses of the polyphenol

resveratrol (n 22, cross-over design(210)) and a decrease in CBF

(total Hb) during tasks following the administration of two

single doses of the tea polyphenol epigallocatechin gallate

(n 27, cross-over design(211)). The above-mentioned findings

mirror those from studies using a variety of other imaging

techniques in the case of caffeine and animal models in the

case of the polyphenols. Several controlled trials have also

investigated longer intervention periods. For instance, Wata-

nabe et al.(212) demonstrated modulated haemodynamic

responses in terms of decreased oxy-Hb and increased

deoxy-Hb levels during cognitive tasks following 5 d adminis-

tration of creatine to a small sample of adults (n 24, parallel

groups). In two investigations of the effects of n-3 fatty

acids, Jackson et al.(213) demonstrated that 12-week adminis-

tration of DHA-rich fish oil, but not of EPA-rich fish oil,

increased the frontal cortex haemodynamic response in

terms of total Hb and oxy-Hb during ‘frontal’ task performance

in a small sample of twenty-two healthy young adults. Jackson

et al.(214) subsequently confirmed the dose-dependent nature
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of the effects of the DHA-rich fish oil in a larger sample of

sixty-five adults.

Methodological limitations and recommendations of
relevance to intervention studies

Taken together, these studies suggest that NIRS is adequately

sensitive to detect the CBF effects of nutrients and food com-

ponents. However, although NIRS can be used to reliably

demonstrate CBF and haemodynamic responses to cognitive

task performance, there is little evidence to date of a direct

relationship between changes in CBF inculcated by nutritional

interventions and corresponding benefits in terms of the

speed or accuracy of cognitive performance per se. This col-

lection of studies also highlights the constraints associated

with much of the NIRS research to date. The first of these is

that the studies have generally only employed either one or

two channels, typically covering the prefrontal cortex, rather

than the distributed network of channels across the frontal

cortex or head that the technique can accommodate. The

second is that the most commonly used continuous-wave

NIRS systems can only measure changes in concentrations

during the period of recording, rather than providing data

reflecting the absolute levels of oxy/deoxy-Hb. This makes

them well suited to assessing the acute effects of an interven-

tion, such as caffeine or resveratrol (with uninterrupted

recording from pre-dose), or suitable for assessing the effects

of a chronic treatment in terms of the magnitude of the

increase from a resting baseline in blood flow/volume

during task performance (i.e. the haemodynamic response).

The latter measure is undoubtedly of interest, but it alone is

unlikely to constitute the main outcome of any study assessing

the effects of long-term administration of nutrients or

indeed the cross-sectional/prospective relationships between

nutrients and brain function.

It is also necessary to note that the more recently introduced

quantitative NIRS systems combine the ease and mobility of

measurement, portability and low costs of the continuous-

wave systems and generate data representing the absolute

quantity of oxy/deoxy-Hb in the interrogated cortical tissue.

This step change in measurement technology, in concert

with increased sophistication in terms of the number and

location of channels across the head, should make NIRS a

particularly useful and cost-effective imaging technique in

nutrition-related studies in the future, especially as NIRS can

be combined successfully with most other imaging techniques

and can be used across ages and in concert with complex

cognitive or physical movement paradigms.

Positron emission tomography imaging: anatomical,
metabolic and functional assessments for nutritional
research

Positron emission tomography techniques and positron
emission tomography-derived measures

Functional neuroimaging procedures, such as PET and SPECT,

measure the metabolic and physiological processes of the

CNS. When combined with structural imaging techniques,

PET and SPECT determine the exact anatomical location and

the physiological and metabolic effects of a nutrient on the

brain.

To perform PET, a radiotracer is produced by attaching a

radioactive atom to a molecule or a compound of biological

interest. Directly following its synthesis, the radiotracer

begins to decay and release positively charged positrons from

the nucleus. A positron has the kinetic energy to travel a few

millimetres within the tissue. When almost at rest, the positron

interacts with an unbound electron. Since the two particles

have an opposite charge, they annihilate each other, resulting

in two g-ray photons of 511 keV energy being emitted at 1808

from each other(215). In a PET scanner, rings of radiation detec-

tors that surround an individual’s head for brain studies or

another body part of interest detect the g-ray photons. Pairs

of these radiation detectors are oriented to face each other at

1808 and are connected by an electronic coincidence circuit

that detects the photons emitted during the annihilation event

when the positron meets an electron and that converts light

energy into electrical energy to measure the number of

photon pairs originating from all angles in the brain. Through

a computer reconstruction algorithm, it is possible to determine

both the amount and location of the g-ray photons on a

regional basis throughout the brain and to produce a three-

dimensional image or picture. Due to the distance of few milli-

metres travelled by the positron before the annihilation event

occurs, PET has an intrinsic limitation in spatial resolution.

The number of positron/electron collisions at each site in the

brain is proportional to the amount of the radiotracer present

at the site. Hence, the relative amount of relevant activity

being evaluated with respect to activity at other brain sites

can be determined.

PET enables in vivo visualisation by tracking radioactive

compounds (i.e. radiotracers) that are of potential biological

importance in the body(216). PET tracers typically are identical

or similar in structure (i.e. they are analogues) to naturally

occurring molecules that act in particular brain areas. Depend-

ing on the radiotracer, PET can provide measures of regional

cerebral glucose metabolism, blood flow and neurotransmitter

metabolism in a variety of physiological conditions and in

neurological or psychiatric disorders(217).

The best-known example of a PET tracer is [18F]fluoro-

2-deoxy-D-glucose (FDG). FDG is an analogue of glucose

that is labelled with 18F and has a radioactive half-life of

110 min. Glucose serves as the source of energy in active

brain cells. Thus, regional cerebral metabolic rates for glucose,

as determined using PET with this tracer, represent a reliable

index of functional synaptic activity in the human

CNS(218,219). After an intravenous bolus injection, FDG reaches

the brain via blood flow and, similar to glucose, can be trans-

ported across the cerebral capillary bed into the neurons by a

monosaccharide transport system. Once inside brain cells,

FDG is phosphorylated to FDG-6-phosphate, but unlike

glucose-6-P, FDG-6-phosphate is not further metabolised by

glycolytic pathway enzymes and remains essentially trapped

inside brain cells during the duration of the scan(219). There-

fore, the quantity of FDG-6-phosphate that has accumulated
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in a brain region during 45 min of uptake after FDG intrave-

nous injection is measured by PET, and it reflects the rate of

phosphorylation of glucose to glucose-6-P and the plasma

integral of FDG to which the brain is exposed(220). Using an

operational equation(219), regional cerebral metabolic rates

for glucose are calculated from the quantity of FDG-6-phos-

phate within the brain, the ratio of the integrated plasma

activity of FDG to non-radiolabelled plasma glucose concen-

tration during 45 min of uptake and a ‘lumped constant’ that

corrects for the use of FDG in place of unlabelled glucose.

By binding the radioactive compound to specific proteins

(e.g. transporters, receptors or enzymes), PET can be used

to evaluate the state of neurotransmitter systems, revealing,

for instance, the activity of enzymes involved in the synthesis

and metabolism of a given neurotransmitter, such as serotonin

or dopamine, or the number of receptors present(221). PET

may also reveal the variety of physiological processes

mediated by the receptor system. In general, the dose of the

radiotracer for a routine PET scan is approximately 1000

times lower than that required to produce a pharmacological

effect(222). Hence, the radiotracer does not interfere with the

ongoing conditions under study.

In addition to fluorine, other radioactive atoms used in PET

studies are carbon (11C) and oxygen (15O). As a freely diffusi-

ble tracer, H2
15O quickly equilibrates between brain and

blood and provides an excellent indicator of regional CBF

(rCBF), another reliable index of neuronal activity. Immedi-

ately following an intravenous injection of a bolus of H2
15O,

a PET scan that can last from 1 to 4 min is acquired to measure

local radioactivity in the distinct cortical and subcortical brain

regions. Radioactivity can be concurrently measured in the

blood by sampling from an indwelling arterial line that is con-

nected to an automatic counter. Using a mathematical model,

it is possible to determine absolute rCBF values in terms of

ml/100 g tissue per min.

Since the radioactivity of 15O has a rapid decay (half-life

2·05 min), multiple scans can be performed sequentially in

the same individual, ranging from 6 to 12 min apart. This

makes it possible to evaluate rCBF repeatedly in a single

PET session, while the subject is in the ‘resting state’ with no

sensory stimulation or engaged in performing a variety of

tasks. By subtracting a baseline rCBF scan from a task rCBF

scan, regions where activity is specifically altered during the

task can be identified. In such rCBF studies, arterial blood

PaCO2 is monitored so that global CBF can be corrected

when differences in PaCO2 occur. Over the last few years,

fMRI has largely been replaced with PET to study changes in

regional brain activity by measuring blood flow-related

phenomena, because of the greater space and time resolution

and the lack of any radioactive exposure.

Due to its methodological features and radionuclide speci-

ficities, PET is adapted to measure neural activations during

specific tasks and the acute and chronic effects of an inter-

vention in terms of how it modulates both the neural res-

ponse to task performance and the metabolism of different

neurotransmitters.

Eligibility for an examination with positron emission
tomography

PET scanning is useful for understanding adult brain function,

but the use of short-life radioactive compounds poses a strict

limitation to the number of PET scan examinations that an

individual may undergo within a given period of time. It is

also considered impractical to use this approach in healthy

children and adolescents for radiation safety reasons. Hence,

in the young, the technology is only used for diagnosis in

which the risk is outweighed by the benefit.

Use of positron emission tomography in nutritional studies

The number of nutritional studies using PET techniques is

limited. This is not surprising due to the high cost of the

technology, its limited availability and the short half-life of

radiotracers. Due to radiation, most of the studies available

either have examined the effect of nutrition in the adult

brain or are clinical studies in children. Past studies have lever-

aged PET analysis as a tool for identifying the effects of

various stimuli on neurotransmission, blood flow and glucose

uptake. The technique can map potential CNS mechanisms

mediating whole-body energy balance by regulating energy

intake and expenditure in healthy men and women and in

those deviating from ‘healthy’. These data show that inter-

individual and sex differences in behaviour may have

neurobiological correlates. In several studies(172,223–225), PET

has been used to measure rCBF, a marker of neuronal–synap-

tic activity, to investigate the functional neuroanatomy of sex

differences and differences between lean and obese individ-

uals in hunger and satiation. Hunger was associated with

significantly increased neuronal activity in the vicinity of the

hypothalamus and thalamus, which are areas described

previously as important in the regulation of feeding behaviour

in animals. Hunger was also associated with increased

activation in the vicinity of the limbic and paralimbic areas,

regions involved in affect and motivation. In contrast, satiation

was associated with increased activity in prefrontal cortical

areas implicated in aspects of response inhibition. The

changes in activity in the putamen and cerebellum associated

with hunger suggested the involvement of brain regions not

previously associated with the regulation of food intake. PET

has also demonstrated extensive similarities, as well as some

differences, between the sexes. In response to hunger, men

tended to have greater activity in the frontotemporal and para-

limbic systems than did women(172). In response to satiation,

women tended to have greater activity in the occipital and

parietal sensory association areas and in the dorsolateral pre-

frontal cortex than did men, and men tended to have greater

activation in the prefrontal cortex than did women(172). Sex-

specific responses indicate possible neurobiologically based

differences in men and women in cognitive and emotional

processing of hunger and satiation.

Only a few neuroimaging studies have explored the effects

of modifications in nutritional lifestyle on the brain functional

and anatomical correlates. Small et al.(226) have recently used

PET with cognitive and memory tests to assess brain metabolic
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and functional correlates of a 14 d healthy longevity pro-

gramme. Volunteers in the intervention programme were

requested to follow a diet plan and to practise relaxation exer-

cises, cardiovascular conditioning and mental exercise (brain

teasers and verbal memory training). The diet plan used in

this study included five daily meals and emphasised antioxi-

dant-rich fruits and vegetables, n-3 fats and low-glycaemic

index carbohydrates. FDG-PET scans and cognitive tests

were performed before and after the intervention, and the

results were compared with those obtained from a group of

control subjects, who continued with their usual lifestyle rou-

tine. Individuals in the intervention group showed improved

performance in a word fluency test, while the PET scans ident-

ified a 5 % decrease in cerebral glucose metabolism in the

dorsolateral prefrontal cortex. The authors interpreted these

results as signs of increased cognitive efficiency consequent

to the temporary modification in lifestyle.

Another neuroimaging study has investigated brain func-

tional correlates of dietary restraints and successful dieting.

Del Parigi et al.(227) used an H2
15O radiotracer to evaluate

brain response to the sensory experience of food consump-

tion comparing a group of successful female dieters (i.e. suc-

cessful weight loss maintainers) with a group of non-dieters.

The authors observed that after meal consumption, successful

dieters showed greater brain activation in the dorsal prefrontal

cortex, dorsal striatum and anterior cerebellar lobes when

compared with non-dieters. Vice versa, the orbitofrontal

cortex showed greater activation in non-dieters when com-

pared with successful dieters. In addition, dietary restraint,

assessed using the Three-Factor Eating Questionnaire(228), cor-

related positively with the response in the dorsal prefrontal

cortex and negatively with the response in the orbitofrontal

cortex. Finally, a negative correlation was observed between

the response in the dorsal prefrontal cortex and that in the

orbitofrontal cortex. Given these results and the role

recognised for these two brain regions in cognitive control

of behaviour(229) and codification of the reward value of

stimuli(230), respectively, the authors hypothesised that an

inhibitory loop may exist between these two areas in success-

ful dieters. In other words, cognitive control of food intake

may be achieved, thanks to a modulatory signal generated

in the dorsal prefrontal cortex, and directed to regions

involved in food reward such as the orbitofrontal cortex(231).

Nugent et al.(232) questioned whether cerebral glucose

hypometabolism mediates changes in cognitive function

during healthy ageing. Based on epidemiological studies

suggesting that dietary n-3 PUFA ingestion from weekly con-

sumption of a fatty fishmeal protects cognitive function in

the elderly, the study sought to determine whether fish oil

supplementation rich in n-3 PUFA increases cerebral glucose

metabolism. PET analyses utilising [18F]FDG were used to

assess cerebral glucose metabolism in young and elderly

adults. Healthy young and elderly subjects received fish oil

capsules daily for 3 weeks (DHA and EPA). Both brain
18FDG-PET analysis and an oral glucose tolerance test were

performed at baseline and at the end of the treatment. The

results failed to differentiate age or n-3 PUFA supplementation

effects on glucose metabolism in any of the brain regions

evaluated.

Because of the limited number of existing reports, we

describe types of studies that could usefully employ PET ana-

lyses to examine the effects of a nutritional intervention on

brain function. Published study protocols for children with

Tourette’s syndrome or ADHD illustrate how PET imaging

can be used with regard to a nutritional intervention to modu-

late brain function. Tourette’s syndrome is a neurological

condition presenting with chronic motor and phonic tics

during childhood that persists into maturity. Current standard

treatment achieves partial control of the condition and pro-

vokes significant adverse effects. In 2002, Grimaldi(233)

hypothesised that Mg and vitamin B6 deficiencies may be

the precipitating factors in the neurochemical pathways med-

iating Tourette’s syndrome symptomatology. To confirm this

hypothesis, Garcia-Lopez et al.(234) reported on a study proto-

col designed to assess the effects of a combination of Mg and

vitamin B6 supplementation v. placebo on metabolic changes

measured by PET in the brain in conjunction with a reduction

in motor and phonic tics and incapacity, as well as in quality

of life, in children aged 7–14 years with exacerbated Tour-

ette’s syndrome(234). PET imaging will be performed before

and after the treatment, in order to ascertain treatment effects

on dopaminergic activity within the basal nuclei and in the

prefrontal cortex. Thus, PET imaging can be employed as a

tool to evaluate alternative hypotheses of nutritional effects

on brain function under clinical conditions.

PET has been used to examine brain metabolism in children

with ADHD(235). ADHD is a very common and heterogeneous

disorder with an onset in children. The key features include

persistent symptoms of inattention, hyperactivity and impul-

sive behaviour. Approximately 15 % of patients appear

refractory to the standard of care with psychostimulants. Dys-

function of the dopamine transporter is known to be involved

in its pathogenesis. Because the dopamine transporter is

regulated by Zn, Zn deficiency may contribute to the dysfunc-

tion of the dopamine receptor and its supplementation may be

required for treatment and/or as an adjunct to the psychosti-

mulants(236). Lepping & Huber(236) have proposed to test

their hypothesis by recruiting Zn-deficient ADHD patients

who will undergo PET with the [11C]raclopride displacement

method to investigate whether Zn increases extracellular

dopamine levels.

Later in life, PET could be used to study the effects on brain

functioning and metabolism of nutrients thought to be effica-

cious in maintaining, preventing or reversing cognitive decline

among the elderly. The ability to avert, or at least reduce, the

rate of cognitive decline in the elderly would be enormously

beneficial to public health. The most common form of cogni-

tive decline in the elderly is AD. The global presence of this

condition is expected to increase considerably over the next

few decades, resulting in overwhelming demands for socio-

economic and medical resources(237). Although various

forms of therapeutic interventions have been used in AD, no

treatment has proven capable of curing or remitting the

progression of the disease. The clinical demonstration of

potential treatments is arduous since it necessitates large

Brain imaging and human nutrition S19

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0007114513001384
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 22:18:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114513001384
https:/www.cambridge.org/core


study populations and long-term follow-up. PET analyses may

offer cost–benefit options to evaluate alternative therapies.

For example, emerging science has indicated that regional cer-

ebral glucose hypometabolism as measured by 18FDG-PET

reflects cognitive decline associated with ageing(238,239) and

dementia, such as AD(240). Hence, treatments that attempt to

reverse or retard the course of illness by enhancing glucose

utilisation of neurons, which can be assessed by PET with

the FDG radiotracer, may prove efficacious.

In the future, PET analyses may represent an important tool

in evaluating the effects of nutrient deficiencies and sup-

plementation on neurotransmission, glucose uptake and

blood flow underlying the pathological conditions.

Methodological limitations and recommendations of
relevance to intervention studies

Developing models for interpreting findings of positron emis-

sion tomography analyses. Most of the radiotracers used for

PET have relatively short half-lives. For example, the half-lives

for radiotracers of carbon and oxygen are 20 and 2 min,

respectively(222). As a result, PET radiotracers must typically

be produced at the same site as the PET scan activities in

order to avoid losing most of the radioactivity. Radiotracers

are produced by cyclotrons, machines that are extremely

expensive and bulky, and require radioactive shielding.

Hence, PET scans are also limited in availability. In contrast,

recent developments in radiotracers have provided products

with longer half-lives that permit the possibility of PET scan

usage in facilities without cyclotrons.

Data obtained with PET are typically subjected to a set of

processing steps to yield useful information. PET follows the

progress of the tracer by measuring the amounts of radioac-

tivity in different areas of the brain as well as the tracer

concentrations in the blood. These dual datasets are subjected

to mathematical or statistical modelling methods for

interpretation. For example, mathematical representations of

physiological processes such as the metabolism of neuro-

transmitters are used to develop mathematical equations

describing the tissue response curve expected in the measure-

ments. The tissue response curve plots the radioactivity of

specific parts of the brain before, during and after the radiotra-

cer injections. By identifying those variables in the model that

give the best agreement between the expected and measured

values, the physiological processes can be quantified.

Correcting for partial volume errors. Compared with struc-

tural imaging (e.g. MRI), PET images are blurred due to the

limited resolution of the scanners (i.e. inability to distinguish

between closely spaced regions of small dimensions). This

may result in two consequences: (1) an apparent loss or

spill-out of radioactivity signals from a small region of interest

into the adjacent tissues due to the size of the small brain

region compared with the spatial resolution of the scanner,

or (2) spill-in of radioactive signals into the regions of interest

from adjacent brain areas with different radioactivity tracer

concentrations. The latter are known as partial volume

errors. Corrections for partial volume errors involve computer

simulations to mimic the effect of limited spatial resolution in

order to characterise the partial volume effects for each

brain region. This information allows the application of cor-

rection factors to obtain more accurate estimates of the

actual regional activity.

PET scans are increasingly read alongside a computed tom-

ography or MRI scan. The combination gives anatomical and

metabolic information (what the structure is and what it is

doing biochemically). However, the MRI–PET procedure is

time consuming, technically demanding and expensive.

Hence, it is not widely available and is used in limited research

settings.

Single-photon emission computerised tomography
imaging: anatomical, metabolic and functional
assessments for nutritional research

Single-photon emission computerised tomography
techniques and single-photon emission computerised
tomography-derived measures

Similarly to PET, SPECT is a tomographic imaging method-

ology that employs g-ray-emitting radioisotopes that are

attached to ligands of interest. In SPECT imaging, however,

isotopes that emit a single g-ray photon are used. This funda-

mental difference from the radiotracers used in PET, which

emit two photons, accounts for the principal differences in

instrumentation and capabilities to measure functional brain

activity. SPECT visualises the physiological or metabolic func-

tioning of living human subjects, and it is mainly used to

measure blood perfusion and neurotransmitter distribution

in a variety of physiological conditions and in neuropsychia-

tric disorders.

The principal radiotracers currently used in SPECT assess

neural activity by measuring rCBF, although radiotracers to

assess the characteristics of several neuroreceptor systems,

including the cholinergic, dopaminergic and serotoninergic

systems, have also been developed(241,242). The most com-

monly used radiotracers to measure rCBF in SPECT include

[99mTc]hexamethylpropyleneamine and [99mTc]ethyl cysteinate

dimer. The radiotracer [123I]isopropyl iodoamphetamine has

also been widely used to measure rCBF with SPECT. Although

employed initially in non-tomographic imaging, the use of

Xe-133 has continued with SPECT. With a relatively fast clear-

ance, this particular radiotracer allows for multiple scans in the

same SPECT session, but offers a relatively low spatial resol-

ution(243). With the implementation of multiple-head SPECT

cameras, sensitivity and spatial resolution have significantly

improved. However, SPECT continues to have a lower spatial

resolution than PET and has a greater difficulty in identifying

deep brain structures.

In general, compared with positron-emitting tracers in PET,

the radioisotopes in SPECT emit lower-energy photons (i.e.

80–159 keV). These are more susceptible to attenuation as

the photons travel through tissue, especially in deeper brain

structures. Thus, brain structures similar to the basal ganglia,

which are farther from the detector surface, have a poorer res-

olution than cortical brain regions. This, in combination with

the complexities in modelling tracer behaviour, makes full
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regional quantification of absolute rCBF difficult in SPECT. In

practice, which is also often the case with PET, regional tissue

counts in the cortex are typically referenced to global tissue

counts or relatively preserved brain regions (e.g. cerebellum)

to provide a semi-quantitative measure of cerebral perfusion.

As with PET, SPECT imaging of the brain involves two

essential steps: (1) the administration of a radiotracer and

(2) the use of a tomographic scanner to measure the regional

distribution of the radiotracer in the brain. In SPECT, as in PET,

scintillation crystals are used to detect the radioactivity emitted

from the tracers. Since the emitted photons travel in all direc-

tions, SPECT depends on the use of collimators to determine

the point of origin of the emitted photons and to localise

the regional brain activity. These collimators are in the form

of lead septa that are positioned in front of the scintillation

crystal detectors. The apertures created between the septa

serve to limit the exposure of the crystals to g-ray photons

that are arriving at a nearly perpendicular angle to the crystal

surface. In PET, such septa are employed for two-dimensional

image acquisition, but can be retracted in the new three-

dimensional image scanners.

Furthermore, the radioactive half-lives of 6 h for 99mTc and

13 h for 123I, as well as the relatively slow washout of the

high-resolution tracers, such as [99mTc]hexamethylpropylenea-

mine and [123I]isopropyl iodoamphetamine, significantly limit

the ability to perform multiple scans to assess rCBF under

different test conditions during the same scanning session.

Importantly, the greater ease of production and the poten-

tial for longer storage of these radiotracers, compared with

the positron-emitting radiotracers used in PET, provide the

advantage of eliminating the need for an on-site cyclotron.

Despite the technical limitations of SPECT relative to PET,

the wide availability and lower cost, combined with the ability

to detect regional reductions in cortical perfusion with a

spatial resolution that can approach that of PET, have made

its use more popular in clinical assessments of neurodegenera-

tive diseases in recent years. For detailed reviews of the pro-

cedures and technical considerations for SPECT, see the

works of Devous et al.(244), Juni et al.(245), Masdeu et al.(246)

and Van Heertum & Tikofsky(247).

Eligibility for a single-photon emission computerised
tomography examination

SPECT scanning is mostly used for clinical purposes only,

mainly in adult patients. It is considered impractical to use

this approach in healthy children and adolescents primarily

for reasons of radiation safety.

Use of single-photon emission computerised tomography
in nutritional studies

SPECT shares clinical and research applications, limitations

and methodological aspects with PET. Indeed, SPECT scan-

ning has been mainly exploited for the possibility of assessing

cerebral perfusion changes related to nutritional abnormal-

ities. For instance, [99mTc]ethyl cysteinate dimer brain SPECT

studies have revealed significant decreases in frontal perfusion

in a group of patients with coeliac disease, similarly to what

has been described previously in other autoimmune diseases

but improvable by a gluten-free diet(248). Similarly to what

has been described previously, SPECT has also been used

for evaluating changes in neurotransmitter metabolism in

patients with eating disorders or obesity(249,250) or to deter-

mine the effects of creatine nutritional supplementation in

Parkinson’s disease(251) or vitamin B12 deficiency(251,252) on

brain functioning.

Methodological limitations and recommendations of
relevance to intervention studies

The limitations and consideration relative to the methodologi-

cal, experimental and data processing aspects that have been

highlighted for PET are also valid for SPECT. As for PET

protocols, but often with a lower spatial resolution and an

ill-defined quantification of the activity distribution, SPECT

use faces the issues of specificity and the intrinsic properties

of radiotracers, the limited availability of scanners and the

elaborate processing of images.

General considerations

The present review describes existing brain imaging technol-

ogies and how these have the potential to assess the effects

of a nutritional intervention in human subjects. From early

development to ageing, brain imaging can detect structural,

functional and metabolic changes in human subjects. In

addition, modifications due to altered nutrition or to additional

nutritional supplementation have recently been evaluated

with some of these techniques. There are two things that

seem clear: first, the use of brain imaging in nutritional studies

is not widespread; second, brain imaging techniques offer the

promise of providing important and useful information about

the effects that nutrition has on brain metabolism, structure

and function. The literature reviewed here suggests that, on

the whole, the brain imaging markers described can reliably

reflect neurostructural, neurophysiological, neurochemical

and functional cerebral changes occurring during the lifespan

and potentially after nutritional interventions. Furthermore,

these markers may increase our understanding of changes in

brain and cognitive function associated with nutritional inter-

ventions(66,67,69,76,84,94,137,145,209,211–213,231,232,248,251,252). Signi-

ficant effects of a short-term intervention with foods and

nutrients have been demonstrated using MRI, EEG, NIRS and

PET in adults, including sex effects, and special populations

such as athletes(156,172,223–226). Moreover, significant effects

of a long-term intervention (i.e. months) with foods and nutri-

ents have been demonstrated by these techniques in infants

and children, as well as in elderly subjects(3,12,153–166). Due

to the relative infancy of most of these technologies, for the

vast majority of imaging measures, little information is avail-

able regarding their correlation with functional endpoints in

healthy subjects. Therefore, in the general healthy population,

the use of imaging markers as surrogates for functional

endpoints is not well developed and for most markers it is

inappropriate. The key added value of these measures for
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human nutritional intervention studies is their opportunity to

provide unique in vivo information on the working mechan-

ism of the intervention.

Although imaging techniques are capable of providing new

and reliable information on brain structure and function, it

must be remembered that they have their limitations and cau-

tion must be exercised, particularly when interpreting negative

results. Finding no imaging changes may indicate that the

intervention has had no effect on brain structure and/or func-

tion. An equally valid conclusion, however, may be that the

imaging methodology is not sensitive enough to reveal

changes that have in fact occurred. In addition, while beha-

vioural measures of cognitive function in longitudinal studies

are often subject to, for instance, relatively large practice

effects that may complicate the interpretation of results,

many imaging measures are not. Finally, functional brain ima-

ging techniques provide parametric continuous variables with

a high resolution of values, whereas behavioural tests provide

only non-parametric ranking variables that might be incapable

of discriminating slight effects of the intervention. However,

the computerised psychophysical tests of attention, memory,

etc. provide continuous variables of cognitive performance

(reaction time, response time and accuracy). It should also

be stressed that these studies tend to show a large inter-

individual and inter-group variance and that the brain imaging

markers are acceptable for use at a group level but not yet at

an individual level. This conclusion suggests the need for

further investment to develop more precise and effective

guidelines for the standardisation, harmonisation and

qualification of data collection and its analysis in nutritional

intervention studies. This may shorten the time for obtaining

final conclusions about the effects of the intervention.

Hypothesis tested regarding the mechanism of action
of the intervention

Becauseof the limitednumberofexisting reports,wedescribe the

types of studies that could usefully employ the imaging methods

described above to examine the effects of a nutritional interven-

tion on the brain. The choice for most appropriate measures

depends on the hypothesis regarding the mode of action of a

nutritional intervention on brain function (i.e. on which neuro-

structural, neurophysiological and neurochemical changes are

expected due to the intervention). Combination of various

imaging measures of different phenomena of the hypothesised

working mechanism can provide complementary information

and strengthen hypothesis testing. For example, de Wilde

et al.(253) reviewed the potential of imaging modalities to test

the hypothesis that a nutritional intervention increased the

formation of new neuronal membranes and therewith synapse

formation and function in AD. To test this specific hypothesis,

MRS can be employed to study membrane-related compounds,

cerebral metabolic rate of glucose by FDG-PET can provide

insights into synaptic functioning and density, and structural

MRI can be used to study long-term effects on atrophy rate,

while EEG and MEG might be useful to study functional

connectivity.

Level (structural, metabolic or functional) and anticipated
timescale of the intervention’s effects

In this regard, the intrinsic temporal and spatial resolution of the

different brain imaging techniques will determine the choice

of technique. For example, structural MRI would not be

appropriate in an acute intervention context (i.e. single-dose

administration or few days of administration). However, these

techniques could be included in the general assessment of the

experimental subjects if the experimental purposes imply the

exclusion of elderly people with preclinical neuropathological

processes as indexed by abnormal cortical grey matter, white

substance, hippocampus volume, vascular load and so forth.

Furthermore, validation of a nutritional intervention in terms

of structural MRI effects may yield especially strong evidence

in favour of a nutrient, as structural effects may be expected

to have long-term consequences on CNS function.

Target population and ethical restrictions

Most of these imaging techniques are non-invasive and are ethi-

cally suitable for use in almost any population throughout the

lifespan. However, some can be limited in their use, and this

should be addressedduring studydesign to seek alternative ima-

ging markers. For example, PET techniques can be extremely

useful in examining the effects of nutritional interventions on

brain metabolism and CBF in human subjects. However, there

are ethical restrictions for their use in healthy subjects and

these techniques are not suitable for infants and children.

Availability and costs of the techniques

Some promising procedures might not be viable due to the lack

of current availability (i.e. MEG, NIRS or PET) or relatively high

costs of their use (i.e. PET and MRI). These aspects may be

relevant in the case in which the study plan implies the recruit-

ment of a large number of control and experimental subjects.

Conclusion

In the present review, we have provided a comprehensive

overview of brain imaging markers that have potential utility

in nutritional intervention studies examining CNS and cogni-

tive function in healthy human subjects. We have described

multimodal MRI, as well as EEG/MEG, NIRS, PET and SPECT

techniques, with a focus on the biological relevance of their

outcome measures, the practical use and feasibility of the tech-

niques, and the recommended use in terms of acute v. chronic

nutritional intervention studies. In general, brain imaging mar-

kers for nutritional intervention studies can be considered as

specific for one or several brain processes and as surrogate

instrumental endpoints. They are also suitable to build up

translational models to be used in both animals and human

subjects to validate preclinical research. However, these mar-

kers cannot be considered as a substitute of clinical endpoints

in terms of cognitive or behavioural response to a task or chal-

lenge. Furthermore, some brain imaging markers can be

linked to a broader functional outcome, such as cognition,
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behaviour or wake–sleep cycle, but they certainly do not

replace the overall capacity of the brain to behaviourally

respond to a specific situation and stimuli that should

remain the essential endpoints. The best way to evaluate the

effects of food and nutrients on the CNS is to use a proper

panel of structural and functional brain imaging markers and

of behavioural, psychophysical and clinical (if any) endpoints,

in line with the specific working hypotheses on the neural

mechanism of action of the intervention. In this framework,

the correlation between brain imaging markers and beha-

vioural/psychophysical measurements represents an import-

ant aspect of the data analysis design to probe the sensitivity

of these neuroimaging markers to the effects of the interven-

tion at an individual level. An ideal view is that international

consensus guidelines will be developed in the near future

for the use of the appropriate brain imaging techniques for

nutritional intervention studies in healthy human subjects.

This would be a very promising platform for increasing the

use of these markers in future nutritional intervention studies.
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