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Abstract

Clonal deletion of thymocytes bearing TCR for self antigens is one major mechanism of T cell
tolerance induction. Peptide antigen-induced deletion of thymocytes from a/3 TCR transgenic
mice has been studied using single cell suspension cultures. The results show that antigen-
presenting immature CD4+CD8+ thymocytes can tolerize antigen-reactive immature thymocytes
in vitro by programmed cell death (apoptosis) 6 - 8 h after antigen exposure. Antigen-induced
apoptosis of immature thymocytes was inhibited by antibodies specific for the a/3 TCR, CD3,
CD8, and LFA-1 molecules. This implies that clonal elimination of self-reactive CD4+CD8+
thymocytes does not depend on specialized deleting cell types in the thymus and occurs
whenever the TCR of immature thymocytes bind antigen fragments presented by MHC molecules.

Introduction

During T cell development the TCR repertoire is shaped in the
thymus by positive and negative selection events. It is now well
established that clonal deletion of self-reactive T cells is the major
mechanism of T cell tolerance induction for thymic self antigens.
This has been demonstrated in normal mice for superantigens
(1 -3 ) and in a/3 TCR transgenic mice for conventional MHC-
restricted peptide antigens (4-6).

Clonal deletion is thought to occur via antigen-induced
programmed cell death (apoptosis) of autoreactive thymocytes.
Anti-CD3 treatment of fetal thymic organ culture has been
proposed to be an in vitro model of negative selection (7,8). This
view has been recently challenged by two studies which show
that thymocytes which are resistant to anti-CD3-induced apoptosis
are still susceptible to superantigen-induced deletion in vivo
(9,10).

To learn more about the molecular and cellular requirement
for tolerance induction by deletion, an assay system, originally
described by Swat et al. (11,12), has been utilized which allows
the study of antigen-induced deletion of thymocytes in single cell
suspension cultures in vitro. This approach allows the definition
of the minimal cellular requirement for clonal deletion and the
identification of cell surface molecules involved in this process.

Methods

Mice

The TCR transgenic mice (line 327) have been previously
described (6). Mice 6 -12 weeks of age were used.

Thymocyte cultures

Single cell suspensions of thymocytes were prepared by
squeezing the whole thymus through a wire screen. Clumps were
allowed to settle and then discarded. The cells were >99%
Thy-1+, <0.1%Mac-1+ , <0.7% Mac-2 + , and <0.4% lgM + .
After washing, thymocytes (5 x 106 cells/ml) were cultured
(37°C, 5% CO2) in Iscove's modified Dulbecco's medium
(IMDM) supplemented with 15% FCS in 24-well Costar tissue
culture plates (1 ml/well) for 14 h if not otherwise indicated. The
lymphocytic choriomeningitis virus (LCMV) glycoprotein
aa33-42 (KAVYNFATCG) (13) peptide was used at 30>M.
Lymph node cells (2 x 106 cells/well) from a/3 H-2b TCR tran-
sgenic mice (>7O°/o CD8+) were added to the indicated
cultures. FACS-sorted CD4+CD8+ thymocytes (>99.8% pure)
were cultured (5 x 106 cells/ml) in 96-well tissue culture plates
(200 /il/well) in the presence or absence of 30 /*M LCMV pep-
tide for 14 h. Afterwards, the cells were restained with anti-CD4
and -CD8 mAb.

Inhibition of antigen-induced deletion

Thymocytes were cultured in the presence of the supernatants
of the following B cell hybridomas: 53-6.72, anti-CD8 (14); GK1.5,
anti-CD4 (15); H129.37, anti-LFA-1-a (16); KT3, anti-CD3 (17);
B20.1, anti-TCR Va2 (18); KJ16, anti-TCR VS8 (19), J11d and
B2A2, anti-HSA (20,21); KM202, anti-CD44 (22); and M1/9 and
23G, anti-CD45 (23,24). Per cent deletion of CD4KshCD8h:sh

thymocytes was calculated by:
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°/oCD4h'9hCD8h'9h thymocytes with LCMV peptide
100 x 1 -

%CD4hi9hCD8hi9h thymocytes without LCMV peptide

Flow cytometry analysis

Thymocytes were double stained with anti-CD4 - phycoerythrin
(PE) and anti-CD8-(luorescein isothiocyanate (FITC) (Becton
Dickinson, Mountain View, CA) mAb. CD4/CD8 expression of
the anti-CE4 or anti-CD8 treated cultures was determined by res-
taining with anti-CD4 (15) or anti-CD8 (14) mAb and goat anti-
rat IgG-FITC (TAGO, Burlingame, CA), followed by
CD8-biot in-avidin-PE or CD4-PE (Becton Dickinson)
respectively. Thymocytes were analyzed on an EPICS profile
analyzer (Coulter, Hialeah, FL) with four logarithmic scales. Data
were only collected from viable (i.e. propidium iodide negative)
cells gated by a combination of forward light scatter (FS) and
90° side scatter (SS).

Results and discussion

The molecular and cellular requirements for clonal elimination
of self-reactive CD4+CD8+ thymocytes from a/3 TCR transgenic

mice by apoptosis was examined in single cell suspension
cultures. These mice express an LCMV/H-2Db-specific TCR
(Va2A/,j8.1) on most thymocytes (70-80%) and peripheral
CD8+ T cells (6). Apoptosis of immature CD4 + CD8+

thymocytes was analyzed by flow cytometry based on the fact
that thymocytes undergoing programmed cell death express
reduced levels of CD4 and CD8 molecules (11). Thus, the degree
of cell death among cultured CD4+CD8+ thymocytes can be
monitored by the shift from a CD4hi9hCD8hi9h to a CD4lowCD8low

phenotype (11,12). When thymocytes from TCR transgenic H-2b

mice were cultured in the presence of the LCMV peptide
(glycoprotein aa33 - 42) recognized by the transgenic TCR, the
population of immature thymocytes expressing CD4 and CD8
at a high level (CD4h'9hCD8h'9h) gradually decreased and a
distinct apoptotic cell population bearing lower levels of CD4 and
CD8 (CD4'°WCD8|OW) appeared (Fig. 1A). The disappearance of
CD4hishCD8hi9h thymocytes was MHC-restricted (Fig. 1B, top)
and antigen-specific (Fig. 2, top), and was not observed in LCMV
peptide-treated thymocyte cultures from non-transgenic H-2b

mice where only a minute fraction [<1/105 (25)] of T cells bear
an LCMV-specific TCR (Fig. 1B). Apoptosis of CD4+CD8 +

thymocytes was not caused by direct cell lysis mediated by
mature thymocytes because co-culture of normal H-2b
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Fig. 1. Peptide antigen-induced apoptosis in thymocyte cultures. (A) Thymocytes from TCR transgenic mice (H-2b) were cultured for the indicated
time in the presence (left) or absence (right) of the LCMV peptide (GP aa33 - 42) and subsequently analyzed for expression of CD4 and CD8 molecules
by flow cytometry. The percentages given in each plot indicate the relative number of CD4h'9hCD8h'sh and CD4kw'CD8lov" cells in the indicated gate.
Most (70 - 80%) of the total input cell numbers were recovered as trypan blue negative thymocytes after 8 h in peptide-treated and control cultures.
(B) Thymocytes from the indicated mice were cultured for 14 h with or without the LCMV peptide and analyzed for CD4 and CD8 expression. In
the bottom row, peripheral CD8+ T cells from TCR transgenic mice (H-2b) were added to thymocyte cultures from normal H-2b mice. The percentage
given in each plot indicates the relative number of CD4™ghCD8h'9h thymocytes. Most (60 - 70%) of the total input cell numbers were recovered as
trypan blue negative thymocytes. In LCMV peptide-treated H-2b transgenic cultures, only 30 - 40% of the total input cells were recovered as trypan
blue negative cells.
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Fig. 2. Inhibition of LCMV peptide-induced deletion of CD4hiBhCD8hiBh

thymocytes with mAb. Apoptosis was induced either with the LCMV
glycoprotein aa33-42 (100 jiM • ) or with the suboptimal aa32-42
(100/»M • ) peptide.
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Fig. 3. Peptide antigen-induced cell aggregation. Thymocytes from TCR
transgenic H-2b mice were incubated at 37°C in the absence (left) or
presence (right) of LCMV peptide for 3 h. Afterwards, the cell suspension
was mounted on a glass slide, air dried, and stained using
May-Grunwald-Giemsa eosine-methylene blue solution.
Magnification: top panel x 2 1 ; bottom panel x105.

Antigen-induced clonal deletion in vitro 1067

thymocytes and mature transgenic CD8+ T cells, in the
presence of LCMV peptide, did not reduce the number of normal
CD4hishCD8hi9h thymocytes (Fig. 1B, bottom). In addition,
unprimed TCR transgenic thymocytes and peripheral T cells did
not show any cytolytic activity when tested on LCMV peptide-
coated target cells in a 51Cr release assay (not shown) and
elimination of mature thymocytes by cell sorting did not abolish
apoptosis of CD4+CD8+ thymocytes (see below).

Monoclonal antibodies were tested for their ability to interfere
with LCMV peptide-induced apoptosis: mAb specific for
transgenic TCR a and & chains, CD3, CD8, and LFA-1 molecules
inhibited antigen-induced elimination of CD4hishCD8hiflh

thymocytes in a dose-dependent manner (Fig. 2). Inhibition was
more pronounced when a suboptimally antigenic LCMV peptide
(glycoprotein aa32-42) was used (Fig. 2, top). Antibodies
specific for other thymocyte antigens, such as the CD44 arid
CD45 molecules, and the heat stable antigen (HSA), did not block
apoptosis, whereas mAb H141-51 (26), specific for the LCMV
peptide-presenting MHC class I molecules H-2Db, were found
to be inhibitory (data not shown). Neonatal anti-CD4 antibody
treatment has been shown to prevent Mis- (27) and l-E-mediated
(28) deletion of self-reactive T cells in vivo.

During the course of these experiments it was noted that the
addition of LCMV peptide to thymocyte cultures from TCR
transgenic H-2b mice induced a transient cell aggregation
2 - 3 h after peptide addition. These aggregates often appeared
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Fig. 4. CD4+CD8+ thymocytes induce antigen-specific apoptosis of
CD4+CD8+ thymocytes. Fluorescence data were collected only from
'viable' cells with high FS and low SS (population A; bottom) which did
not stain with propidium iodide. Cells from population B were mostly
propidium iodide positive.
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as characteristic thymocyte chains (Fig. 3). A similar effect was
not observed when LCMV peptide-treated thymocyte cultures
from normal H-2b or TCR transgenic H-2d mice were examined
(not shown). This observation suggests that LCMV peptide-coated
thymocytes may act as antigen-presenting cells and therefore
induce visible cell -cell binding via the LCMV-specific transgenic
TCR present on most thymocytes. Alternatively, it is possible that
antigen-induced TCR cross-linking on thymocytes stimulates
adhesiveness through LFA-1 molecules as shown for mature T
cells (29).

To formally demonstrate that immature CD4+CD8+ thymocytes
are able to present the antigenic LCMV peptide to themselves and
thereby induce apoptosis, CD4+CD8+ thymocytes from TCR
transgenic mice were purified by cell sorting, cultured in the
presence or absence of the LCMV peptide for 14 h, restained
with CD4 and CD8 mAb, and analyzed by flow cytometry.
Thymocytes from TCR transgenic H-2d mice served as a
specificity control because H-2d MHC molecules do not present
the LCMV peptide to the transgenic TCR (not shown). LCMV
peptide-induced apoptosis occurred only in thymocyte cultures
derived from transgenic H-2b but not from H-2d mice, as judged
by the disappearance of CD4hishCD8h'9h cells and the
appearance of the CD4lowCD8low population (Fig. 4, top).
Fluorescence data were collected only from 'viable' cells which
did not stain with propidium iodide.

In addition, plots of FS and 90° SS of the recovered cells
revealed an increase (34 to 59%) of the cell population with low
FS and high SS (population B in Fig. 4, bottom) in LCMV peptide-
treated thymocyte cultures derived from TCR transgenic H-2b

mice. Most of these cells were stained by propidium iodide,
indicating permeable cytoplasmic membranes (not shown). A
similar effect was not observed in LCMV peptide-treated
thymocyte cultures derived from TCR transgenic H-2d mice (Fig.
4, bottom). These results show that the addition of the LCMV
peptide to purified CD4 + CD8+ thymocytes from TCR
transgenic H-2b mice also specifically decrease cell viability from
66 to 4 1 % (Fig. 4, bottom).

The possibility that the observed antigen-induced apoptosis
of immature thymocytes in these experiments was a result of the
few contaminating cells in the purified CD4+CD8+ population
cannot be completely ruled out. However, it is considered unlikely
that the <0.2% contaminating cells in the preparations were able
to induce CD4/CD8 down-regulation in 30% of 'viable'
thymocytes and to decrease the viability of the recovered cells
from 61 to 4 1 % in this in vitro culture system within 14 h. In
addition, the extent of deletion of purified CD4+CD8 +

thymocytes (Fig. 4) was comparable to the results obtained with
total thymocyte preparations (Fig. 1).

FACS-purified double negative (CD4~CD8-) thymocytes
injected into the thymus of irradiated host mice have been shown
to induce T cell tolerance to allogeneic MHC class I antigens (30).
The results of this study directly demonstrate that CD4+CD8+

thymocytes induce clonal deletion of self-reactive immature
CD4 + CD8+ thymocytes by apoptosis in vitro. This com-
plements a recent report by Swat et al. (12) which revealed that
adherent cell preparations from thymus and spleen are able to
induce antigen-specific clonal deletion in vitro. Mice, neonatally
infected with LCMV, delete LCMV-specific CD8+ T cells in the
thymus (6). Because LCMV does not infect thymocytes, clonal

deletion was induced in this system either by infected thymic
epithelia or bone marrow-derived macrophages/dendritic cells.
In this study the LCMV peptide has been used as a model an-
tigen for self determinants expressed or passively acquired
(31,32) by thymocytes. This approach allowed the demonstra-
tion that tolerance induction, via antigen-triggered self destruc-
tion of CD4+CD8+ thymocytes, only requires the presence of
the appropriately processed self peptides presented by MHC
molecules.
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