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We consider the Stokes problem of incompressible fluid flow in three-dimensional
polyhedral domains discretized on hexahedral meshes hyttiscontinuous Galerkin

finite elements of typ&)y for the velocity andQk_1 for the pressure. We prove that these
elements are inf-sup stable on geometric edge meshes that are refined anisotropically and
non-quasiuniformly towards edges and corners. The discrete inf-sup constant is shown to
be independent of the aspect ratio of the anisotropic elements andi&of/2) in the
polynomial degre&, as in the case of conformin@yx — Qk_» approximations on the same
meshes.

Keywords: discontinuous Galerkin methodsp-FEM; geometric edge meshes.

1. Introduction

It is well known that solutions of elliptic boundary value problems in polyhedral domains
exhibit corner and edge singularities. In addition, boundary layers may also arise in
laminar, viscous, incompressible flows with moderate Reynolds numbers at faces, edges,
and corners. Suitably graded meshes, geometrically refined towards corners, edges, and/or
faces, are required in order to achieve an exponential rate of convergehgefinfte
element approximations; see, e.g. Andersgah. (1995), Babgka & Guo (1996), Melenk

& Schwab (1998), Schwab & Suri (1996), Schwetkal. (1998), and the references cited
therein.

The stationary Stokes and Navier—Stokes equations are mixed elliptic systems with
saddle point variational structure. The stability and accuracy of the corresponding finite-
element approximations depend on an inf-sup condition for the finite-element spaces
that are chosen for the velocity and the pressure. Even for stable velocity—pressure
combinations, the corresponding inf-sup constants may in general be very sensitive to the
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aspect ratio of the mesh, thus degrading stability if very thin elements are employed, as
required for the resolution of boundary layers and edge singularities. It has recently been
shown for two- and three-dimensional conforming approximations empldying Qk—»
elements, on corner, edge, and boundary-layer tensor product meshes of hexahedra, that the
dependence on the polynomial degree of the inf-sup constant for the Stokes problem might
be only slightly worse than that for isotropically refined triangulations but is independent

of the aspect ratio of the anisotropic elements; se@Ral & Schwab (1998), Sétrau

et al. (1999), Ainsworth & Coggins (2000), and Toselli & Schwab (2003).

Discontinuous Galerkin (DG) approximations rely on discrete spaces consisting of
piecewise polynomial functions with no continuity constraints across the interfaces
between the elements of a triangulation. They present considerable advantages for certain
types of problems, especially those modelling phenomena where convection is strong; see
e.g. Cockburn (1999), Cockbuet al. (2000), Cockburn & Shu (2001), and references
therein. DG approximations often allow for greater flexibility in the design of the mesh and
in the choice of the approximation spaces since they do not usually require geometrically
conforming triangulations. We note, however, that even if convection is the dominant effect
of a problem, diffusive terms still need to be accounted for and correctly discretized in a
DG framework. Several mixed DG approximations have been proposed for incompressible
fluid flow. We mention the approaches of Balatral. (1990), Karakashian & Jureidini
(1998), Cockburret al. (2002), Cockburret al. (2003), Hansbo & Larson (2002), and
Giraultet al. (2002). In Toselli (2002) and Soétzauet al. (2003), DFhp-approximations
in two and three dimensions have been proposed and analysed for tensor product meshes.
Numerical evidence hints that DG approximations exhibit better divergence stability
properties than the corresponding conforming ones; see Toselli (2002) for the case of
discontinuouf)x — Qk, Qkx — Qk_1, andQk — Qk_» elements.

In this paper, we considédx — Qx_1 DG approximations in three dimensions. They
were originally studied by Toselli (2002) and then by 8tauet al. (2003) for shape-
regular meshes, possibly with hanging nodes. In particular, it was shown that these
approximation spaces are divergence stable uniformly with respect to the megh size
The best bound for the inf-sup constant in terms of the polynomial dégnees given by
Schdtzauet al. (2003) and decreaseskist both in two and three dimensions. Even though
this estimate does not appear to be sharp, at least in two dimensions (see the numerical
results in Toselli, 2002), it ensures the sapwgersion convergence rate for the velocity
and the pressure as that of conformiig — Qx_2 elements in three dimensions, but with
a gap in the polynomial degree of the velocity—pressure pair of just one. We also note that
a smilar approach was considered in Hansbo & Larson (2002 feersion finite element
approximations on shape-regular tetrahedral meshes for mixed formulations of elasticity
problems.

Here, we generalize our analysis in ttauet al. (2003) to the case of geometric edge
meshes consisting of hexahedral element&3nThese meshes are refined anisotropically
and non-quasiuniformly towards edges and corners in order to resolve edge and corner
singularities at exponential rates of convergence. We show that the inf-sup constant for
discontinuousQx — Qk_1 elements decreases &k 32, with a constanitC that only
depends on the geometric grading factor, and is independent of the deginedevel of
refinement, and the aspect ratio of the anisotropic elements. We recall that for conforming
Qk — Qk—2 approximations the inf-sup constant on geometric edge meshes has been shown
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to decrease a8k ~1/2 in two dimensions and &k ~%2 in three dimensions; see Sithau

& Schwab (1998), Sdiizauet al. (1999), Toselli & Schwab (2003) and the references
therein. The inf-sup constant of our method has thus the same dependek@es dhat

of conforming approximations, but with an optimal gap of just one degree between the
velocity and the pressure approximation.

For simplicity, we assume throughout that the geometric meshes consist of stretched
affine hexahedra. While hexahedral elements are essential in our stability proofs, the
condition that the element maps be affine may be weakened to the extent that the meshes are
patchwise mapped from suitable reference patches by smooth, bijective and nondegenerate
maps. In this case, the velocity spaces need to be suitably adapted in the physical
coordinates as in Chilton & Suri (2000), but our stability results on anisotropic meshes
still apply in the reference patches.

We consider here the symmetric interior penalty DG method, but emphasize that our
stability results remain valid for all the methods discussed irb&etuet al. (2003). Note
that our analysis is also valid fdyp-DGFEM approximations of elasticity problems in
nearly incompressible materials, see, e.g. Brezzi & Fortin (1991), and Franca & Stenberg
(1991), since the same inf-sup condition is required in order to have approximations that
remain stable close to the incompressible limit.

This paper is organized as follows: in Section 2, we review the discrete setting from
Schitzau et al. (2003) that we use in our stability analysis. Section 3 is devoted to
the definition and construction of geometric edge meshes. In Section 4, we establish
continuity and coercivity properties of the DG forms. Our main stability result is an inf-
sup condition for thénp-discretization of the divergence form on geometric edge meshes;
it is presented in Section 5. In order to prove this result, several ingredients are needed.
First, in Section 6, we establish a macro-element technique for nfipediscontinuous
Galerkin discretizations in the spirit of Stenberg & Suri (1996), &zhu & Schwab
(1998), Schitzauet al. (1999), and Toselli & Schwab (2003). This technique allows us
to reduce the investigation of divergence stability to certain reference configurations which
we refer to as patches. Then, to address the stability on one of these configurations,
namely the edge patch, we provide estimates of Raviart—Thomas interpolants on stretched
hexahedra in Section 7. The stability on edge patches is shown in Section 8. Finally, we
complete the proof of our stability result in Section 9.

2. Mixed hp-DGFEM for the Stokes problem

In this section, we introduce mixeldp-discontinuous Galerkin methods for the Stokes
problem of incompressible fluid flow, and review the theoretical framework ocf2aliet
al. (2003) that we use to analyse the methods on geometric edge meshes.

2.1 The Stokes equations

Let £2 be a bounded polyhedral domainlit?, with n denoting the outward normal unit
vector to its boundary 2. Given a source terrh € L?(£2)% and a Dirichlet datuny e
HY/2(32)3 satisfying the compatibility conditiorfy , g - nds = 0, the Stokes problem of
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incompressible fluid flow consists in finding a velocity fielédind a pressurp such that

—vAu+Vp=f in £,
V.-u=0 in £, (2.1)
u=g onaf.

By settingV := H1(12)3, Q := L3(2) = {q e L2(®) : [, qdx =0} and

A(u,v):/ vVu : Vvdx, B(v,q):—/ qVv-vdx,
2 0

we obtain the usual mixed variational formulation of the Stokes problem that consists in
finding (u, p) € V x Q, withu = gona{?, such that

2.2)

Au,v) + B, p = [, f-vdx
B(u, q) = 0

forallv € H}(2)% andqg € Q. Asusual,H}(2)* is the subspace dfi1(2)3 of vectors
that vanish ord {2.

The well-posedness of (2.2) is ensured by the continuityAof -) and B, -), the
coercivity of A(-, -), and the following inf-sup condition:

B(v,
inf v. )
0£GEL3(2) 0ve H(2)d Ivlzliallo

>yn >0, (2.3)

with an inf-sup constang only depending on?; see e.g. Brezzi & Fortin (1991) and
Girault & Raviart (1986). Here, we denote By ||sp and| - |s p the norm and seminorm
of HS(D) andHS(D)3, s > 0. WhenD = 2, we drop the subscript.

2.2 Meshes and trace operators

Throughout, we consider mesh&sin two and three space dimensions that consist of
quadrilaterals and hexahedt&}, respectively. Each elemekt € 7 is affinely equivalent

to areference elemekt, which i is either the reference squé?& (-1, 1)2 or the reference
cubeQ = (-1, 1)3. The edges oBand the faces o@ are denoted bym, =1,...,2d,

d = 2, 3, where

i=x=-1, fR={Kx=1,
fa={y=-1, fh={y=1}
fs = {z=—1}, fo = {z=1}, d=3

We write { fj }izil to denote the edges or faces of an elentént 7; they are obtained

by mapping the corresponding onestof In general, we allow foirregular meshes, i.e.
meshes with so-called hanging nodes (see Schwab, 1998, Section 4.4.1), but suppose that
the intersection between neighbouring elements is a vertex, an edge, or a theeJ)fof

at least one of the two elements. For an elentert 7, we denote byhk its diameter and
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by pk the radius of the largest circle or sphere that can be inscribeKintd mesh7 is
calledshape-regular if

hk < cok VK € 7, (2.4)

for a shape-regularity constanit- 0 that is independent of the elements. Our meshes are
not necessarily shape-regular; see Section 3.

Let now7 be a hexahedral mesh ¢h An interior face of7 is the (non-empty) two-
dimensional interior obK+ N 9K —, whereK  andK ~ are two adjacent elements Bt
Similarly, a boundary face df is the (non-empty) two-dimensional interior &K N 94?2
which consists of entire faces 8K . We denote by€7 the union of all interior faces df,
by £z the union of all boundary faces, and et £7 U Eg.

On &, we define the following trace operators. First, letc £z be an interior face
shared by two elementé™ andK ~. Letv, g, andzt be vector-, scalar- and matrix-valued
functions, respectively, that are smooth inside each eleiéntand let us denote by,
g* andt* the traces of/, g andt on f from the interior ofK*. We define the mean
values and the normal jumpsxat f as

v} := (vh +v7)/2, vVl :==v" -ng+ +v -ng-,
fah =@ +97)/2 [al :=q* nk+ +9~ nk-,
fz} =" +27)/2 [z]:=z"nk+ + 77 ng-.

Here, we denote bgk the outward normal unit vector to the boundaty of an element
K. We also need to define the matrix-valued jumprohamely

vl :=v" @ ng+ +Vv~ ®@nk-,

where, for two vector& andb, [a ® blij = ajbj. On aboundary facef C &g given
by f = 9K N a2, we then set accordingly{v}} := v, {{q}} := q, {z}} := z, aswell as
(vl :=v-n,[[vl :=v®n,[ql :=qgnand[z] := zn.

2.3 Finite-element spaces

For a mesh7 on a polyhedrorD and an approximation ordér > 0, we introduce the
finite-element spaces

VE(T: D) :={vel?D)3: vk e (K)3, KeT},
QN(T; D) = (g € L2AD) : alk € Qu(K), K € T, /D qok = 0},

where Q(K) is the space of polynomials of maximum degieén each variable on
the elemenK. Further, we define the subspa\lﬁ(T; D) of VE(T; D) of vectors with
vanishing normal component on the boundaryof

VK(T; D) ={veVKT;D):v-np=00ndD},

with np denoting the outward normal unit vector &0. For D = (2, we omit the
dependence on the domain and simply witg7), QK (7)) andV{ (7).
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2.4 Mixed discontinuous Galerkin approximations

For amesh7 on (2, we approximate the velocity and pressure in the spa&geand Qp,
given by

Vhi=VE(T),  Qn=Q D), kx>1

We refer to this velocity—pressure pair as (discontinuddigs}- Qx—1 elements.
In order to apply the framework of Sotrauet al. (2003), we need to define the
additional spac¥/ (h) := V + Vy,, endowed with the broken norm

VI = > IVIfk +/ SIIvVII®ds,  veV(h.
KeT €

Here,§ € L°°(€) is the so-called discontinuity stabilization function, for which we will
make a precise choice in Section 3.2.
Next, we introduce the auxiliary space

Zhi={z e L2 1]k € Q(K)¥®, K e T},

and define the lifting operatos : V(h) — X, and M : V(h) — Qn by

[ coizoc= [ Mgz vees, (2.5)
fg MV)gdx = /5 [vi{a} ds vq € Qn. (2.6)
We consider the following mixed DG method: firgdp, pn) € Vi x Qp such that
{ An(Un,V) + Ba(V,pn) = Fh() 27
Bh (Un, ) = Gh@

for all (v, q) € Vh x Qn. Here, A, : V(h) x V(h) - RandBy : V(h) x Q — R have
the following forms:

An(u, V) :/ V[VhU : VaV — L(U) : VhV — L(V) : Vhu] dX
(0}
+ v[ S[ull : [v]ds, (2.8)
ol IV
Bh(v,q)=—/9q[Vh-V—M(V)]dx,

whereVy, is the discrete gradient, taken elementwise. The functioRalsVy — R and
Gh : Qn — R are given by

Fh(v)=/ f~vdx—/ (9®n):{{vvhv}}ds+v/ 3g-vds,
0] En

B

Gh() :f qg-nds.
&
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Restricted to discrete functions Wy, and Qp, we have
An(u, V) = /9 VVhU : Vhvdx —/g (v Vvl : [ull + {vVau} : [v]) ds
+v/; Sull : vl ds,
Bn(v,q) = — /Q qVh-vdx + /g {a vl ds.

We also note that foq € Qp andv € Vi N Ho(div; £2)

Bnh(v,q) = B(v,Qq) = —/ gV -vdx, (2.9)
Q

where the spacélg(div; 2) consists of square-integrable vectors with square-integrable
divergence and vanishing normal componentadh Thus, the spac¥y N Ho(div; §2)
consists of discrete vectors with continuous normal component across the inter-element
boundaries and vanishing normal componentddgey see e.g. Brezzi & Fortin (1991,
Chapter II1.3).

REMARK 1 The formBy, and the functionasy, are exactly those considered in the mixed
DG approaches of Cockburet al. (2002), Hansbo & Larson (2002), Toselli (2002),
and Schitzauet al. (2003). The formAy in (2.8) is the so-called interior penalty (IP)
form. Several other choices are possibleAgr as discussed in Sdtzauet al. (2003). All
the results of this paper hold verbatim for these other forms as well.

2.5 WEll-posedness and error estimates

Problem (2.7) was analysed in Sthauet al. (2003) where an abstract framework was
introduced.
We assume that the form&, and By, satisfy the following continuity properties:

An(u, V) < aglullnlivih, u,v e V), (2.10)
Bh(v, a) < az|vinlldllo, (v,q) e V(h) x Q, (2.11)

with constantsy; > 0 anday > 0, and thatAy, is coercive
An(u,u) > Bllullf.  ueVp, (2.12)

for a constanp > 0. Next, we suppose that the following discrete inf-sup condition for
the finite-element spac&g, and Qy, holds:

inf Bh(v,q) <

> (2.13)
0#4€Qn 0vevy, IVInlgllo

Condition (2.13) is also referred to as divergence stability. Finally, we assume the
functionalsFy, : Vi, — R andGy, : Qn — R to be continuous.
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The above conditions ensure the well-posedness of (2.7). Indeed, (2.7) has a unique
solution and we have the following error bounds from Sections 3 and 4 d@ftSalet al.
(2003), with(u, p) denoting the exact solution of (2.1):
lu—unlln < Cly, * inf lu—viin+ inf [Ip—dllo+Rnu, P,
veVp qeQn (2.14)

- <C[ytinf |p- 2 inf u—v “1Rn, pl,
P — pnllo [ quh”p allo + ¥ vth” Ih + v, Rnu, p)]

where the constants only depend onx1, a2 and 8, and whereRy (u, p) is the residual
defined by

Rh(u’ p) ‘= sup IAh(u, V) + Bh(V, p) — Fh(V)| '

(2.15)
0£veVh Vil

(Note thatBy (u, q) = Gn(q) for allg € Qp.)

In Sctbtzauet al. (2003), the above conditions have been verified on isotropically
refined, shape-regular meshes in two and three dimensions. It has then been proven in
Theorem 9.1 there that, fat of the orderk?/h and piecewise smooth solutions, the
estimates in (2.14) lead to algebraic convergence rates that are optimal in the mesh sizes
and slightly suboptimal in the polynomial degrees. In particular, the residyah (2.15)
has been shown to be optimally convergent in the mesh sizes and the polynomial degrees;
see Schtzauet al. (2003, Proposition 8.1). Moreover, the recent work of @zhu &

Wihler (2002) has shown that, for Stokes flow in polygonal domains, the error estimates
(2.14) give rise to exponential rates of convergence on geometrically refined shape-regular
meshes.

In the following, we generalize the stability results of 8tzauet al. (2003) to three-
dimensional geometric edge meshes, which are highly anisotropic. In particular, we show
that the forms in (2.8) satisfy the above conditions on such meshes with constants
B andyy, that can be bounded independently of the aspect ratio of the anisotropic elements,
provided thats is suitably chosen. Geometric edge meshes are introduced in Section 3.
Continuity and coercivity properties are then shown in Section 4. The crucial stability
result is the discrete inf-sup condition in Section 5.

3. Geometric edge meshes

In this section, we introduce a class géometric meshes designed to resolve corner
and edge singularities that arise in Stokes flow or nearly incompressible elasticity. These
meshes are referred to gsometric edge meshes; they are, roughly speaking, tensor
products of meshes that are geometrically refined towards the edges.

3.1 Construction of geometric edge meshes

Geometric edge meshes are determined imgsh grading factor o € (0, 1) and anumber
of layers n, the thinnest layer having width proportionaldd. We recall that exponential
convergence ofip-finite element approximations is achievedifs suitably chosen. For
singularity resolutionn is required to be proportional to the polynomial degkeesee
Anderssoret al. (1995) and Babgka & Guo (1996).
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Level 1 //////// \\\\\\\
yaw e
%

Level 2
_P: “

Fic. 1. Hierarchical structure of a geometric edge m&sh?. The macro-elements at the boundary of?
(level 1) are further refined as edge and corner patches (level 2). Here we havechegeBandn = 3.

On {2, a geometric edge mesh 7" is constructed by considering an initial shape-
regular macro-triangulatiof,, = {M} of (2, possibly consisting of just one element.
The macro-elementM in the interior of {2 can be refined isotropically and regularly
(not discussed further) while the macro-elemehtsat the boundary of? are refined
geometrically and anisotropically towards edges and corners. This geometric refinement
is obtained by affinely mapping reference triangulations (referred pataises) on 6 onto
the macro-elements! using elemental magsy, : Q — M. An |IIustrat|on of this process
is shown in Fig. 1. For edge meshes, the following patcheQOﬁ 31 = (—=1,1), are
used for the geometric refinement towards the boundafy: of

e Edge patches: an edge path® on (3 is given by
7;”’0 = {ny X r| ny € 7;8;0 ,
WhereTX”y’” is an irregular corner mesh, geometrically refined towards a vertxof

12 with grading factow andn layers of refinement; see Fig. 1 (level 2, left).

e Corner patches: in order to build a corner pafgh’ on (3 we first consider an initial,
irregular, corner mes‘iﬁ; m » geometrically refined towards a vertex@f with grading
factore andn layers of refinement; see the mesh in bold lines in Fig. 1 (level 2, right).
The elements of this mesh are then irregularly refined towards the three edges adjacent
to the vertex in order to obtain the me&°.

For simplicity, we always assume that the only hanging nodes contained in geometric
edge mesheg ™ are those contained in the edge and corner patches.

The geometric edge meshes satisfy the following property; see also Gatrdkes
(2001).

PROPERTY 2 Let 7™ be a geometric edge mesh éhandK <€ 7™°. ThenK can be
written asK = Fy (Kxyz), whereKyy; is of the form

Kxyz = Ix x ly x Iz = (X1, X2) x (Y1, ¥2) X (21, 22),
andFg is an affine mapping, the Jacobian of which satisfies

|detJk)| <C,  |detdh<C
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with C only depending on the angles Kfbut not on its dimensions.

We note that the constants in Property 2 only depend on the constant in (2.4) for
the underlying macro-element me2R. The dimensions oKy, on the other hand may
depend on the geometric grading factor and the number of refinements.

For an elementK of a geometric edge mesh, we define, according to Property 2,

hk = hy = X2 — X1, h5=hx=YZ—y1, hK =hy =2 — 7.

3.2 Discontinuity stabilization on geometric meshes

In this section, we define the discontinuity stabilization paranmdetet.*°(£) on geometric
edge meshes. We note that this approach was originally proposed in Georgoduli§ & S
(2001). Let f be an entire face of an elemekt of a geometric edge mesh™? on f2.
According to Property 2K can be obtained from a stretched parallelepipgg, by an
affine mappingFk that only changes the angles. Suppose that the fasehe image of,
for example, the facéx = x1}. We sethts = hy. For a face perpendicular to the or
z-direction, we choosb¢ = hy orh¢ = h,.

Let now K andK’ be two elements with entire facdsand f’ that share an interior
face, e.gf = f N f’in £z. We have

chi <hg < cthy, (3.1)

with a constantt > 0 that only depends on the geometric grading faetoand the
constant in (2.4) for the underlying macro-element mgghWe then define the function
h e L*() by

| minfh¢, he} xe fnfcér,
h() = { he xefcég (3:2)
Furthermore, we define
8(X) = Soh~L(x)K?, (3.3)

with a parametedy > 0 that is independent d¢f andk.

REMARK 3 For isotropically refined, shape-regular meshes, the definition in (3.3) is
equivalent to the usual definition 6f see Schtzauet al. (2003).

Strongly related to the choice 8fin (3.2) is the following discrete trace inequality.

LEMMA 4 LetK be an element of a geometric edge m&3$H on 2 and f an entire face
of K. Then
lell3 s < Chytmaxl, k}llel3 «

foranyg € Qk(K), k > 0, with a constant only depending on the constants in Property 2.

Proof. First we note that on the reference cuﬁethis estimate follows from standard
inverse inequalities, see e.g. Schwab (1998, Theorem 4.76). NeX{ let Kyy, =
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(X1, X2) x (Y1, Y2) x (21, Z2) be an axiparallel element. We may assume that the fase
given by fy, = {X1} x (y1, ¥2) x (21, 22). A simple scaling argument then yields

lellg,f,, < Chy* maxL, k¥lell§ ., (3.4)

for anyp € Qk(Kxyz), with hy = x; — x; and a constar€ > 0. Finally, since an element

K of a geometric edge mesh can be writterkas- Fx (Kyz) according to Property 2, the

claim follows from (3.4) by a scaling argument that takes into account the definitiop. of
]

4. Continuity and coercivity on geometric edge meshes

We first establish the continuity of, and By, as well as the coercivity of, on geometric
edge meshes.

THEOREM5 Let 7™ be a geometric edge mesh 6hwith a grading factor € (0, 1)
andn layers of refinement. Let the discontinuity stabilization functédoe defined as in
(3.2) and (3.3).

The formsAp and By, in (2.8) are continuous,

vl |[|V]IklIW]k vv,w e V(h),

[An(V, W)]
| < azllvinlallo vveV(h), qeQ,

[Bh(v, Q)

N IN

with continuity constantsr; > 0 andaz > O that depend oy and the constants in
Property 2, but are independentigfk, n, and the aspect ratio of the anisotropic elements
in 7",

Furthermore, there exists a constéqt, > 0 that depends on the constants in Property
2, but is independent af, k, n, and the aspect ratio of the anisotropic element&#f,
such that, for angg > Smin,

An(V,V) = vBIIVIE YV e Vp,

for a coercivity constang > 0 depending onsg and the constants in Property 2, but
independent of, k, n, and the aspect ratio of the anisotropic elementFitf .

Proof. Wefirst claim that the lifting operator§ and M in (2.5) and (2.6) satisfy

||§<v>||%<<:fga|m|2ds, ||M<v>||%<<:/€8|m|2ds, @.1)

for anyv € V(h), with C > Oindependent ok, n, and the aspect ratio of the anisotropic
elements.

We show the first estimate in (4.1); the proof of the second one is completely analogous
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by noting that[v]|? < |[v]|?. Forv € V(h), we have

Jo £ izdx (e V(i) ds

IL£(V)]lo= sup
el Izllo el lzllo
1 1
S|Vl ds)2( [ 671 2(ds)?2
< sup e SV d9)*(Jp Iz ds)
el lzllo
1 1
<C sup (Je SIIVIIZ d8)2 ( Xk ey, ok 3_1|£|2d5)2.
ey lzllo

Here, we used the definition d@f and the Cauchy—Schwarz inequality. Sincedar X,

6
/ s HzPds< C Y hik 2|zl 1, < Cllzlig k-
oK

m=1

thanks to the definition of and Lemma 4, we obtain the desired estimatefor

The continuity of the formsA, and By, follows immediately from (4.1) and Cauchy—
Schwarz inequalities. The coercivity éf, can be proven by employing the first estimate
in (4.1) and the arithmetic—geometric mean inequalilp X ca? + ¢~ 1b?, forall ¢ > 0,
see Arnoldet al. (2001). O

REMARK 6 The results in Theorem 5 are based on the anisotropic stability estimates (4.1)
for the lifting operatorsC and M. These operators are identical for all the DG forms
considered in Sdbtzauet al. (2003) and, thus, the results in Theorem 5 hold true for all
the forms there as well. We also note that the restrictiodis typical for the interior
penalty formAy, and can be avoided &y, is chosen to be, for example, the local DG form,
the nonsymmetric interior penalty form or the second Bassi—Rebay form, sé&zSoét

al. (2003).

Next, we address the continuity Bf andGp,.

THEOREM7 Let 7™ be a geometric edge mesh @hwith a grading factor € (0, 1)
andn layers of refinement. Let the discontinuity stabilization functope defined as in
(3.2) and (3.3). Then we have

1
IFhWI < C[IIfllo+viIs2glloae] IVIn - YV € Vh,
1
IGh(@)| < Cll52gllo,a02 lIallo Vq € Qn,

with continuity constant€ > 0 that depend ohg and the constants in Property 2, but are
independent of, k, n, and the aspect ratio of the anisotropic elementgi¥f .

Proof. Wefirst note that we have the Friedrichs inequality
IVllo < CllvilLh Vv e V(h), (4.2)

with a constan€ > 0 depending o1y and the constants in Property 2. The bound (4.2)
follows by proceeding as in the proof in Lemma 3.1 of Lasser & Toselli (2003), taking into
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account elliptic regularity theory for polyhedral domains and by using the anisotropic trace
inequality

lgllof < Chitllglizose,  &>0,

for an elemenK € 7™ and an entire facd of 9K, with a constant depending on the
constants in Property 2.

Let nowv € Vy. From (4.2), we obtairan f.vdx| < CJ|fllollvlin. Further, applying
the discrete trace inequality from Lemma 4 as in the proof of Theorem 5,

1
‘/g (®@n) : {{vvhvlds| < Cvlis2dloanlIVin,
B

with a constant depending di3, and the constants in Property 2. Finally, the Cauchy—
Schwarz inequality yieldf fé’s 3g-vds| < U||5%g||0’39||v||h. This proves the assertion
for Fp.

Similarly, forg € Qp,

1

1 2

< ||3?g||o,arz</ 6‘1|q|2ds> .
B

Using the trace inequality from Lemma 4 and proceeding as in the proof of Theorem 5,
we haveng s~1gJ2ds < C||q||g, with a constant depending @g, and the constants in
Property 2. This completes the proof. O

|Gh(Q)|§‘/ qg-nds
&B

REMARK 8 The same continuity properties hold for all the functiongisand Gy, in the
mixed DG methods analysed in Sithauet al. (2003).

5. Divergence stability on geometric edge meshes

Our main result establishes the divergence stability in (2.13) for discontir@pusQk-—1
elements on geometric edge meshes.

THEOREM9 Let 7™ be a geometric edge mesh ¢hwith a grading factos € (0, 1)
andn layers of refinement. Let the discontinuity stabilization functidoe defined as in
(3.2) and (3.3). Then there exists a constant 0 that depends oa, 8o, and the shape-
regularity of the macro-element mesh, but is independekt of and the aspect ratio of
the anisotropic elements ii™?, such that, for any andk > 2,

. Bn (v,
inf sup Bnv. Q) > Ck3/?
0#aeQl 1 (T%) gvevi(rne) [VIIn a0

Hence, condition (2.13) is satisfied with = Ck—%/2.

REMARK 10 Theorem 9 shows that the discontinudlis— Qx_1 elements considered in
this paper are inf-sup stable on geometric edge meshes. It thus extends to the discontinuous
Galerkin context the results that were obtained indzéu & Schwab (1998), Sétzau
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et al. (1999), and Toselli & Schwab (2003) for the stand&d — Qk—2 pair where

the velocity space is based on continud@gs elements and the pressure space on
discontinuou€)y_» elements. In contrast to this pair, discontinudis— Qx—1 elements

are optimally matched with respect teversion approximation properties. We further
point out that continuou&/discontinuously_1 elements are known to be unstable while
continuous®y/continuousx_1 Hood-Taylor elements are stable; see Brezzi & Falk
(1991, Theorems 3.2 and 3.3). However, the dependence of the discrete inf-sup constant on
the polynomial degree and the aspect ratio of anisotropic elements seems not to be known
for Hood-Taylor elements.

REMARK 11 The form By, is identical for the DG methods of Cockbuenal. (2002),
Hansbo & Larson (2002), Toselli (2002), and Stdtauet al. (2003). Therefore, the
stability result in Theorem 9 is valid for all these methods.

The proof of Theorem 9 is carried out in the remaining sections. The first ingredient we
need is a macro-element technique that we introduce in Section 6. The second ingredient
consists of stability estimates for Raviart—-Thomas interpolants on certain anisotropic
meshes, derived in Section 7. In Section 8, we establish divergence stability on edge
patches. The proof of Theorem 9 is completed in Section 9 by recursively applying the
macro-element technique.

6. Macro-element technique

In order to prove Theorem 9, we use a macro-element technique; see Stenberg (1990),
Stenberg & Suri (1996), Séizauet al. (1999), and Toselli & Schwab (2003). We recall
that a geometric edge medh = 7™ is obtained by refining a coarser, shape-regular
macro-mesl¥y,. Theorem 12 is the main tool of our macro-element technique.

First, we introduce local bilinear forms. M € 7, we define

Bh,M<v,q>=—/Mqvh-vdx+/ M{{q}}[[v]]ds+/ Lavnds (6)

EzrN ENa
for (v,q) € VE(T) X Q'ffl(T). Correspondingly, we also need the local nhorm
VIEm= D>  IMik +/ 8M|M|2ds+/ Smivenul?ds, (6.2)
KET, KCM EIQM SﬂaM

where ny denotes the outward normal unit vector adM and 8y is a discontinuity
stabilization function defined as in (3.3), witkix) replaced by

h(x) xef cé&r\aM,

By integration by parts on each element\ih we have

Bom (V. Q) = f V- Vnqdx - / [al - (v} s. (6.4)
M ErNM
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If 7w is the restriction off to M, then
Bum(V.Q) = Bn(v.q). Ve VETu: M), (6.5)

where we use the same notation Yo \N/E(TM; M) and its extension by zero t@.
For ageometric edge mesh dn, we have

3(X) < cdm (X), 3(X) < comr(X), XeaMNaM’, (6.6)

with ¢ > 0 wlely depending o and the shape-regularity of the macro-element nigsh
This follows from the construction of geometric edge meshes, from the definiti®mnof
(3.2), (3.3), and from (3.1).

The following theorem holds.

THEOREM12 Let7 = 7™ be a geometric edge mesh éhwith a grading factor €
(0, 1) andn layers of refinement. Lef,,, be the underlying macro-element mesh. Assume
that there exists a low-order spaXg C VE(T) such that

inf Bh(v, ) <

> Cy, (67)
0#£qe Q2 (Tm) 0£vexy, IVIIn lldllo

with a constan€; > 0independent ok. Furthermore, assume that there exists a constant

C, > Oindependent oM e 7, andk such that
. B Vs
inf h,M(V, Q)

MBS ok M e T, 6.8)
0£a€ Q1 (Tu: M) 0vek (73 m) 1V 1lTTTom

with @ > 0 and7y denoting the restriction of to M € 7. Then the spacéﬁﬁ(?’) and
Qk~Y(7) satisfy

. Bh (v,
inf M > Ck—©
02qeQhH(T) ozvevisr) VI IAllo

I

with a constan€C > 0 solely depending o1, Cp, o and the shape-regularity Gf,.

Proof. Letq € Qﬁ‘l(T). We decompose into q = q* + gm whereqn is the L?(£2)-
projection ofg onto the spac@ﬂ(Tm) of piecewise constant pressures on the macro-
element mest,. Because of (6.7), there exists € Xy, such that

Bh(Vm, Gm) = Amll3,  IIVmlln < C lldmllo- (6.9)

We next consideg* e Qﬁfl(T). We fix amacro-elemenM e 7r, and setyy; := q*|m.
We note thaigy, has vanishing mean value &h. By using (6.8), there exists a field, in

VK (Tw; M) such that

Bom (Vi Oi) = i 3 v Vi linm < C5 Kl llo.m- (6.10)
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We now definev* = 3 "\, Vv};. By constructionyy, has a vanishing normal component
ondM and vanishes outsidd . Thus, combining (6.5) with (6.10) yields

Br(v', %) = > Bnm(Vi. dip) = lla*IIg. (6.11)
MeTm

Furthermore, thanks to (6.6) and (6.10),

VIR < C > Ivillam < CK*llg* 5. (6.12)
MeTm

with a constanC only depending orC, and the constant in (6.6). Select new= vy, +
nv* € VE(T) wheren > 0 isstill at our disposal. First, thanks to (6.5), (6.4) and the fact
thatqgn, is constant on each macro-element, we have

Bh(v*,qm) = Y _ Bn.m(Viy: Om)
MeZm

B Z (/M Vin - Vhtim o — /51m|\/||[qm]] v d5> =0.

MeZm
Further, the continuity oBn (-, -) in Theorem 5, (6.9), and the arithmetic—geometric mean
inequality yield

C
|Bh(Vim, 4| < @2lVmlInllg*llo < Cllamllolig*llo < ;nqmn% +eCllg*lI3,

with another parameter > 0 to be properly chosen. Combining the above results with
(6.9) and (6.11), gives

Bn(V, @) = Bh(Vm, Om) + Bn(Vm, %) + nBn(v*, q%)
C
> (1 - ;) lamll3 + (7 — eC) g™ II3.

Itis then clear that we can choog@nde in such a way that
Bn(v, Q) > cllqli3 (6.13)
with a constant independent ok. Furthermore, from (6.9) and (6.12),
IVIln < [IVmlln + 7lIV¥iln < ck*[ld]lo. (6.14)

The assertion of Theorem 12 follows then from (6.13) and (6.14). O

For geometric edge meshes, the macro-elements are refined by mapping reference
configurations orQ. Condition (6.8) in Theorem 12 can then be verified by checking the
stability of the patches on the reference cupeSimilarly to (6.1) and (6.2), we denote
by Bn.aC. ) and| - Ih.o the divergence form and the broken energy norm on a mesh on
6, respectively, with the stabilization functioiraj defined according to (3.3), but with

replaced by the local mesh sih% defined as in (6.3) wittM = 6
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PROPGsITION 13 Let 7 = 7™ be a geometric edge mesh ¢hwith a grading factor
o € (0,1) andn layers of refinement. LeTy, be the underlying macro-element mesh,
and ¥ be a family of meshes on the reference eIem@ntaIso containing the trivial
tnangulatlonT = {Q} Assume thatZ" is obtained fromZy, by further partitioning the
elements of7, into FM(T) where7 e F and Fwm is the affine mapping betwedD and
M. Assume that the family is uniformly stable in the sense that

B, 5(v,
inf hQ( @

_ MR Y >ck® TeF k=1  (6.15)

0+£qeQf~ LT.0) O;évevk(T o)) ||U||h QIIQIIO 9]
with a constan€C > Oindependento’f’ € F andk. Then, condition (6.8) in Theorem 12 is
satisfied with a constant that only depends on the constant in (6.15) and the shape-regularity
of the macro-element mesh,.

Proof. LetM € 7y be a macro- element The restricti@p of 7 to M is given byFy (T)
for some mesi e F. Letq Q Y Tw; M) We transformq back to the reference
eIementQ via the affine transformaqurM Q — M: thatis, we seff = qo Fy €
Q YT Q). By (6.15), there exist8 e VX (T Q) such that

B, ® > A5 5 IVlhg < C K I@loo- (6.16)
We use the Piola transform, see Brezzi & Fortin (1991, Section Ill.1), and set
V="Pu® = [Inl " IuVo Fyt

Here, Jv is the Jacobian ofy and|[Ju| = |detJwm)|. Let now K = Fm(K) be an
element ofM that is the image of the elemeht in Q. It can then be easily seen that

V|k is obtained fronv|; through the local Piola transformatidd — K. Due to the
properties of these transforms in Brezzi & Fortin (1991, Lemmas 1.5 and 1.6), we thus
havev € V'r‘](TM; M) and Bh_@(\za) = Bn,m (v, q). By using the definition o8y andaé

and standard scaling properties for the Piola transform, we obtain from (6.16) the existence
of a field inV¥ h(Zm: M) also denoted by such that

Bh.m (V. &) = 19115 - IViin,m < Ck¥lldllo,m,

whereC solely depends on the constant in (6.15) and the shape-regularity of the macro-
element mestp,. O

REMARK 14 The condition that the patch maps be affine may be weakened to the extent
that the meshes are patchwise mapped from suitable reference patches by smooth, bijective
and nondegenerate maps. In this case, the macro-element technique can be modified as
in Chilton & Suri (2000) which requires suitably adapted velocity spaces in the physical
coordinates.

7. Raviart—-Thomas interpolant on anisotropic meshes

The purpose of this section is to provide estimates for the interpolant on Raviart—-Thomas
finite-element spaces on certain anisotropic meshes. In order to do so, we employ a
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different representation than that considered ind&zduet al. (2003), which was originally
proposed in Ainsworth & Pinchedez (2002). The representation here was first proposed and
proven in Hientzsch (2001); see in particular Chapter 7. Here we propose a simpler proof.

7.1 One-dimensional interpolants

We first introduce some one—dimenAsionaI projections. {lat(x), i € Ng} be the set of
orthogonal Legendre polynomials én= (—1, 1); see e.g. Bernardi & Maday (1997). We
also consider a different s@t); (x), i € Np}:

Uo(x) = Lo(x) = 1, Ui(x) = L1(x) =X,

X i 1 : (7.1)
Ui (X) 2/ Li—a®dt=2 - " (Li —Li—2), i>2

1

see in particular Theorem 3.3 of Bernardi & Maday (1997).

For ageneric interval = (X1, X2) = F (I, two bases can be found by mappiflg }
and{U;} onto| . In the following, we use the same notation for these basésgh) as for
the reference interval.

Let? : L2(1) — Qx(I) be theL2-orthogonal projection. We note that

b <2viLi> =gviLi.

We also define a second projectiag : L2(1) — Qk(l) by

00 k
JTkl (ZEU.) = ZﬁiUi.
i=0 i=0
LEMMA 15 Let| = (x1, x2). Forv € H1(l), we have
(Tiv)(x) =v(x), (T =v(x), k=1,
/ rrklvq dx = / vqdx, qe Qy_2(l), k> 2.
I |

Proof. The first property follows from the fact that (x;) = Uj(x2) = O fori > 2. To
prove the second property, lgte Qx_2(1) be given byg = L{_; for 2 <i <k. Itisthen

easy to see that
/(ﬂ’klv)/Li,ldX =/U/Li,ldX.
[ [

From the above identity and the first assertion, the second assertion follows by integration
by parts. O

The next lemma provides certain stability estimates.

LEMMA 16 Let!| = (x1, X2) andv € H1(l). There is a constar@ > 0 independent ok
andl such that

I7Qvllon < vl 17dvlnr S CVKlL,  Imdvlnr < vl
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If in additionv € HZ(1), then

Imgvllon < CVK|vlo,- (7.2)

Proof. Since for a generic interval the bounds are obtained by a standard scaling argument,
it is enough to considet = (-1, 1). The bounds fornlg can be found in Canuto &
Quarteroni (1982). Moreover, let = Y ZjviUj andx : [0,00) — R be aC?l cut-

off function that is equal to one if0, 1], decreases to zero [, 1 + u], and is equal to

zero in[1+ p, 00). If u = 1/k, it is easy to prove thatlv = 324 x () viVi. The
bounds foryrk can then be found in Bernardi & Maday (1999, Lemmas 3.2 and 3.3, and
Remark 3.4). O

Further, we will make use of the following approximation property. It is proved in
Houstonet al. (2002) for the reference interval and can be proved for a generic interval by
ascaling argument.

LEMMA 17 Letl = (x1, X2) andh = Xo —X3. Then there is a consta@t > 0independent
of k and!l such that fon € H1(I)

h .
|(7T|9U—U)(Xi)|2<CE|U|i|, i=12

7.2 Two-dimensional interpolants

Werecall some two-dimensional results that were proven in Ainsworth & Pinchedez (2002)
and Sclitzauet al. (2003). Given the reference squ&@and an integek > 0, we consider
the Raviart—-Thomas space

RTk(S) = Qui1k(S) x Quira(S),

whereQy,, kZ(S) is the space of polynomials of degrkein theith variable onS. Foran
affinely mapped elemer{ = FK(S) the Raviart—-Thomas spad®&Ty(K) is defined by
suitably mapping functions nRTk(S) using a Piola transformation; see Brezzi & Fortin
(1991, Section 3.3) or Ainsworth & Pinchedez (2002, Sectlon 3.3) for further details.

On'S, there is a unique interpolation operat = H H1(S? — RT(S), such
that

/éﬁgv —Vv)-wdx=0 Vwe Qe-1k(S x Qk-1(9),
(7.3)
/A (Hgv—v)-mpds=0 V(per(ﬁn), m=1,...,4
fm

see Brezzi & Fortin (1991) or Ainsworth & Pinchedez (2002). ket 0, the first condition
in (7.3) is void. For an affinely mapped eleméhtthe interpolanfix = Hﬂé - HL(K)Z2 -
RTk(K) can be defined by using a Piola transform in such a way that the orthogonality
conditions in (7.3) also hold fakik .

For shape-regular elements, we recall the following result fromd&zduet al. (2003,
Lemma 6.9 and 6.10).
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LEMMA 18 Let K be a shape-regular element of diaméterandv e H1(K)2. Then
Ik Vi1 < CK|V|1k, ||V—HKV||03K ChK|V|1 K
with a constan€ > Othat is independent &f andhy .

In addition to the bounds in Lemma 18, we need slightly refined estimates to treat
axiparallel elements of the forr® = Sy = (X1, X2) % (Y1, y2). Such bounds can
be obtained by using tensor product arguments. For this purpose, we define the two-
dimensional operators

0.y y 1y
I} = m, °7Tk+1’ I ._nk+1orrk ,

with the one-dimensional prOJectonf andnk from Section 7.1. We have specified the
variable on which these projections act.

We have the following representation result; see also Section 7.6.1 and formula (7.17)
in Hientzsch (2001).

LEMMA 19 The Raviart-Thomas projector &= Sy = (X1, X2) x (Y1, Y2) satisfies
11§V = 1§ (vx, vy) = (Ivy, T vy), v e C®(5>2.

Proof. Using Lemma 15 and properties of thé-projection, it is immediate to see that
(IL}vx, IT) vy) satisfies the conditions in (7.3) & O

The operatordl and]]ky can be uniquely extended by density to functionslii(S)
(these extensions being still denoted By and Hky). This is a consequence of the
following result.

LEMMA 20 Letv € C°°(7§). Then there exists a constabtindependent ok, such that
||3x(Hk U)”os ||3XU||Q S ||ay(Hk U)”os Ck|v|1s
Similar estimates hold fof7 .

Proof. The first bound can be proven using the definition/gf and Hky and the one-
dimensional bounds in Lemma 16. The second bound can be found &tz&alet al.
(2003, Lemma 6.9). O

We end this section with an error estimate for the two-dimensidarfaprojection. It
can be proven by using Lemma 17; cf. Lemma 3.9 of Housta@h. (2002).

LEMMA 21 LetS= Sy = (X1, X2) x (Y1, y2) be a shape-regular element of diamédter
Then there exists a constadt> 0 independent ok andh such that

0, h 1
o — Y™ vgss<C |v|15, v e HYS).
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7.3 Three-dimensional interpolants

In this section, we introduce the Raviart—-Thomas interpolant in three dimensions. We use
the same notation as for the two-dimensional case. Given an axiparallel element of the
form

and an integek > 0, we consider the Raviart—Thomas space

RTk(nyz) = @k+1,k,k(nyz) X Qk,k+1,k(nyz) X @k,k,k+1(nyz)1

whereQx, k,,k; (Kxyz) is the space of polynomials of degrieein theith variable onKys,.
For general affinely mapped elemerse 7 of a geometric edge mesh = 7" (see
Property 2), the Raviart—-Thomas spd®&(K) is defined by suitably mapping functions
in RTx(Kxyz) using a Piola transformation; see Brezzi & Fortin (1991) or Ainsworth &
Pinchedez (2002) for further detalils.

On Kyyz, there is a unique interpolation operattk,,, = H‘éxyz : Hl(nyz)3 —
RTk(Kxyz), such that

/K (IKyy,v — V) -Wdx =0

Xyz

YW € Qk—1,k k(Kxyz) x Qk k—1,k(Kxyz) X Qk kk-1(Kxyz), (7.4)

f (Hnyzv_V)'nngszo V(ﬂe(@k,k(fm), m:19,67

m

with {fy} denoting the six faces dKyy,, see Brezzi & Fortin (1991) or Ainsworth &
Pinchedez (2002). Fdt = 0, the first condition in (7.4) is void. For an elemdfite 7,
the interpolanflx = Hﬁé : H1(K)3 — RTk(K) can be defined by using a Piola transform
in such a way that the orthogonality conditions in (7.4) also holdfer
We now define the three-dimensional operatorskoa: Kyy,
Hkx = n‘?’zonlg’yoﬂkl;xl, Hky = nI?’ZonliL;ylom?’x, sz = nl(lfloni?’yom?’x,
where we have specified the variable on which the one-dimensional projections act. The

following representation result can be proven in the same way as in two dimensions; see
also Section 7.6.2 and formula (7.19) in Hientzsch (2001).

LEMMA 22 OnK = Kyyz, the Raviart-Thomas interpolant satisfies
H&Vz Hllé(vx,vy, Uz) = (Hkxvx,ﬂkyvy, szvz), Ve COO(K)

The operatord[, Hky, and I7? are well-defined for functions i€>(K) and can be
uniquely extended by density td1(K) (these extensions being still denoted 13, Hky
andIl?). This is a consequence of the following result.
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LEMMA 23 Letv € C°°(6). Then there exists a constadtindependent ok such that
X 2 2
Ix (IR0 1E 5 < Clidxvlg 5
1y (013 5 < CKZ (I13yvlIf 5 + 13xvllg o)
182(I) g & < CK? (1920115 & + 19xv115 5)-

Similar estimates hold fof, and I7Z.

Proof. The first two estimates can be obtained using Lemmas 16 and 20, and the fact that
ITY can be written as the tensor product of the two-dimensional Raviart-Thomas projection

and a one-dimensionaP-projection:T1}* = 2% o (r."Y o m-*); see Lemma 22. The last
bound can be obtained by exchanging the roles of/thedz variables. O

7.4 Sretched elements

For a general anisotropic element, Lemma 23 and a scaling argument provide estimates
that are not independent of the aspect ratio. For an edge pat€h bawewer, we only
need to consider stretched elements of the form

Kxyz = (X1, X2) X (Y1, Y2) X T, (7.5)

with hy = xp — X1 < 2,hy = y» — y1 < 2, andhy comparable tdy,. Even for this simpler

case, good bounds cannot be found for all the components. However, if we only consider
vectors with a vanishing normal component along the facest1, we have the following
result.

LEMMA 24 LetK be given by (7.5) and = (vy, vy, v7) € H1(K)3, suchthav-n. =0
alongz = £1, withny = (0,0, £1). If chy < hy < Chy, then there exists a constant
independent ok and the aspect ratio &, such that

lax (I v) 113k < Clidxuxli? « -
I3y ITXvlIE « < CK2 (13yvxlId « + lldxvx i3 ).
132 (1L v I1G « < CK? (182015 + I1dxuxIg ).

and similarly forIZ vy. In addition,

19 (IREv) 113« < CK2[1axvzllg -
13y (ITEv) 15k < CK2[13yv2lIg « .
19(ITFv2) 113 k < Clidzvzll3 k-

Consequently| Ik v|1.k < CKk|v|1 k, with a constant independent kfand the aspect
ratio of K.

Proof. Assume first thav € C>(K)3. The bounds for/[*vx and 1) vy follow from
Lemma 23 and a scaling argument. To obtain the estimateg/of,, we use the
representation in Lemma 22 and the results in Lemma 16. In particular, we use (7.2) to
boundnklfl. The proof is then completed by a density argument. O
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Ys

FiG. 2. Two stretched element$; andK that share the facé = {xp} x (y1, y2) x I.

Similarly, it is possible to bound the jumps across faces of stretched elements.
Let K1 andK; be two stretched elements given by

Ki= (X1, X2) X (Y1, ¥2) x 1, Ko = (X2, X3) X (Y1, ¥3) x I, (7.6)

with yo < y3- Further, we introduce the facds = {X2} x (y1, Y2) x T and fo = {Xo} x

(y1,y3) x |. Let f = f1 € fp, asillustrated in Fig. 2. We then sét; x = X2 — X,
hox = X3 — X2, hyy = y2 — y1, andhyy = y3 — y1.

LEMMA 25 Let K1 andK> be the two stretched elements in (7.6). bet H1(K1UK32)3
such thau - ny = 0alongz = +1, withny = (0, 0, £1). Assume that

chyx < hgax < Chyy, hl,y < h2,y < Chax.

Let v be the piecewise polynomial given byk, = Ik, (u|k;) wherell; is the Raviart—
Thomas projector of degrdeon Kj,i = 1, 2. Then,

/f |IvI%ds < Chyx[llaxullg k, + 13yullg k] + Chax[llaxull§ «, + layull§ «,]-
with a constanC > O that is independent df and the mesh sizds x, hy x, hyy, and

h2,y.

Proof. First, we assume thate C*°(K1 U K2)3.

Fori = 1,2, we denotei|k, by u' = (uj. u, ub) andv|k; by V' = (v}, v}, v}). Since

/f |M|2ds=/f(vi—vf)zds+/f(v)1,—v§)2ds+ff(vzl—vf)zds: T+ T+ Ts,

it is enough to estimate the ternig, T, and T3 separately. We observe the& = v)%
(and thusT; = 0) only if f = f1; = f, dnce the normal component sfis continuous
acrossf in this case. In the general case, singe= u? is continuous acros$, we have
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7 ful = 72%u2 and can write

T = / (vX - vx)2 ds < / (]TIS Zu1 — vx) ds + 2/ (nlg Zu2 - vx)zds
f fy

f1

2/ (nfzul—vx)zds—i-Z/ (rroz 2—vx)2 S:=2T1 A+ 2T1 8.
f1

For T1 o We use the representation in Lemma 22pf= Hkxu)l( onKj.Lemma 15 ensures

Oz 0, lx 0,z_0,
This gives

Tia = / (NI? Zul — ”I? an(() Y 1) ds
f1
< 2

0,z Oz 0,y_0,x Oz 0, 0,x
< (o ul — ) %m Y uh)? ds + 2[ (Y (md*ul — ul))? ds.
f1

Using the stability of theLZ—projectionzrl?’Z in the z-direction and the bound in Lemma 21

for no 24 Ex on the shape-regular rectangla, x2) x (y1, y2) gives

(7[0 z l — ”IS Z”I? yrrlg Xui)zds < / (u — rrlg ynlg Xub2 ds
fl f1
< Chyxk llaxuxlid «, + 19yuxli3 i, ]

Similarly, using the stability ofrlg 220Y and the approximation result in Lemma 17 yields

ff(nf Y (xd%ul —uby?ds < fl(ﬂf’xul ul)?ds
< Chyxk Yaxuxlig « -
Thus, we obtain
T1a < Chyk Hl1axuxllg i, + ldyuxlid «, ]-
A bound forTy g can be found in the same way. Therefore,

hy, hz,
Ta < C= = [I0xUxIE i, + 18yUx G i, ] + C== [18<URIE i, + 10y US 1 ] (7.7)

Let us now consider the terffp. Sinceuj = uZ on f1, we haver,?’zuy = “uZ and
can then bound> by

/(v —vy)zds f (vl—ngz 1) ds+2/ (vi—nfzui) ds
f1

f (v} — 7d7ul)? ds+2/ (12 — 70%u2)? ds =: 2To p + 2T2 5.
f1 f2

N
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Let us further estimate the terfp . From the representation in Lemma 22 and the stability
of m?,z in Lemma 16, we find

_ 0,z, 1 0,z_1y _0,x,.1 1 1y _0x,.1
TZ‘A_,/f (me Uy — Ty T AT uy) dsé/f (uy AT uy) ds.
1 1

We now note that(n|<l+y1n£ *) is the second component of the two-dimensional Raviart—

Thomas projector on the shape-regular rectaggexz) x (y1, y2). We can then use the
two-dimensional result in Lemma 18 and obtain

To.a < Chyx[llaxut 13, + layut13 ]
A bound forT; g can be found in the same way. This yields

T2 < Chyx (10U 3, + 10,uM 3 , ) + Chax (19xU213 ., + 19yU213 ) - (7:8)

For the termTs, we note thaul = u2 on f;1. Thus nk+1u1 = nkljflu2 on f, and

/ (vz - vz)2 ds < f (”k+1u - vl)2 ds+ 2/ (”k-s-lu - vz)2 ds
f (meful — vh2ds + 2/ (U2 — v)2ds = 2Ta o + 2Tz .

Again, we bound the two last terms separately using the representation result of Lemma 22.

Sinceul atz = +1, we also haver)Yz>*ul = 0 atz = +1. Thus, we can use (7.2) in

Lemma 16:
T3,A=/f (nklfl(u%— 02Xy 1)) ds < Ck/ (ul—nfy iE))‘u1> ds.
1

Using once more the error estimate for ﬂnéprolecnonno Y EX on the shape-regular

element(xs, X2) x (Y1, ¥2) in Lemma 21, we find
Ta A < Chyx[lloxuzlI§ k, + 19yuzl§ . |-
Since a bound foffz g can be found in the same way, we find
Ta < Chx (18U, + 19yU33 ., ) + Chax (10x0213 , + 1050213 ,) - (7:9)
Foru € C*®(K1 U K3)2 the assertion follows by combining (7.7), (7.8) and (7.9).

The proof is extended to functiomse H1(K1 U K2)2 by a density argument. [0

In exactly the same manner, using the representation result of Lemma 22, we obtain
the following bound for the other faces.

LEMMA 26 Let K be an element of the form (7.5) arfdan entire face oK. Assume
thatchy < hy < Chy. Letu € H1(K)3 with u|s = 0, and letv be the Raviart-Thomas
projection ofu of degreek on K. Then we have that

/f v®nk[?ds < Chjul? .

with h = hy ~ hy. The constanC is independent ok, and the mesh sizés andhy.
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Proof. The proof for the lateral faces parallel to th@xis can be carried out as the proof
of Lemma 25. Wherf is given byz = £1, we can use the results in Sthauet al. (2003,
Lemma 6.10) for three-dimensional shape-regular elements and a scaling argument.

8. Divergence stability on edge patches

Let 7o"° be an edge patch ofﬁ. We show thatQyx — Qk_1 elements are stable on
such patches with an inf-sup constant@fk—3/?). The main result of this section is the
following theorem.

THEOREM27 Let 7a"° be an edge patch 06 with a grading factor € (0, 1) andn
layers of refinement. Lét > 1. Then

B, 5(Vv.q) _ ~
sup U E > ck2)glps. g€ QNI Q).
oxvelk77:9)  IVin.g

with a constan€ > 0 that solely depends an anddp, but is independent df, n, and the
aspect ratio of the elements7g"’.

REMARK 28 We emphasize that the result in Theorem 27 holdsfer 1, thus including

Q1 — Qg elements. In particular, the same techniques as the ones presented here lead to a
stability result ofQ; —Qg elements on irregular geometric meshes in two space dimensions.
This case was not covered in Sthauet al. (2003).

The proof of Theorem 27 is carried out in the next sections. We first use the results of
Section 7.4, in order to prove a stability property for the Raviart—Thomas interpolant on
edge patches in Corollary 29. The proof then relies on the combination of the two weaker
stability results in Lemmas 31 and 32, respectively.

8.1 Sability of Raviart—-Thomas interpolants on edge patches
We define the Raviart—Thomas interpoldiit= 17K : H1(Q)3 — VE”(TE""’; Q) by

Hulk = I ulk), K eTd. (8.1)

We note that/7Tu has a continuous normal component across elements that match regularly.
If the elements match irregularly, the normal component has jumps; see, e.g. Ainsworth
& Plnchedez (2002, Section 3.5). However, uf € Hl(Q)3 then ITu belongs to
Vk+1( : Q)

We first note the following stability result.

COROLLARY 29 Let7g"? be an edge patch dfj with a grading factos € (0, 1) andn
layers of refinement. Ifi € Hc}(Q)3 andI7¥u is the Raviart—-Thomas interpolant in (8.1),
then there exists a constant that solely depends andsg, but is independent df, n, and
the aspect ratio of the elementsAg?, such thai1|v||2 6 < Ckzlulf 5

Proof. This follows by combinings Lemma 24—-26 and the definition of the penalization
functionsg. O
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!
fas f2g

i
fo

|

M.
i

Fic.3. Edge mesh fos = 0-5andn = 4. The patchMj, j = 3, is the union of the shaded elements. The four
interior facesfljl, lel, fZJ3 and fgf?) in Mj are shown in bold lines.

8.2 Auxiliary stability results

We establish two auxiliary stability results that we need for the proof of our main result in
Theorem 27.

First we define a seminorm for the space of pressures on edge patches. We consider
the interior faces of an edge pat@H"’ on (3 For2 < j < n, the patchM;j consists of
six elements, the cross sections of which are shown in Fig. 3. The phtclonsists of the
four smallest elements of siz€'. On apatchMj, j > 2, the four inner faces will have to

be treated separately. We denote thenffy f),, f,),and f3j3, asillustrated in Fig. 3.
For 2< j < n, weintroduce the seminorm

alf; = hf,jlffj Mol?ds+ ) hf_js/j [ ds.
i=1,2 '/ i

i—23 '°Jf3

We then set
n
jalg = > _lalh ;- (8.2)
=2

First, we prove the following technical result.

LEMMA 30 Let7¢"? be an edge patch (ﬁ with a grading factos € (0, 1) andn layers
of refinement. Then there exists a constant that solely depengstan is independent of
k, n, and the aspect ratio of the elementg#i?, such that

‘f ol fu - IT¥uyds| < Culy g laln,
E7NQ

foru € HX(Q)3, q € QK(7a""; Q), andII¥u the interpolant in (8.1).
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Proof. By density, we may assume that C“(@)? We note that the integral over

Er N (3 can be written as a sum of contributions over faées £7. In addition, if f is

a regular face, i.e. it is an entire face of two neighbouring eleméhtand K’, then the
second orthogonality condition (7.4) ensures that its contribution vanishes. Indeed, in this
caseu andI7*u have a continuous normal component acrbssd the normal vectdiq]
belongs taQx k( f). Therefore, we obtain

/g _ Iql - f{u — *uy ds—Z > / , Il - u— 17*u) ds

12| =1,2

+Z > fj [l - {u — IT¥u) ds.

i=2i=2.3"fi3

We first bound the contribution ovef = flj1 Denote byK1 and Kz the elements that
sharef, assuming thaf is an entire face oK. Let gq; andgy be the restrlcnons ocﬂ to
K1 and Ky, respectlvely Further, we set= I7Ku, as well asulg; = u = (u Z)

andv' = (vl, v! Ve vb) fori = 1, 2. Therefore,
1
ff ol - {u — 77U} ds = Eff (@ — ) (Ut — v}y ds

1
+5 ff (1 — G2) (U2 — v3) ds

e
—ptTo2

We start with a bound fofT; and proceed as in the proof of Lemma 25. We use the
representation result of Lemma 22, the fact tteat — g2) is a polynomial of degre&
in the z-direction, the properties ofl?'z and the Cauchy—Schwarz inequality to obtain

Tl = /f (@1 — @) (U} — 7w Yud) ds|
=| /f (@1 — @) (U} — 7w Yul) ds|
1 1
< [ mameos)ny? [ = mim vl

Slncenank is the first component of the two-dimensional Raviart—-Thomas projector
and since the underlying two-dimensional geometric mE%ﬁ is shape-regular, we can
apply Lemma 18 and obtain

h;lf (ul —7tkl+xlnk Yup)?ds < Cllaxut 1§k, + Cllayu™li§ «, -
Combining with the analogous argument forgives

|/f [al - {lu — 17%u} ds| <c(hf/f T2 ds)?

1
2

1,2 1,2 22 22
'(||8XU ||0,|<1 + [loxu ||0,K1 =+ [|oxu ||0.,K2 + [loxu ”Q’KZ) .
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The contributions of the other face‘ﬁ'< can be bounded analogously. Summing over all
faces and using the Cauchy—Schwarz inequality completes the proof. O

The previous lemma allows us to prove a stability result that is weaker than the inf-sup
condition in Theorem 27.

LEMMA 31 Let7¢"? be an edge patch 063 with grading factoro € (0, 1) andn layers
of refinement. Then, fok > 1,

B, 5(v,
h,Q( o)) S

> CkMally 5 (1— 9l

lalle.g

sup
ovetk (7070 IVlIn.Q

) . qe QNI Q)

with a constan€ > 0 that solely depends an andép, but is independent df, n, and the
aspect ratio of the elementsid"”.

Proof. Letq € Qﬁfl(Te""’; 6). Thanks to the continuous inf-sup condition (2.3) foe=
Q, there existsi € H}(Q)3 such that

Bu.=ldlis  lulig < @/rg) ldles. (8.3)
We choosev = I7%~1u, with I7%~1 the interpolant in (8.1). We then have
Br, (V. @) = B(U, @) — By g(u — 1" *u,0) > [lall} 5 — |By g(u — 11" Mu, ).
Using (6.4) and the first orthogonality property in (7.4), we can write

By, G(U — 1% 1y, qQ = /A(v — Hk_lu) - Vhq dx
’ Q
- / Il u— T uyds
ErNQ
— / Il fu— 7 ds.
ErNQ

Using Lemma 30 and the second bound of (8.3) thus yields
Bn(V, @) = Bn(U, &) + Ba(v — U, @) > [ld]l5 5 — Clidllo gldlh. (8.4)
Using Corollary 29 and (8.3) gives
IViln, 5 < Ckluly 5 < CKilldllg -
which concludes the proof. O

We end this section by providing a second inf-sup condition in terms of the pressure
seminorm| - |y in (8.2). Its proof is given in Appendix A.

LEMMA 32 Let7e"’ be an edge patch cﬁwith a grading factos € (0, 1) andn layers
of refinement. Fok > 1,
Bp,g(v. ) _3)2 k=1 no. A
sup 2 >Ckgl. qe QNI Q).
ovek(70: 0 IVlIng

with a constan€ > 0 that solely depends an anddp, but is independent df, n, and the
aspect ratio of the elementsid"”.
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8.3 Proof of Theorem 27

We now combine Lemmas 31 and 32tIflenotes the rati¢q|h/||q||0’@, we find

Bhn.o(v. ) _ _ B R
sup 2T ek ¥gleg minf®),  ge QNI Q)
orvelk (1) IVin.g £0

where f (t) = max{1—t, t}. The proof is concluded by noting that rajifp f (t) is equal to
1/2.

9. Divergence stability on geometric edge meshes

In this section, we consider geometric edge meshe® and prove Theorem 9.

9.1 Trivial patch

We have the following result.
THEOREM 33 Let7 be the trivial patch given by the me§h= {(3}. Fork > 1
Bh A(Vﬂ q) _ 1.7 A
sup  —2 2 >Ck gl 9 QT Q.
ovevk7:0)  1VIh,Q
with a constan€C > 0 independent ok.

Proof. SinceT only consists of one element, givere H&(@)3, we have
By g(I7§ 'u.) = Bu.a).  |I7§ Mully g < Ckluly o.

forallg e Qkfl(?' (3) WhereH('S*1 is the Raviart—-Thomas interpolant from Section 7.3

on Q and we have used the orthogonality propert|es in (7. 4) and the results @tz&ch
et al. (2003, Lemmas 6.9 and 6.10). We note tlﬂg ue VK (T Q) The divergence

stability property is then a consequence of the continuous inf-sup condition (2.3)#or

0. O

9.2 Corner patches
The stability of corner patches is proven by using the macro-element technique.

THEOREM 34 Let 70" be a corner patch o@ with a grading factor € (0, 1) andn
layers of refinement. Fde > 2,

B, s(v.q)
sup 2L >k glys. ge QFTHIM: Q).
orvelk(7:0)  Viln.a

with a constan€ > 0 that solely depends an anddp, but is independent df, n, and the
aspect ratio of the elementsig"“.



MIXED hp-DGFEM ON GEOMETRIC EDGE MESHES 303

Proof. We use the macro-element technique in Theorem 12 and Proposition 13 with
2 = Q, the comer meslf = 7M° and the macro-element mesh, = 4.

The stability result (6.7) for piecewise constant pressure§ihen trivially holds by
choosingXp as the space of continuous, piecewise quadratic velocities; see Stenberg
& Suri (1996) for regular meshes and Toselli & Schwab (2003) for irregular meshes.
Condition (6.15) in Proposition 13 is satisfied due to Theorem 33 (trivial patch) and by
noting that the anisotropically refined elementdgh; are particular edge patches that are

stable according to Theorem 27. O

9.3 Proof of Theorem 9

The proof of Theorem 9 now follows similarly from the macro-element technique in
Theorem 12 and Proposition 13. Indeed, the low-order stability result (6.7, ¢volds by
choosingX}, again as the space of continuous, piecewise quadratic velocities; see Stenberg
& Suri (1996). Condition (6.15) in Proposition 13 is satisfied due to Theorem 33 (trivial
patch), Theorem 27 (edge patch) and Theorem 34 (corner patch).

REMARK 35 Since we choose the low-order spagein (6.7) as the space of continuous,
piecewise quadratic velocities, Theorems 9 and 34 only hold fer2.
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Appendix. Proof of Lemma 32

We proceed in several steps.

Step 1: Alifting operator. Let K = Kyy, = Ix x ly x I with Iy = (xg, x2) andhy =
X2 — X1. Consider the facdy, = {x = x1}. We define the operato‘f,:’xé : Quk(fy) —
Qu+1,kk(K) by

(-1 k+1

T)(Lk+l(x) — Lk()),

where{L;} denote the Legendre polynomials &n This lifting operator was originally
proposed in Ainsworth & Pinchedez (2002) and then employed ibt3ahet al. (2003).
Note that(é’lj_xé ©)(X1,Y,2) = ¢(Y, 2) and(SIix& ¢)(X2, Y, 2) = 0, thanks to the properties
of {Lj}, cf. Bernardi & Maday (1997, Section 3). From the results indzauet al. (2003,
Lemma 6.8) and a scaling argument we have

fx fx fy
EOX Y. D = M0y, 2. M (x) =

fy _ e _
IM % 151, < Chxk™t, IMEIZ ), < Chy ke, (A.1)

Analogous definitions and bounds hold for the other face& ofurthermore, for <
Qk k(fx,), we have

/ (Skfx&go) wdx =0  Vw e Q< LkKK). (A.2)
« x

This follows from the definition of the lifting operators and orthogonality properties of the
Legendre polynomials. Analogous results are valid for the other faces.

Step 2. Sability on the layer j. Let Mj, 2 < j < n, denote the patch of elements
illustrated in Fig. 3. It consists of six elements: we denote the inner elemens, hy=
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Fic. A.1. Two-dimensional illustration of the elements and faces in a piitgffor o = 0-5.

1, 2, 3, and the outer ones b/, i = 1, 2, 3. The four interior faces connecting elements
{Ki} and{K/} are denoted byf11, fo1, f23, and f33. These faces are entire faces of the
inner elements only. The faces connecting the inner elementg aagdgo3- The exterior
faces are denoted Wy, f; and f3, f;, respectively. In Fig. A.1, we show the configuration
of the elements and faces h; .

Letq € Q<~ ?; Q) fork > 1. We denotay|, by g andq|y; byq,,i =123

Using the lifting operators from Step 1, we define the funcucmv 7. Q) by

Vik, = Vi = (= hi, & (a1 — ). 0.0),

f ’ ’
VI, = V2= (= h, 24 (@ — ap), —h 82 1k, — a3). 0),
V|K3 —V - (o hf33€k 1K3(Q3—Q3), 0)1

and byv|k = 0 on the remaining elements Gt. In particular, note that the function
is equal to zero on the faces adjacent to layer 1 and layerj — 1 and satisfiey €
VET; Q).

We further note thaffy Vg -vdx = 0,i = 1,2, 3. This follows from the definition of
v and property (A.2). We definBn w; (-, -) and| - [lo,m; as in (6.1) and (6.2), respectively.
Thus,

By oV, @) = B, (v, @) = — / all - (v} ds
5Iﬂ|\/|]

f 1 Q2ds + 5 / 1o lal2ds = 2 alf ;. (A3

|12 |23

Next, we bound the norniv|ih m; in terms ofiq|n,j.
We start by considering the elemeldi. Writing Ky = Iy x Iy x (=1, 1), we have

v ||0K1—hfn|Mf“|1.xff u[q1||2ds<cmnk3f Iali?ds.
11

f11
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Here, we used the second estimate in (A.1) and the fact that all mesh sizes are comparable
in the underlying two-dimensional meSﬁ&;“. Then, from the inverse estimate for
polynomials in Schwab (1998, Theorem 3.91) and the first estimate in (A.1), we have

f
1ayvHIE k, = h%, MY 1, ff |ay[all|* ds
11

<onf kg [ aPds = ch i [ mane e
11 11

f1a

Similarly,

f
194 ||o Ky = hf11||M u ||o IX/f 13209112 ds
1

< Chi k- 1k4/f ||[q]]|2dS=Chfllk3f Lol | ds.
11

f11
Again, we used (A.1) and the inverse estimate in Schwab (1998, Theorem 3.91) on the
interval (—1, 1) in the z-direction.
The same techniques yield the analogous estimatesdarthe element&, and K.
It remains to bound the jumps afover the various faces.
We start by considering the jump ovéy1. Thanks to (3.1), we have

/ SIvI2ds < Ckzh?lllf fll||[q]1|zo|s_chfnk2f ol ds.
f11 f11 f11

The jump overfsz can be bounded similarly. Let us now consider the fage Writing
012 = Ix x {y1} x (-1, 1), we have

/ 8|M|2ds 912 / hfll kflll Kl(Ql q1)|2 ds
J12
+k2h5112C/g hf21|gkf211,K2 (02 — Qi)|2 ds
12

1
< CRPh 1 IMZ 15, / ) Iy, (1, 2| dz

1
+ORN G IME o, [ A, 0202

< ckhZ,, / Kl (v1. 2P dz + CkhZ,, / Lall,, (y1. 22 dz

<Ky, [ MaDPds+Cihe, [ aBes,
f11 fa1
Here, we used the definition of, the fact that all mesh sizes are comparable in the
underlying two-dimensional mesﬁ{;;", the L2-bound in (A.1), and the inverse estimate
in Schwab (1998, Theorem 3.91) for polynomials.
Exactly the same techniques allow us to bound the jumpsa@pgerfos, f21, f1 and f3
in terms of|q|n, j. Finally, the same approach gives bounds for the top and bottom faces
z==1.
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Combining the above estimates yields
IVIIE & = IVIF wy < CKjalf ;- (A-4)

Sep 3: Theassertion. Letq € QK"1(7"7; Q). OnM;, there is a velocity field that
satisfies (A.3) and (A.4). We set= er‘zzvj. By constructiony € VE(?;”‘”; Q). Using
(A.3), we find

n n m
BroW.d =Y Boj.a) =Y Bumvj.q)>C> lqlf; =Clalf.
j=2 j=2 j=2

Furthermore, from (A.4) and the fact that the support of the fie|ds locally in the patch
Mj, we have||v||ﬁ 6 < Clq|2. This concludes the proof. O



