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We consider the Stokes problem of incompressible fluid flow in three-dimensional
polyhedral domains discretized on hexahedral meshes withhp-discontinuous Galerkin
finite elements of typeQk for the velocity andQk−1 for the pressure. We prove that these
elements are inf-sup stable on geometric edge meshes that are refined anisotropically and
non-quasiuniformly towards edges and corners. The discrete inf-sup constant is shown to
be independent of the aspect ratio of the anisotropic elements and is ofO(k−3/2) in the
polynomial degreek, as in the case of conformingQk −Qk−2 approximations on the same
meshes.
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1. Introduction

It is well known that solutions of elliptic boundary value problems in polyhedral domains
exhibit corner and edge singularities. In addition, boundary layers may also arise in
laminar, viscous, incompressible flows with moderate Reynolds numbers at faces, edges,
and corners. Suitably graded meshes, geometrically refined towards corners, edges, and/or
faces, are required in order to achieve an exponential rate of convergence ofhp-finite
element approximations; see, e.g. Anderssonet al. (1995), Babǔska & Guo (1996), Melenk
& Schwab (1998), Schwab & Suri (1996), Schwabet al. (1998), and the references cited
therein.

The stationary Stokes and Navier–Stokes equations are mixed elliptic systems with
saddle point variational structure. The stability and accuracy of the corresponding finite-
element approximations depend on an inf-sup condition for the finite-element spaces
that are chosen for the velocity and the pressure. Even for stable velocity–pressure
combinations, the corresponding inf-sup constants may in general be very sensitive to the
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aspect ratio of the mesh, thus degrading stability if very thin elements are employed, as
required for the resolution of boundary layers and edge singularities. It has recently been
shown for two- and three-dimensional conforming approximations employingQk − Qk−2
elements, on corner, edge, and boundary-layer tensor product meshes of hexahedra, that the
dependence on the polynomial degree of the inf-sup constant for the Stokes problem might
be only slightly worse than that for isotropically refined triangulations but is independent
of the aspect ratio of the anisotropic elements; see Schötzau & Schwab (1998), Schötzau
et al. (1999), Ainsworth & Coggins (2000), and Toselli & Schwab (2003).

Discontinuous Galerkin (DG) approximations rely on discrete spaces consisting of
piecewise polynomial functions with no continuity constraints across the interfaces
between the elements of a triangulation. They present considerable advantages for certain
types of problems, especially those modelling phenomena where convection is strong; see
e.g. Cockburn (1999), Cockburnet al. (2000), Cockburn & Shu (2001), and references
therein. DG approximations often allow for greater flexibility in the design of the mesh and
in the choice of the approximation spaces since they do not usually require geometrically
conforming triangulations. We note, however, that even if convection is the dominant effect
of a problem, diffusive terms still need to be accounted for and correctly discretized in a
DG framework. Several mixed DG approximations have been proposed for incompressible
fluid flow. We mention the approaches of Bakeret al. (1990), Karakashian & Jureidini
(1998), Cockburnet al. (2002), Cockburnet al. (2003), Hansbo & Larson (2002), and
Girault et al. (2002). In Toselli (2002) and Schötzauet al. (2003), DFhp-approximations
in two and three dimensions have been proposed and analysed for tensor product meshes.
Numerical evidence hints that DG approximations exhibit better divergence stability
properties than the corresponding conforming ones; see Toselli (2002) for the case of
discontinuousQk − Qk , Qk − Qk−1, andQk − Qk−2 elements.

In this paper, we considerQk − Qk−1 DG approximations in three dimensions. They
were originally studied by Toselli (2002) and then by Schötzauet al. (2003) for shape-
regular meshes, possibly with hanging nodes. In particular, it was shown that these
approximation spaces are divergence stable uniformly with respect to the mesh sizeh.
The best bound for the inf-sup constant in terms of the polynomial degreek was given by
Scḧotzauet al. (2003) and decreases ask−1 both in two and three dimensions. Even though
this estimate does not appear to be sharp, at least in two dimensions (see the numerical
results in Toselli, 2002), it ensures the samep-version convergence rate for the velocity
and the pressure as that of conformingQk − Qk−2 elements in three dimensions, but with
a gap in the polynomial degree of the velocity–pressure pair of just one. We also note that
a similar approach was considered in Hansbo & Larson (2002) forh-version finite element
approximations on shape-regular tetrahedral meshes for mixed formulations of elasticity
problems.

Here, we generalize our analysis in Schötzauet al. (2003) to the case of geometric edge
meshes consisting of hexahedral elements inR3. These meshes are refined anisotropically
and non-quasiuniformly towards edges and corners in order to resolve edge and corner
singularities at exponential rates of convergence. We show that the inf-sup constant for
discontinuousQk − Qk−1 elements decreases asCk−3/2, with a constantC that only
depends on the geometric grading factor, and is independent of the degreek, the level of
refinement, and the aspect ratio of the anisotropic elements. We recall that for conforming
Qk −Qk−2 approximations the inf-sup constant on geometric edge meshes has been shown
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to decrease asCk−1/2 in two dimensions and asCk−3/2 in three dimensions; see Schötzau
& Schwab (1998), Scḧotzauet al. (1999), Toselli & Schwab (2003) and the references
therein. The inf-sup constant of our method has thus the same dependence onk as that
of conforming approximations, but with an optimal gap of just one degree between the
velocity and the pressure approximation.

For simplicity, we assume throughout that the geometric meshes consist of stretched
affine hexahedra. While hexahedral elements are essential in our stability proofs, the
condition that the element maps be affine may be weakened to the extent that the meshes are
patchwise mapped from suitable reference patches by smooth, bijective and nondegenerate
maps. In this case, the velocity spaces need to be suitably adapted in the physical
coordinates as in Chilton & Suri (2000), but our stability results on anisotropic meshes
still apply in the reference patches.

We consider here the symmetric interior penalty DG method, but emphasize that our
stability results remain valid for all the methods discussed in Schötzauet al. (2003). Note
that our analysis is also valid forhp-DGFEM approximations of elasticity problems in
nearly incompressible materials, see, e.g. Brezzi & Fortin (1991), and Franca & Stenberg
(1991), since the same inf-sup condition is required in order to have approximations that
remain stable close to the incompressible limit.

This paper is organized as follows: in Section 2, we review the discrete setting from
Scḧotzau et al. (2003) that we use in our stability analysis. Section 3 is devoted to
the definition and construction of geometric edge meshes. In Section 4, we establish
continuity and coercivity properties of the DG forms. Our main stability result is an inf-
sup condition for thehp-discretization of the divergence form on geometric edge meshes;
it is presented in Section 5. In order to prove this result, several ingredients are needed.
First, in Section 6, we establish a macro-element technique for mixedhp-discontinuous
Galerkin discretizations in the spirit of Stenberg & Suri (1996), Schötzau & Schwab
(1998), Scḧotzauet al. (1999), and Toselli & Schwab (2003). This technique allows us
to reduce the investigation of divergence stability to certain reference configurations which
we refer to as patches. Then, to address the stability on one of these configurations,
namely the edge patch, we provide estimates of Raviart–Thomas interpolants on stretched
hexahedra in Section 7. The stability on edge patches is shown in Section 8. Finally, we
complete the proof of our stability result in Section 9.

2. Mixed hp-DGFEM for the Stokes problem

In this section, we introduce mixedhp-discontinuous Galerkin methods for the Stokes
problem of incompressible fluid flow, and review the theoretical framework of Schötzauet
al. (2003) that we use to analyse the methods on geometric edge meshes.

2.1 The Stokes equations

Let Ω be a bounded polyhedral domain inR3, with n denoting the outward normal unit
vector to its boundary∂Ω . Given a source termf ∈ L2(Ω)3 and a Dirichlet datumg ∈
H1/2(∂Ω)3 satisfying the compatibility condition

∫
∂Ω g · n ds = 0, the Stokes problem of
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incompressible fluid flow consists in finding a velocity fieldu and a pressurep such that

−ν∆u + ∇ p = f in Ω ,

∇ · u = 0 in Ω , (2.1)

u = g on ∂Ω .

By settingV := H1(Ω)3, Q := L2
0(Ω) = { q ∈ L2(Ω) : ∫

Ω q dx = 0} and

A(u, v) =
∫
Ω

ν∇u : ∇v dx, B(v, q) = −
∫
Ω

q ∇ · v dx,

we obtain the usual mixed variational formulation of the Stokes problem that consists in
finding (u, p) ∈ V × Q, with u = g on ∂Ω , such that{

A(u, v) + B(v, p) = ∫
Ω f · v dx

B(u, q) = 0
(2.2)

for all v ∈ H1
0 (Ω)3 andq ∈ Q. As usual,H1

0 (Ω)3 is the subspace ofH1(Ω)3 of vectors
that vanish on∂Ω .

The well-posedness of (2.2) is ensured by the continuity ofA(·, ·) and B(·, ·), the
coercivity of A(·, ·), and the following inf-sup condition:

inf
0�=q∈L2

0(Ω)

sup
0�=v∈H1

0 (Ω)d

B(v, q)

|v|1‖q‖0
� γΩ > 0, (2.3)

with an inf-sup constantγΩ only depending onΩ ; see e.g. Brezzi & Fortin (1991) and
Girault & Raviart (1986). Here, we denote by‖ · ‖s,D and| · |s,D the norm and seminorm
of Hs(D) andHs(D)3, s � 0. WhenD = Ω , wedrop the subscript.

2.2 Meshes and trace operators

Throughout, we consider meshesT in two and three space dimensions that consist of
quadrilaterals and hexahedra{K }, respectively. Each elementK ∈ T is affinely equivalent
to a reference element̂K , which is either the reference squareŜ = (−1, 1)2 or the reference
cubeQ̂ = (−1, 1)3. The edges of̂S and the faces of̂Q are denoted bŷfm , m = 1, . . . , 2d,
d = 2, 3, where

f̂1 = {x = −1}, f̂2 = {x = 1},
f̂3 = {y = −1}, f̂4 = {y = 1},
f̂5 = {z = −1}, f̂6 = {z = 1}, d = 3.

We write { fi }2d
i=1 to denote the edges or faces of an elementK ∈ T ; they are obtained

by mapping the corresponding ones ofK̂ . In general, we allow forirregular meshes, i.e.
meshes with so-called hanging nodes (see Schwab, 1998, Section 4.4.1), but suppose that
the intersection between neighbouring elements is a vertex, an edge, or a face (ifd = 3) of
at least one of the two elements. For an elementK ∈ T , wedenote byhK its diameter and
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by ρK the radius of the largest circle or sphere that can be inscribed intoK . A meshT is
calledshape-regular if

hK � cρK ∀K ∈ T , (2.4)

for a shape-regularity constantc > 0 that is independent of the elements. Our meshes are
not necessarily shape-regular; see Section 3.

Let nowT be a hexahedral mesh onΩ . An interior face ofT is the (non-empty) two-
dimensional interior of∂K + ∩ ∂K −, whereK + andK − are two adjacent elements ofT .
Similarly, a boundary face ofT is the (non-empty) two-dimensional interior of∂K ∩ ∂Ω
which consists of entire faces of∂K . We denote byEI the union of all interior faces ofT ,
by EB the union of all boundary faces, and setE = EI ∪ EB.

On E , we define the following trace operators. First, letf ⊂ EI be an interior face
shared by two elementsK + andK −. Let v, q, andτ be vector-, scalar- and matrix-valued
functions, respectively, that are smooth inside each elementK ±, and let us denote byv±,
q± andτ± the traces ofv, q andτ on f from the interior ofK ±. We define the mean
values and the normal jumps atx ∈ f as

{{v}} := (v+ + v−)/2, [[v]] := v+ · nK + + v− · nK − ,

{{q}} := (q+ + q−)/2, [[[[[[q]]]]]] := q+ nK + + q− nK − ,

{{τ }} := (τ+ + τ−)/2, [[[[[[τ]]]]]] := τ+ nK + + τ− nK − .

Here, we denote bynK the outward normal unit vector to the boundary∂K of an element
K . Wealso need to define the matrix-valued jump ofv, namely

[[v]] := v+ ⊗ nK + + v− ⊗ nK − ,

where, for two vectorsa andb, [a ⊗ b]i j = ai b j . On a boundary facef ⊂ EB given
by f = ∂K ∩ ∂Ω , we then set accordingly{{v}} := v, {{q}} := q, {{τ }} := τ , as well as
[[v]] := v · n, [[v]] := v ⊗ n, [[[[[[q]]]]]] := qn and[[[[[[τ]]]]]] := τn.

2.3 Finite-element spaces

For a meshT on a polyhedronD and an approximation orderk � 0, we introduce the
finite-element spaces

Vk
h(T ;D) := { v ∈ L2(D)3 : v|K ∈ Qk(K )3, K ∈ T },

Qk
h(T ;D) := { q ∈ L2(D) : q|K ∈ Qk(K ), K ∈ T ,

∫
D

qdx = 0},

where Qk(K ) is the space of polynomials of maximum degreek in each variable on
the elementK . Further, we define the subspacẽVk

h(T ;D) of Vk
h(T ;D) of vectors with

vanishing normal component on the boundary ofD

Ṽk
h(T ;D) = { v ∈ Vk

h(T ;D) : v · nD = 0 on∂D },
with nD denoting the outward normal unit vector to∂D. For D = Ω , we omit the
dependence on the domain and simply writeVk

h(T ), Qk
h(T ) andṼk

h(T ).
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2.4 Mixed discontinuous Galerkin approximations

For a meshT on Ω , we approximate the velocity and pressure in the spacesVh and Qh

given by

Vh := Vk
h(T ), Qh := Qk−1

h (T ), k � 1.

Werefer to this velocity–pressure pair as (discontinuous)Qk − Qk−1 elements.
In order to apply the framework of Schötzau et al. (2003), we need to define the

additional spaceV(h) := V + Vh , endowed with the broken norm

‖v‖2
h :=

∑
K∈T

|v|21,K +
∫
E

δ|[[v]]|2 ds, v ∈ V(h).

Here,δ ∈ L∞(E) is the so-called discontinuity stabilization function, for which we will
make a precise choice in Section 3.2.

Next, we introduce the auxiliary space

Σ h := { τ ∈ L2(Ω)3×3 : τ |K ∈ Qk(K )3×3, K ∈ T },
and define the lifting operatorsL : V(h) → Σ h andM : V(h) → Qh by∫

Ω
L(v) : τ dx =

∫
E

[[v]] : {{τ }} ds ∀τ ∈ Σ h, (2.5)∫
Ω

M(v)q dx =
∫
E

[[v]]{{q}} ds ∀q ∈ Qh . (2.6)

Weconsider the following mixed DG method: find(uh, ph) ∈ Vh × Qh such that{
Ah(uh, v) + Bh(v, ph) = Fh(v)

Bh(uh, q) = Gh(q)
(2.7)

for all (v, q) ∈ Vh × Qh . Here,Ah : V(h) × V(h) → R and Bh : V(h) × Q → R have
the following forms:

Ah(u, v) =
∫
Ω

ν
[∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx

+ ν

∫
E

δ[[u]] : [[v]] ds,

Bh(v, q) = −
∫
Ω

q [∇h · v − M(v)] dx,

(2.8)

where∇h is the discrete gradient, taken elementwise. The functionalsFh : Vh → R and
Gh : Qh → R are given by

Fh(v) =
∫
Ω

f · v dx −
∫
EB

(g ⊗ n) : {{ν∇hv}} ds + ν

∫
EB

δg · v ds,

Gh(q) =
∫
EB

q g · n ds.



MIXED hp-DGFEM ON GEOMETRIC EDGE MESHES 279

Restricted to discrete functions inVh andQh , we have

Ah(u, v) =
∫
Ω

ν∇hu : ∇hv dx −
∫
E

({{ν∇hv}} : [[u]] + {{ν∇hu}} : [[v]]) ds

+ν

∫
E

δ[[u]] : [[v]] ds,

Bh(v, q) = −
∫
Ω

q ∇h · v dx +
∫
E

{{q}}[[v]] ds.

Wealso note that forq ∈ Qh andv ∈ Vh ∩ H0(div;Ω)

Bh(v, q) = B(v, q) = −
∫
Ω

q ∇ · v dx, (2.9)

where the spaceH0(div;Ω) consists of square-integrable vectors with square-integrable
divergence and vanishing normal component on∂Ω . Thus, the spaceVh ∩ H0(div;Ω)

consists of discrete vectors with continuous normal component across the inter-element
boundaries and vanishing normal component on∂Ω ; see e.g. Brezzi & Fortin (1991,
Chapter III.3).

REMARK 1 The formBh and the functionalGh are exactly those considered in the mixed
DG approaches of Cockburnet al. (2002), Hansbo & Larson (2002), Toselli (2002),
and Scḧotzauet al. (2003). The formAh in (2.8) is the so-called interior penalty (IP)
form. Several other choices are possible forAh , asdiscussed in Scḧotzauet al. (2003). All
the results of this paper hold verbatim for these other forms as well.

2.5 Well-posedness and error estimates

Problem (2.7) was analysed in Schötzauet al. (2003) where an abstract framework was
introduced.

Weassume that the formsAh andBh satisfy the following continuity properties:

Ah(u, v) � α1‖u‖h‖v‖h, u, v ∈ V(h), (2.10)

Bh(v, q) � α2‖v‖h‖q‖0, (v, q) ∈ V(h) × Q, (2.11)

with constantsα1 > 0 andα2 > 0, and thatAh is coercive

Ah(u, u) � β‖u‖2
h, u ∈ Vh, (2.12)

for a constantβ > 0. Next, we suppose that the following discrete inf-sup condition for
the finite-element spacesVh andQh holds:

inf
0�=q∈Qh

sup
0�=v∈Vh

Bh(v, q)

‖v‖h‖q‖0
� γh > 0. (2.13)

Condition (2.13) is also referred to as divergence stability. Finally, we assume the
functionalsFh : Vh → R andGh : Qh → R to be continuous.
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The above conditions ensure the well-posedness of (2.7). Indeed, (2.7) has a unique
solution and we have the following error bounds from Sections 3 and 4 of Schötzauet al.
(2003), with(u, p) denoting the exact solution of (2.1):

‖u − uh‖h � C
[
γ −1

h inf
v∈Vh

‖u − v‖h + inf
q∈Qh

‖p − q‖0 + Rh(u, p)
]
,

‖p − ph‖0 � C
[
γ −1

h inf
q∈Qh

‖p − q‖0 + γ −2
h inf

v∈Vh
‖u − v‖h + γ −1

h Rh(u, p)
]
,

(2.14)

where the constantsC only depend onα1, α2 andβ, and whereRh(u, p) is the residual
defined by

Rh(u, p) := sup
0�=v∈Vh

|Ah(u, v) + Bh(v, p) − Fh(v)|
‖v‖h

. (2.15)

(Note thatBh(u, q) = Gh(q) for all q ∈ Qh .)
In Scḧotzauet al. (2003), the above conditions have been verified on isotropically

refined, shape-regular meshes in two and three dimensions. It has then been proven in
Theorem 9.1 there that, forδ of the orderk2/h and piecewise smooth solutions, the
estimates in (2.14) lead to algebraic convergence rates that are optimal in the mesh sizes
and slightly suboptimal in the polynomial degrees. In particular, the residualRh in (2.15)
has been shown to be optimally convergent in the mesh sizes and the polynomial degrees;
see Scḧotzauet al. (2003, Proposition 8.1). Moreover, the recent work of Schötzau &
Wihler (2002) has shown that, for Stokes flow in polygonal domains, the error estimates
(2.14) give rise to exponential rates of convergence on geometrically refined shape-regular
meshes.

In the following, we generalize the stability results of Schötzauet al. (2003) to three-
dimensional geometric edge meshes, which are highly anisotropic. In particular, we show
that the forms in (2.8) satisfy the above conditions on such meshes with constantsα1, α2,
β andγh that can be bounded independently of the aspect ratio of the anisotropic elements,
provided thatδ is suitably chosen. Geometric edge meshes are introduced in Section 3.
Continuity and coercivity properties are then shown in Section 4. The crucial stability
result is the discrete inf-sup condition in Section 5.

3. Geometric edge meshes

In this section, we introduce a class ofgeometric meshes designed to resolve corner
and edge singularities that arise in Stokes flow or nearly incompressible elasticity. These
meshes are referred to asgeometric edge meshes; they are, roughly speaking, tensor
products of meshes that are geometrically refined towards the edges.

3.1 Construction of geometric edge meshes

Geometric edge meshes are determined by amesh grading factor σ ∈ (0, 1) and anumber
of layers n, the thinnest layer having width proportional toσ n . We recall that exponential
convergence ofhp-finite element approximations is achieved ifn is suitably chosen. For
singularity resolution,n is required to be proportional to the polynomial degreek; see
Anderssonet al. (1995) and Babǔska & Guo (1996).
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Level 1

Level 2

FIG. 1. Hierarchical structure of a geometric edge meshT n,σ . The macro-elementsM at the boundary ofΩ
(level 1) are further refined as edge and corner patches (level 2). Here we have chosenσ = 0·5 andn = 3.

On Ω , a geometric edge mesh T n,σ is constructed by considering an initial shape-
regular macro-triangulationTm = {M} of Ω , possibly consisting of just one element.
The macro-elementsM in the interior ofΩ can be refined isotropically and regularly
(not discussed further) while the macro-elementsM at the boundary ofΩ are refined
geometrically and anisotropically towards edges and corners. This geometric refinement
is obtained by affinely mapping reference triangulations (referred to aspatches) on Q̂ onto
the macro-elementsM using elemental mapsFM : Q̂ → M . An illustration of this process
is shown in Fig. 1. For edge meshes, the following patches onQ̂ = Î 3, Î = (−1, 1), are
used for the geometric refinement towards the boundary ofΩ :

• Edge patches: an edge patchT n,σ
e on Q̂ is given by

T n,σ
e := {Kxy × Î | Kxy ∈ T n,σ

xy },
whereT n,σ

xy is an irregular corner mesh, geometrically refined towards a vertex ofŜ =
Î 2 with grading factorσ andn layers of refinement; see Fig. 1 (level 2, left).

• Corner patches: in order to build a corner patchT n,σ
c on Q̂, wefirst consider an initial,

irregular, corner meshT n,σ
c,m , geometrically refined towards a vertex of̂Q, with grading

factorσ andn layers of refinement; see the mesh in bold lines in Fig. 1 (level 2, right).
The elements of this mesh are then irregularly refined towards the three edges adjacent
to the vertex in order to obtain the meshT n,σ

c .

For simplicity, we always assume that the only hanging nodes contained in geometric
edge meshesT n,σ are those contained in the edge and corner patches.

The geometric edge meshes satisfy the following property; see also Gerdeset al.
(2001).

PROPERTY 2 Let T n,σ be a geometric edge mesh onΩ and K ∈ T n,σ . Then K can be
written asK = FK (Kxyz), whereKxyz is of the form

Kxyz = Ix × Iy × Iz = (x1, x2) × (y1, y2) × (z1, z2),

andFK is an affine mapping, the Jacobian of which satisfies

| det(JK )| � C, | det(J−1
K )| � C,
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with C only depending on the angles ofK but not on its dimensions.

We note that the constants in Property 2 only depend on the constant in (2.4) for
the underlying macro-element meshTm . The dimensions ofKxyz on the other hand may
depend on the geometric grading factor and the number of refinements.

For an elementK of a geometric edge mesh, we define, according to Property 2,

hK
x = hx = x2 − x1, hK

y = hx = y2 − y1, hK
z = hx = z2 − z1.

3.2 Discontinuity stabilization on geometric meshes

In this section, we define the discontinuity stabilization parameterδ ∈ L∞(E) on geometric
edge meshes. We note that this approach was originally proposed in Georgoulis & Süli
(2001). Let f be an entire face of an elementK of a geometric edge meshT n,σ on Ω .
According to Property 2,K can be obtained from a stretched parallelepipedKxyz by an
affine mappingFK that only changes the angles. Suppose that the facef is the image of,
for example, the face{x = x1}. We seth f = hx . For a face perpendicular to they- or
z-direction, we chooseh f = hy or h f = hz .

Let now K and K ′ be two elements with entire facesf and f ′ that share an interior
face, e.g.f = f ∩ f ′ in EI . We have

ch f � h f ′ � c−1h f , (3.1)

with a constantc > 0 that only depends on the geometric grading factorσ and the
constant in (2.4) for the underlying macro-element meshTm . We then define the function
h ∈ L∞(E) by

h(x) :=
{

min{h f , h f ′ } x ∈ f ∩ f ′ ⊂ EI ,

h f x ∈ f ⊂ EB.
(3.2)

Furthermore, we define

δ(x) = δ0h
−1(x)k2, (3.3)

with a parameterδ0 > 0 that is independent ofh andk.

REMARK 3 For isotropically refined, shape-regular meshes, the definition in (3.3) is
equivalent to the usual definition ofδ, see Scḧotzauet al. (2003).

Strongly related to the choice ofδ in (3.2) is the following discrete trace inequality.

LEMMA 4 Let K be an element of a geometric edge meshT n,σ onΩ and f an entire face
of K . Then

‖ϕ‖2
0, f � Ch−1

f max{1, k}2‖ϕ‖2
0,K

for anyϕ ∈ Qk(K ), k � 0, with a constant only depending on the constants in Property 2.

Proof. First we note that on the reference cubêQ, this estimate follows from standard
inverse inequalities, see e.g. Schwab (1998, Theorem 4.76). Next, letK = Kxyz =
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(x1, x2) × (y1, y2) × (z1, z2) be an axiparallel element. We may assume that the facef is
given by fyz = {x1} × (y1, y2) × (z1, z2). A simple scaling argument then yields

‖ϕ‖2
0, fyz

� Ch−1
x max{1, k}2‖ϕ‖2

0,Kxyz
(3.4)

for anyϕ ∈ Qk(Kxyz), with hx = x2 − x1 and a constantC > 0. Finally, since an element
K of a geometric edge mesh can be written asK = FK (Kxyz) according to Property 2, the
claim follows from (3.4) by a scaling argument that takes into account the definition ofh f .

�

4. Continuity and coercivity on geometric edge meshes

Wefirst establish the continuity ofAh andBh as well as the coercivity ofAh on geometric
edge meshes.

THEOREM 5 Let T n,σ be a geometric edge mesh onΩ with a grading factorσ ∈ (0, 1)

andn layers of refinement. Let the discontinuity stabilization functionδ be defined as in
(3.2) and (3.3).

The formsAh andBh in (2.8) are continuous,

|Ah(v, w)| � να1‖v‖h‖w‖h ∀ v, w ∈ V(h),

|Bh(v, q)| � α2‖v‖h‖q‖0 ∀ v ∈ V(h), q ∈ Q,

with continuity constantsα1 > 0 and α2 > 0 that depend onδ0 and the constants in
Property 2, but are independent ofν, k, n, and the aspect ratio of the anisotropic elements
in T n,σ .

Furthermore, there exists a constantδmin > 0 that depends on the constants in Property
2, but is independent ofν, k, n, and the aspect ratio of the anisotropic elements inT n,σ ,
such that, for anyδ0 � δmin,

Ah(v, v) � νβ‖v‖2
h ∀ v ∈ Vh,

for a coercivity constantβ > 0 depending onδ0 and the constants in Property 2, but
independent ofν, k, n, and the aspect ratio of the anisotropic elements inT n,σ .

Proof. Wefirst claim that the lifting operatorsL andM in (2.5) and (2.6) satisfy

‖L(v)‖2
0 � C

∫
E

δ |[[v]]|2 ds, ‖M(v)‖2
0 � C

∫
E

δ |[[v]]|2 ds, (4.1)

for anyv ∈ V(h), with C > 0 independent ofk, n, and the aspect ratio of the anisotropic
elements.

Weshow the first estimate in (4.1); the proof of the second one is completely analogous
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by noting that|[[v]]|2 � |[[v]]|2. Forv ∈ V(h), we have

‖L(v)‖0 = sup
τ∈Σ h

∫
Ω L(v) : τ dx

‖τ‖0
= sup

τ∈Σ h

∫
E [[v]] : {{τ }} ds

‖τ‖0

� sup
τ∈Σ h

( ∫
E δ|[[v]]|2 ds

) 1
2
( ∫

E δ−1|{{τ }}|2 ds
) 1

2

‖τ‖0

� C sup
τ∈Σ h

( ∫
E δ|[[v]]|2 ds

) 1
2
( ∑

K∈Th

∫
∂K δ−1|τ |2 ds

) 1
2

‖τ‖0
.

Here, we used the definition ofL and the Cauchy–Schwarz inequality. Since forτ ∈ Σ h∫
∂K

δ−1|τ |2 ds � C
6∑

m=1

h fm k−2‖τ‖2
0, fm

� C‖τ‖2
0,K ,

thanks to the definition ofδ and Lemma 4, we obtain the desired estimate forL.
The continuity of the formsAh and Bh follows immediately from (4.1) and Cauchy–

Schwarz inequalities. The coercivity ofAh can be proven by employing the first estimate
in (4.1) and the arithmetic–geometric mean inequality 2ab � εa2 + ε−1b2, for all ε > 0,
see Arnoldet al. (2001). �

REMARK 6 The results in Theorem 5 are based on the anisotropic stability estimates (4.1)
for the lifting operatorsL andM. These operators are identical for all the DG forms
considered in Scḧotzauet al. (2003) and, thus, the results in Theorem 5 hold true for all
the forms there as well. We also note that the restriction onδ0 is typical for the interior
penalty formAh and can be avoided ifAh is chosen to be, for example, the local DG form,
the nonsymmetric interior penalty form or the second Bassi–Rebay form, see Schötzauet
al. (2003).

Next, we address the continuity ofFh andGh .

THEOREM 7 Let T n,σ be a geometric edge mesh onΩ with a grading factorσ ∈ (0, 1)

andn layers of refinement. Let the discontinuity stabilization functionδ be defined as in
(3.2) and (3.3). Then we have

|Fh(v)| � C
[‖f‖0 + ν‖δ 1

2 g‖0,∂Ω
] ‖v‖h ∀ v ∈ Vh,

|Gh(q)| � C ‖δ 1
2 g‖0,∂Ω ‖q‖0 ∀ q ∈ Qh,

with continuity constantsC > 0 that depend onδ0 and the constants in Property 2, but are
independent ofν, k, n, and the aspect ratio of the anisotropic elements inT n,σ .

Proof. Wefirst note that we have the Friedrichs inequality

‖v‖0 � C‖v‖1,h ∀ v ∈ V(h), (4.2)

with a constantC > 0 depending onδ0 and the constants in Property 2. The bound (4.2)
follows by proceeding as in the proof in Lemma 3.1 of Lasser & Toselli (2003), taking into
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account elliptic regularity theory for polyhedral domains and by using the anisotropic trace
inequality

‖ϕ‖0, f � Ch−1
f ‖ϕ‖3/2+ε,K , ε > 0,

for an elementK ∈ T n,σ and an entire facef of ∂K , with a constant depending on the
constants in Property 2.

Let nowv ∈ Vh . From (4.2), we obtain| ∫Ω f · v dx| � C‖f‖0‖v‖h . Further, applying
the discrete trace inequality from Lemma 4 as in the proof of Theorem 5,∣∣∣∣∫EB (g ⊗ n) : {{ν∇hv}} ds

∣∣∣∣ � Cν‖δ 1
2 g‖0,∂Ω‖v‖h,

with a constant depending onδ0, and the constants in Property 2. Finally, the Cauchy–

Schwarz inequality yields|ν ∫
EB δg · v ds| � ν‖δ 1

2 g‖0,∂Ω‖v‖h . This proves the assertion
for Fh .

Similarly, for q ∈ Qh ,

|Gh(q)| �
∣∣∣∣∫EB q g · n ds

∣∣∣∣ � ‖δ 1
2 g‖0,∂Ω

(∫
EB

δ−1|q|2 ds

) 1
2

.

Using the trace inequality from Lemma 4 and proceeding as in the proof of Theorem 5,
we have

∫
EB δ−1|q|2 ds � C‖q‖2

0, with a constant depending onδ0, and the constants in
Property 2. This completes the proof. �

REMARK 8 The same continuity properties hold for all the functionalsFh andGh in the
mixed DG methods analysed in Schötzauet al. (2003).

5. Divergence stability on geometric edge meshes

Our main result establishes the divergence stability in (2.13) for discontinuousQk − Qk−1
elements on geometric edge meshes.

THEOREM 9 Let T n,σ be a geometric edge mesh onΩ with a grading factorσ ∈ (0, 1)

andn layers of refinement. Let the discontinuity stabilization functionδ be defined as in
(3.2) and (3.3). Then there exists a constantC > 0 that depends onσ , δ0, and the shape-
regularity of the macro-element mesh, but is independent ofk, n, and the aspect ratio of
the anisotropic elements inT n,σ , such that, for anyn andk � 2,

inf
0�=q∈Qk−1

h (T n,σ )

sup
0�=v∈Vk

h(T n,σ )

Bh(v, q)

‖v‖h ‖q‖0
� Ck−3/2.

Hence, condition (2.13) is satisfied withγh = Ck−3/2.

REMARK 10 Theorem 9 shows that the discontinuousQk − Qk−1 elements considered in
this paper are inf-sup stable on geometric edge meshes. It thus extends to the discontinuous
Galerkin context the results that were obtained in Schötzau & Schwab (1998), Schötzau
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et al. (1999), and Toselli & Schwab (2003) for the standardQk − Qk−2 pair where
the velocity space is based on continuousQk elements and the pressure space on
discontinuousQk−2 elements. In contrast to this pair, discontinuousQk − Qk−1 elements
are optimally matched with respect toh-version approximation properties. We further
point out that continuous-Qk /discontinuous-Qk−1 elements are known to be unstable while
continuous-Qk /continuous-Qk−1 Hood–Taylor elements are stable; see Brezzi & Falk
(1991, Theorems 3.2 and 3.3). However, the dependence of the discrete inf-sup constant on
the polynomial degree and the aspect ratio of anisotropic elements seems not to be known
for Hood–Taylor elements.

REMARK 11 The form Bh is identical for the DG methods of Cockburnet al. (2002),
Hansbo & Larson (2002), Toselli (2002), and Schötzau et al. (2003). Therefore, the
stability result in Theorem 9 is valid for all these methods.

The proof of Theorem 9 is carried out in the remaining sections. The first ingredient we
need is a macro-element technique that we introduce in Section 6. The second ingredient
consists of stability estimates for Raviart–Thomas interpolants on certain anisotropic
meshes, derived in Section 7. In Section 8, we establish divergence stability on edge
patches. The proof of Theorem 9 is completed in Section 9 by recursively applying the
macro-element technique.

6. Macro-element technique

In order to prove Theorem 9, we use a macro-element technique; see Stenberg (1990),
Stenberg & Suri (1996), Schötzauet al. (1999), and Toselli & Schwab (2003). We recall
that a geometric edge meshT = T n,σ is obtained by refining a coarser, shape-regular
macro-meshTm . Theorem 12 is the main tool of our macro-element technique.

First, we introduce local bilinear forms. IfM ∈ Tm , wedefine

Bh,M (v, q) = −
∫

M
q ∇h · v dx +

∫
EI∩M

{{q}}[[v]] ds +
∫
E∩∂ M

q v · n ds, (6.1)

for (v, q) ∈ Vk
h(T ) × Qk−1

h (T ). Correspondingly, we also need the local norm

‖v‖2
h,M =

∑
K∈T , K⊂M

|v|21,K +
∫
EI∩M

δM |[[v]]|2 ds +
∫
E∩∂ M

δM |v ⊗ nM |2 ds, (6.2)

where nM denotes the outward normal unit vector to∂ M and δM is a discontinuity
stabilization function defined as in (3.3), withh(x) replaced by

hM (x) :=
{
h(x) x ∈ f ⊂ EI \ ∂ M,

h f x ∈ f ⊂ ∂ M .
(6.3)

By integration by parts on each element inM , we have

Bh,M (v, q) =
∫

M
v · ∇hq dx −

∫
EI∩M

[[[[[[q]]]]]] · {{v}} ds. (6.4)
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If TM is the restriction ofT to M , then

Bh,M (v, q) = Bh(v, q), v ∈ Ṽk
h(TM ; M), (6.5)

where we use the same notation forv ∈ Ṽk
h(TM ; M) and its extension by zero toΩ .

For ageometric edge mesh onΩ , we have

δ(x) � cδM (x), δ(x) � cδM ′(x), x ∈ ∂ M ∩ ∂ M ′, (6.6)

with c > 0 solely depending onσ and the shape-regularity of the macro-element meshTm .
This follows from the construction of geometric edge meshes, from the definition ofδ in
(3.2), (3.3), and from (3.1).

The following theorem holds.

THEOREM 12 Let T = T n,σ be a geometric edge mesh onΩ with a grading factorσ ∈
(0, 1) andn layers of refinement. LetTm be the underlying macro-element mesh. Assume
that there exists a low-order spaceXh ⊆ Vk

h(T ) such that

inf
0�=q∈Q0

h(Tm )

sup
0�=v∈Xh

Bh(v, q)

‖v‖h ‖q‖0
� C1, (6.7)

with a constantC1 > 0 independent ofk. Furthermore, assume that there exists a constant
C2 > 0 independent ofM ∈ Tm andk such that

inf
0�=q∈Qk−1

h (TM ;M)

sup
0�=v∈Ṽk

h(TM ;M)

Bh,M (v, q)

‖v‖h,M‖q‖0,M
� C2 k−α, M ∈ Tm, (6.8)

with α � 0 andTM denoting the restriction ofT to M ∈ Tm . Then the spacesVk
h(T ) and

Qk−1
h (T ) satisfy

inf
0�=q∈Qk−1

h (T )

sup
0�=v∈Vk

h(T )

Bh(v, q)

‖v‖h ‖q‖0
� Ck−α,

with a constantC > 0 solely depending onC1, C2, σ and the shape-regularity ofTm .

Proof. Let q ∈ Qk−1
h (T ). We decomposeq into q = q∗ + qm whereqm is the L2(Ω)-

projection ofq onto the spaceQ0
h(Tm) of piecewise constant pressures on the macro-

element meshTm . Because of (6.7), there existsvm ∈ Xh such that

Bh(vm, qm) � ‖qm‖2
0, ‖vm‖h � C−1

1 ‖qm‖0. (6.9)

We next considerq∗ ∈ Qk−1
h (T ). We fix a macro-elementM ∈ Tm and setq∗

M := q∗|M .
Wenote thatq∗

M has vanishing mean value onM . By using (6.8), there exists a fieldv∗
M in

Ṽk
h(TM ; M) such that

Bh,M (v∗
M , q∗

M ) � ‖q∗
M‖2

0,M , ‖v∗
M‖h,M � C−1

2 kα‖q∗
M‖0,M . (6.10)
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Wenow definev∗ = ∑
M∈Tm

v∗
M . By construction,v∗

M has a vanishing normal component
on ∂ M and vanishes outsideM . Thus, combining (6.5) with (6.10) yields

Bh(v∗, q∗) =
∑

M∈Tm

Bh,M (v∗
M , q∗

M ) � ‖q∗‖2
0. (6.11)

Furthermore, thanks to (6.6) and (6.10),

‖v∗‖2
h � C

∑
M∈Tm

‖v∗
M‖2

h,M � Ck2α‖q∗‖2
0, (6.12)

with a constantC only depending onC2 and the constant in (6.6). Select nowv = vm +
ηv∗ ∈ Vk

h(T ) whereη > 0 is still at our disposal. First, thanks to (6.5), (6.4) and the fact
thatqm is constant on each macro-element, we have

Bh(v∗, qm) =
∑

M∈Tm

Bh,M (v∗
M , qm)

=
∑

M∈Tm

(∫
M

v∗
M · ∇hqm dx −

∫
EI∩M

[[[[[[qm]]]]]] · {{v∗
M }} ds

)
= 0.

Further, the continuity ofBh(·, ·) in Theorem 5, (6.9), and the arithmetic–geometric mean
inequality yield

|Bh(vm, q∗)| � α2‖vm‖h‖q∗‖0 � C‖qm‖0‖q∗‖0 � C

ε
‖qm‖2

0 + εC‖q∗‖2
0,

with another parameterε > 0 to be properly chosen. Combining the above results with
(6.9) and (6.11), gives

Bh(v, q) = Bh(vm, qm) + Bh(vm, q∗) + ηBh(v∗, q∗)

�
(

1 − C

ε

)
‖qm‖2

0 + (η − εC)‖q∗‖2
0.

It is then clear that we can chooseη andε in such a way that

Bh(v, q) � c‖q‖2
0 (6.13)

with a constantc independent ofk. Furthermore, from (6.9) and (6.12),

‖v‖h � ‖vm‖h + η‖v∗‖h � ckα‖q‖0. (6.14)

The assertion of Theorem 12 follows then from (6.13) and (6.14). �

For geometric edge meshes, the macro-elements are refined by mapping reference
configurations on̂Q. Condition (6.8) in Theorem 12 can then be verified by checking the
stability of the patches on the reference cubeQ̂. Similarly to (6.1) and (6.2), we denote
by Bh,Q̂(·, ·) and‖ · ‖h,Q̂ the divergence form and the broken energy norm on a mesh on

Q̂, respectively, with the stabilization functionδQ̂ defined according to (3.3), but withh

replaced by the local mesh sizehQ̂ defined as in (6.3) withM = Q̂.
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PROPOSITION 13 Let T = T n,σ be a geometric edge mesh onΩ with a grading factor
σ ∈ (0, 1) and n layers of refinement. LetTm be the underlying macro-element mesh,
and F be a family of meshes on the reference elementQ̂, also containing the trivial
triangulationT̂ = {Q̂}. Assume thatT is obtained fromTm by further partitioning the
elements ofTm into FM (T̂ ) whereT̂ ∈ F and FM is the affine mapping between̂Q and
M . Assume that the familyF is uniformly stable in the sense that

inf
0�=q∈Qk−1

h (T̂ ;Q̂)

sup
0�=v∈Ṽk

h(T̂ ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂‖q‖0,Q̂
� C k−α, T̂ ∈ F, k � 1, (6.15)

with a constantC > 0 independent of̂T ∈ F andk. Then, condition (6.8) in Theorem 12 is
satisfied with a constant that only depends on the constant in (6.15) and the shape-regularity
of the macro-element meshTm .

Proof. Let M ∈ Tm be a macro-element. The restrictionTM of T to M is given byFM (T̂ )

for some mesĥT ∈ F . Let q ∈ Qk−1
h (TM ; M). We transformq back to the reference

elementQ̂ via the affine transformationFM : Q̂ → M : that is, we set̂q = q ◦ FM ∈
Qk−1

h (T̂ ; Q̂). By (6.15), there existŝv ∈ Ṽk
h(T̂ ; Q̂) such that

Bh,Q̂ (̂v, q̂) � ‖q̂‖2
0,Q̂

, ‖̂v‖h,Q̂ � C−1kα‖q̂‖0,Q̂ . (6.16)

Weuse the Piola transform, see Brezzi & Fortin (1991, Section III.1), and set

v = PM (̂v) = |JM |−1JM v̂ ◦ F−1
M .

Here, JM is the Jacobian ofFM and |JM | = | det(JM )|. Let now K = FM (K̃ ) be an
element ofM that is the image of the element̃K in Q̂. It can then be easily seen that
v|K is obtained from̂v|K̃ through the local Piola transformatioñK → K . Due to the
properties of these transforms in Brezzi & Fortin (1991, Lemmas 1.5 and 1.6), we thus
havev ∈ Ṽk

h(TM ; M) andBh,Q̂ (̂v, q̂) = Bh,M (v, q). By using the definition ofδM andδQ̂
and standard scaling properties for the Piola transform, we obtain from (6.16) the existence
of a field inṼk

h(TM ; M) also denoted byv such that

Bh,M (v, q) � ‖q‖2
0,M , ‖v‖h,M � Ckα‖q‖0,M ,

whereC solely depends on the constant in (6.15) and the shape-regularity of the macro-
element meshTm . �

REMARK 14 The condition that the patch maps be affine may be weakened to the extent
that the meshes are patchwise mapped from suitable reference patches by smooth, bijective
and nondegenerate maps. In this case, the macro-element technique can be modified as
in Chilton & Suri (2000) which requires suitably adapted velocity spaces in the physical
coordinates.

7. Raviart–Thomas interpolant on anisotropic meshes

The purpose of this section is to provide estimates for the interpolant on Raviart–Thomas
finite-element spaces on certain anisotropic meshes. In order to do so, we employ a
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different representation than that considered in Schötzauet al. (2003), which was originally
proposed in Ainsworth & Pinchedez (2002). The representation here was first proposed and
proven in Hientzsch (2001); see in particular Chapter 7. Here we propose a simpler proof.

7.1 One-dimensional interpolants

We first introduce some one-dimensional projections. Let{Li (x), i ∈ N0} be the set of
orthogonal Legendre polynomials onÎ = (−1, 1); see e.g. Bernardi & Maday (1997). We
also consider a different set{Ui (x), i ∈ N0}:

U0(x) = L0(x) = 1, U1(x) = L1(x) = x,

Ui (x) =
∫ x

−1
Li−1(t) dt = (2i − 1)−1(Li − Li−2), i � 2; (7.1)

see in particular Theorem 3.3 of Bernardi & Maday (1997).
For a generic intervalI = (x1, x2) = FI ( Î ), two bases can be found by mapping{Li }

and{Ui } onto I . In the following, we use the same notation for these bases inL2(I ) as for
the reference interval.

Let π0
k : L2(I ) → Qk(I ) be theL2-orthogonal projection. We note that

π0
k

( ∞∑
i=0

vi Li

)
=

k∑
i=0

vi Li .

Wealso define a second projectionπ1
k : L2(I ) → Qk(I ) by

π1
k

( ∞∑
i=0

ṽiUi

)
=

k∑
i=0

ṽiUi .

LEMMA 15 Let I = (x1, x2). Forv ∈ H1(I ), we have

(π1
k v)(x1) = v(x1), (π1

k v)(x2) = v(x2), k � 1,∫
I

π1
k vq dx =

∫
I

vq dx, q ∈ Qk−2(I ), k � 2.

Proof. The first property follows from the fact thatUi (x1) = Ui (x2) = 0 for i � 2. To
prove the second property, letq ∈ Qk−2(I ) be given byq = L ′

i−1 for 2 � i � k. It is then
easy to see that ∫

I
(π1

k v)′Li−1 dx =
∫

I
v′Li−1 dx .

From the above identity and the first assertion, the second assertion follows by integration
by parts. �

The next lemma provides certain stability estimates.

LEMMA 16 Let I = (x1, x2) andv ∈ H1(I ). There is a constantC > 0 independent ofk
andI such that

‖π0
k v‖0,I � ‖v‖0,I , |π0

k v|1,I � C
√

k |v|1,I , |π1
k v|1,I � |v|1,I .
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If in additionv ∈ H1
0 (I ), then

‖π1
k v‖0,I � C

√
k ‖v‖0,I . (7.2)

Proof. Since for a generic interval the bounds are obtained by a standard scaling argument,
it is enough to considerI = (−1, 1). The bounds forπ0

k can be found in Canuto &
Quarteroni (1982). Moreover, letv = ∑∞

i=0 viUi and χ : [0, ∞) → R be aC1 cut-
off function that is equal to one in[0, 1], decreases to zero in[1, 1 + µ], and is equal to
zero in [1 + µ, ∞). If µ = 1/k, it is easy to prove thatπ1

k v = ∑∞
i=0 χ

( i
k

)
viUi . The

bounds forπ1
k can then be found in Bernardi & Maday (1999, Lemmas 3.2 and 3.3, and

Remark 3.4). �

Further, we will make use of the following approximation property. It is proved in
Houstonet al. (2002) for the reference interval and can be proved for a generic interval by
ascaling argument.

LEMMA 17 Let I = (x1, x2) andh = x2−x1. Then there is a constantC > 0 independent
of k andI such that forv ∈ H1(I )

|(π0
k v − v)(xi )|2 � C

h

k
|v|21,I , i = 1, 2.

7.2 Two-dimensional interpolants

Werecall some two-dimensional results that were proven in Ainsworth & Pinchedez (2002)
and Scḧotzauet al. (2003). Given the reference squareŜ and an integerk � 0, we consider
the Raviart–Thomas space

RTk(Ŝ) = Qk+1,k(Ŝ) × Qk,k+1(Ŝ),

whereQk1,k2(Ŝ) is the space of polynomials of degreeki in the i th variable on̂S. For an
affinely mapped elementK = FK (Ŝ), the Raviart–Thomas spaceRTk(K ) is defined by
suitably mapping functions inRTk(Ŝ) using a Piola transformation; see Brezzi & Fortin
(1991, Section 3.3) or Ainsworth & Pinchedez (2002, Section 3.3) for further details.

On Ŝ, there is a unique interpolation operatorΠŜ = Π k
Ŝ

: H1(Ŝ)2 → RTk(Ŝ), such
that ∫

Ŝ

(
ΠŜv − v

) · w dx = 0 ∀w ∈ Qk−1,k(Ŝ) × Qk,k−1(Ŝ),

∫
f̂m

(
ΠŜv − v

) · n ϕ ds = 0 ∀ϕ ∈ Qk( f̂m), m = 1, . . . , 4;
(7.3)

see Brezzi & Fortin (1991) or Ainsworth & Pinchedez (2002). Fork = 0, the first condition
in (7.3) is void. For an affinely mapped elementK , the interpolantΠK = Π k

K : H1(K )2 →
RTk(K ) can be defined by using a Piola transform in such a way that the orthogonality
conditions in (7.3) also hold forΠK .

For shape-regular elements, we recall the following result from Schötzauet al. (2003,
Lemma 6.9 and 6.10).
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LEMMA 18 Let K be a shape-regular element of diameterhK andv ∈ H1(K )2. Then

|ΠK v|1,K � C k |v|1,K , ‖v − ΠK v‖2
0,∂K � ChK |v|21,K ,

with a constantC > 0 that is independent ofk andhK .

In addition to the bounds in Lemma 18, we need slightly refined estimates to treat
axiparallel elements of the formS = Sxy = (x1, x2) × (y1, y2). Such bounds can
be obtained by using tensor product arguments. For this purpose, we define the two-
dimensional operators

Π x
k := π

0,y
k ◦ π

1,x
k+1, Π y

k := π
1,y
k+1 ◦ π

0,x
k ,

with the one-dimensional projectorsπ0
k andπ1

k from Section 7.1. We have specified the
variable on which these projections act.

We have the following representation result; see also Section 7.6.1 and formula (7.17)
in Hientzsch (2001).

LEMMA 19 The Raviart–Thomas projector onS = Sxy = (x1, x2) × (y1, y2) satisfies

Π k
S v = Π k

S (vx , vy) = (Π x
k vx ,Π

y
k vy), v ∈ C∞(S)2.

Proof. Using Lemma 15 and properties of theL2-projection, it is immediate to see that
(Π x

k vx ,Π
y

k vy) satisfies the conditions in (7.3) onS. �

The operatorsΠ x
k andΠ y

k can be uniquely extended by density to functions inH1(S)

(these extensions being still denoted byΠ x
k and Π y

k ). This is a consequence of the
following result.

LEMMA 20 Let v ∈ C∞(Ŝ). Then there exists a constantC independent ofk, such that

‖∂x (Π x
k v)‖0,Ŝ � ‖∂xv‖0,Ŝ, ‖∂y(Π x

k v)‖0,Ŝ � Ck |v|1,Ŝ .

Similar estimates hold forΠ y
k .

Proof. The first bound can be proven using the definition ofΠ x
k andΠ y

k and the one-
dimensional bounds in Lemma 16. The second bound can be found in Schötzauet al.
(2003, Lemma 6.9). �

We end this section with an error estimate for the two-dimensionalL2-projection. It
can be proven by using Lemma 17; cf. Lemma 3.9 of Houstonet al. (2002).

LEMMA 21 Let S = Sxy = (x1, x2) × (y1, y2) be a shape-regular element of diameterh.
Then there exists a constantC > 0 independent ofk andh such that

‖v − π
0,y
k π

0,x
k v‖2

0,∂S � C
h

k
|v|21,S, v ∈ H1(S).



MIXED hp-DGFEM ON GEOMETRIC EDGE MESHES 293

7.3 Three-dimensional interpolants

In this section, we introduce the Raviart–Thomas interpolant in three dimensions. We use
the same notation as for the two-dimensional case. Given an axiparallel element of the
form

Kxyz = (x1, x2) × (y1, y2) × (z1, z2),

and an integerk � 0, we consider the Raviart–Thomas space

RTk(Kxyz) = Qk+1,k,k(Kxyz) × Qk,k+1,k(Kxyz) × Qk,k,k+1(Kxyz),

whereQk1,k2,k3(Kxyz) is the space of polynomials of degreeki in thei th variable onKxyz .
For general affinely mapped elementsK ∈ T of a geometric edge meshT = T n,σ (see
Property 2), the Raviart–Thomas spaceRTk(K ) is defined by suitably mapping functions
in RTk(Kxyz) using a Piola transformation; see Brezzi & Fortin (1991) or Ainsworth &
Pinchedez (2002) for further details.

On Kxyz , there is a unique interpolation operatorΠKxyz = Π k
Kxyz

: H1(Kxyz)
3 →

RTk(Kxyz), such that∫
Kxyz

(
ΠKxyz v − v

) · w dx = 0

∀w ∈ Qk−1,k,k(Kxyz) × Qk,k−1,k(Kxyz) × Qk,k,k−1(Kxyz),∫
fm

(
ΠKxyz v − v

) · n ϕ ds = 0 ∀ϕ ∈ Qk,k( fm), m = 1, . . . , 6;

(7.4)

with { fm} denoting the six faces ofKxyz , see Brezzi & Fortin (1991) or Ainsworth &
Pinchedez (2002). Fork = 0, the first condition in (7.4) is void. For an elementK ∈ T ,
the interpolantΠK = Π k

K : H1(K )3 → RTk(K ) can be defined by using a Piola transform
in such a way that the orthogonality conditions in (7.4) also hold forΠK .

Wenow define the three-dimensional operators onK = Kxyz

Π x
k := π

0,z
k ◦ π

0,y
k ◦ π

1,x
k+1, Π y

k := π
0,z
k ◦ π

1,y
k+1 ◦ π

0,x
k , Π z

k := π
1,z
k+1 ◦ π

0,y
k ◦ π

0,x
k ,

where we have specified the variable on which the one-dimensional projections act. The
following representation result can be proven in the same way as in two dimensions; see
also Section 7.6.2 and formula (7.19) in Hientzsch (2001).

LEMMA 22 OnK = Kxyz , the Raviart–Thomas interpolant satisfies

Π k
K v = Π k

K (vx , vy, vz) = (Π x
k vx ,Π

y
k vy,Π z

k vz), v ∈ C∞(K ).

The operatorsΠ x
k , Π y

k , andΠ z
k are well-defined for functions inC∞(K ) and can be

uniquely extended by density toH1(K ) (these extensions being still denoted byΠ x
k , Π y

k
andΠ z

k ). This is a consequence of the following result.
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LEMMA 23 Let v ∈ C∞(Q̂). Then there exists a constantC independent ofk such that

‖∂x (Π x
k v)‖2

0,Q̂
� C‖∂xv‖2

0,Q̂
,

‖∂y(Π x
k v)‖2

0,Q̂
� Ck2 (‖∂yv‖2

0,Q̂
+ ‖∂xv‖2

0,Q̂
),

‖∂z(Π x
k v)‖2

0,Q̂
� Ck2 (‖∂zv‖2

0,Q̂
+ ‖∂xv‖2

0,Q̂
).

Similar estimates hold forΠ y
k andΠ z

k .

Proof. The first two estimates can be obtained using Lemmas 16 and 20, and the fact that
Π x

k can be written as the tensor product of the two-dimensional Raviart–Thomas projection

and a one-dimensionalL2-projection:Π x
k = π

0,z
k ◦ (π

0,y
k ◦ π

1,x
k ); see Lemma 22. The last

bound can be obtained by exchanging the roles of they andz variables. �

7.4 Stretched elements

For a general anisotropic element, Lemma 23 and a scaling argument provide estimates
that are not independent of the aspect ratio. For an edge patch onQ̂, however, we only
need to consider stretched elements of the form

Kxyz = (x1, x2) × (y1, y2) × Î , (7.5)

with hx = x2 − x1 < 2, hy = y2 − y1 < 2, andhx comparable tohy . Even for this simpler
case, good bounds cannot be found for all the components. However, if we only consider
vectors with a vanishing normal component along the facesz = ±1, we have the following
result.

LEMMA 24 Let K be given by (7.5) andv = (vx , vy, vz) ∈ H1(K )3, such thatv · n± = 0
alongz = ±1, with n± = (0, 0, ±1). If chx � hy � Chx , then there exists a constant
independent ofk and the aspect ratio ofK , such that

‖∂x (Π x
k vx )‖2

0,K � C‖∂xvx‖2
0,K ,

‖∂y(Π x
k vx )‖2

0,K � Ck2 (‖∂yvx‖2
0,K + ‖∂xvx‖2

0,K ),

‖∂z(Π x
k vx )‖2

0,K � Ck2 (‖∂zvx‖2
0,K + ‖∂xvx‖2

0,K ),

and similarly forΠ y
k vy . In addition,

‖∂x (Π z
k vz)‖2

0,K � Ck2‖∂xvz‖2
0,K ,

‖∂y(Π z
k vz)‖2

0,K � Ck2‖∂yvz‖2
0,K ,

‖∂z(Π z
k vz)‖2

0,K � C‖∂zvz‖2
0,K .

Consequently,|ΠK v|1,K � C k |v|1,K , with a constant independent ofk and the aspect
ratio of K .

Proof. Assume first thatv ∈ C∞(K )3. The bounds forΠ x
k vx and Π y

k vy follow from
Lemma 23 and a scaling argument. To obtain the estimates ofΠ z

k vz , we use the
representation in Lemma 22 and the results in Lemma 16. In particular, we use (7.2) to
boundπ

1,z
k+1. The proof is then completed by a density argument. �
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FIG. 2. Two stretched elementsK1 andK2 that share the facef = {x2} × (y1, y2) × Î .

Similarly, it is possible to bound the jumps across faces of stretched elements.
Let K1 andK2 be two stretched elements given by

K1 = (x1, x2) × (y1, y2) × Î , K2 = (x2, x3) × (y1, y3) × Î , (7.6)

with y2 � y3. Further, we introduce the facesf1 = {x2} × (y1, y2) × Î and f2 = {x2} ×
(y1, y3) × Î . Let f = f1 ⊆ f2, as illustrated in Fig. 2. We then seth1,x = x2 − x1,
h2,x = x3 − x2, h1,y = y2 − y1, andh2,y = y3 − y1.

LEMMA 25 Let K1 andK2 be the two stretched elements in (7.6). Letu ∈ H1(K1 ∪ K2)
3

such thatu · n± = 0 alongz = ±1, with n± = (0, 0, ±1). Assume that

ch1,x � h2,x � Ch1,x , h1,y � h2,y � Ch2,x .

Let v be the piecewise polynomial given byv|Ki = ΠKi (u|Ki ) whereΠKi is the Raviart–
Thomas projector of degreek on Ki , i = 1, 2. Then,∫

f
|[[v]]|2 ds � Ch1,x

[‖∂x u‖2
0,K1

+ ‖∂yu‖2
0,K1

] + Ch2,x
[‖∂x u‖2

0,K2
+ ‖∂yu‖2

0,K2

]
,

with a constantC > 0 that is independent ofk and the mesh sizesh1,x , h2,x , h1,y , and
h2,y .

Proof. First, we assume thatu ∈ C∞(K 1 ∪ K 2)
3.

For i = 1, 2, we denoteu|Ki by ui = (ui
x , ui

y, ui
z) andv|Ki by vi = (vi

x , v
i
y, v

i
z). Since∫

f
|[[v]]|2 ds =

∫
f
(v1

x − v2
x )

2 ds +
∫

f
(v1

y − v2
y)

2 ds +
∫

f
(v1

z − v2
z )

2 ds =: T1 + T2 + T3,

it is enough to estimate the termsT1, T2 and T3 separately. We observe thatv1
x = v2

x
(and thusT1 = 0) only if f = f1 = f2, since the normal component ofv is continuous
acrossf in this case. In the general case, sinceu1

x = u2
x is continuous acrossf , we have
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π
0,z
k u1

x = π
0,z
k u2

x and can write

T1 =
∫

f
(v1

x − v2
x )

2 ds � 2
∫

f1
(π

0,z
k u1

x − v1
x )

2 ds + 2
∫

f1
(π

0,z
k u2

x − v2
x )

2 ds

� 2
∫

f1
(π

0,z
k u1

x − v1
x )

2 ds + 2
∫

f2
(π

0,z
k u2

x − v2
x )

2 ds := 2T1,A + 2T1,B .

For T1,A we use the representation in Lemma 22 ofv1
x = Π x

k u1
x on K1. Lemma 15 ensures

v1
x = (π

0,z
k π

0,y
k π

1,x
k+1)u

1
x = (π

0,z
k π

0,y
k )u1

x , on f1.

This gives

T1,A =
∫

f1
(π

0,z
k u1

x − π
0,z
k π

0,y
k u1

x )
2 ds

� 2
∫

f1
(π

0,z
k u1

x − π
0,z
k π

0,y
k π

0,x
k u1

x )
2 ds + 2

∫
f1

(π
0,z
k π

0,y
k (π

0,x
k u1

x − u1
x ))

2 ds.

Using the stability of theL2-projectionπ
0,z
k in thez-direction and the bound in Lemma 21

for π
0,y
k π

0,x
k on the shape-regular rectangle(x1, x2) × (y1, y2) gives∫

f1
(π

0,z
k u1

x − π
0,z
k π

0,y
k π

0,x
k u1

x )
2 ds �

∫
f1

(u1
x − π

0,y
k π

0,x
k u1

x )
2 ds

� Ch1,x k−1
[‖∂x u1

x‖2
0,K1

+ ‖∂yu1
x‖2

0,K1

]
.

Similarly, using the stability ofπ0,z
k π

0,y
k and the approximation result in Lemma 17 yields∫

f1
(π

0,z
k π

0,y
k (π

0,x
k u1

x − u1
x ))

2 ds �
∫

f1
(π

0,x
k u1

x − u1
x )

2 ds

� Ch1,x k−1‖∂x u1
x‖2

0,K1
.

Thus, we obtain

T1,A � Ch1,x k−1[‖∂x u1
x‖2

0,K1
+ ‖∂yu1

x‖2
0,K1

]
.

A bound forT1,B can be found in the same way. Therefore,

T1 � C
h1,x

k

[‖∂x u1
x‖2

0,K1
+ ‖∂yu1

x‖2
0,K1

] + C
h2,x

k

[‖∂x u2
x‖2

0,K2
+ ‖∂yu2

x‖2
0,K2

]
. (7.7)

Let us now consider the termT2. Sinceu1
y = u2

y on f1, we haveπ0,z
k u1

y = π
0,z
k u2

y and
can then boundT2 by

T2 =
∫

f
(v1

y − v2
y)

2 ds � 2
∫

f1

(
v1

y − π
0,z
k u1

y

)2 ds + 2
∫

f1

(
v2

y − π
0,z
k u2

y

)2 ds

� 2
∫

f1

(
v1

y − π
0,z
k u1

y

)2 ds + 2
∫

f2

(
v2

y − π
0,z
k u2

y

)2 ds =: 2T2,A + 2T2,B .
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Let us further estimate the termT2,A. From the representation in Lemma 22 and the stability
of π

0,z
k in Lemma 16, we find

T2,A =
∫

f1

(
π

0,z
k u1

y − π
0,z
k π

1,y
k+1π

0,x
k u1

y

)2 ds �
∫

f1

(
u1

y − π
1,y
k+1π

0,x
k u1

y

)2 ds.

We now note that(π1,y
k+1π

0,x
k ) is the second component of the two-dimensional Raviart–

Thomas projector on the shape-regular rectangle(x1, x2) × (y1, y2). We can then use the
two-dimensional result in Lemma 18 and obtain

T2,A � Ch1,x
[‖∂x u1‖2

0,K1
+ ‖∂yu1‖2

0,K1

]
.

A bound forT2,B can be found in the same way. This yields

T2 � Ch1,x

(
‖∂x u1‖2

0,K1
+ ‖∂yu1‖2

0,K1

)
+ Ch2,x

(
‖∂x u2‖2

0,K2
+ ‖∂yu2‖2

0,K2

)
. (7.8)

For the termT3, wenote thatu1
z = u2

z on f1. Thus,π1,z
k+1u1

z = π
1,z
k+1u2

z on f1 and

T3 =
∫

f
(v1

z − v2
z )

2 ds � 2
∫

f1
(π

1,z
k+1u1

z − v1
z )

2 ds + 2
∫

f1
(π

1,z
k+1u2

z − v2
z )

2 ds

� 2
∫

f1
(π

1,z
k+1u1

z − v1
z )

2 ds + 2
∫

f2
(π

1,z
k+1u2

z − v2
z )

2 ds := 2T3,A + 2T3,B .

Again, we bound the two last terms separately using the representation result of Lemma 22.
Sinceu1

z at z = ±1, we also haveπ0,y
k π

0,x
k u1

z = 0 at z = ±1. Thus, we can use (7.2) in
Lemma 16:

T3,A =
∫

f1

(
π

1,z
k+1(u

1
z − π

0,y
k π

0,x
k u1

z )
)2

ds � Ck
∫

f1

(
u1

z − π
0,y
k π

0,x
k u1

z

)2
ds.

Using once more the error estimate for theL2-projectionπ
0,y
k π

0,x
k on the shape-regular

element(x1, x2) × (y1, y2) in Lemma 21, we find

T3,A � Ch1,x
[‖∂x u1

z‖2
0,K1

+ ‖∂yu1
z‖2

0,K1

]
.

Since a bound forT3,B can be found in the same way, we find

T3 � Ch1,x

(
‖∂x u1

z‖2
0,K1

+ ‖∂yu1
z‖2

0,K1

)
+ Ch2,x

(
‖∂x u2

z‖2
0,K2

+ ‖∂yu2
z‖2

0,K2

)
. (7.9)

For u ∈ C∞(K 1 ∪ K 2)
3 the assertion follows by combining (7.7), (7.8) and (7.9).

The proof is extended to functionsu ∈ H1(K 1 ∪ K 2)
3 by a density argument. �

In exactly the same manner, using the representation result of Lemma 22, we obtain
the following bound for the other faces.

LEMMA 26 Let K be an element of the form (7.5) andf an entire face ofK . Assume
thatchx � hy � Chx . Let u ∈ H1(K )3 with u| f = 0, and letv be the Raviart–Thomas
projection ofu of degreek on K . Then we have that∫

f
|v ⊗ nK |2 ds � Ch|u|21,K ,

with h = hx ∼ hy . The constantC is independent ofk, and the mesh sizeshx andhy .



298 D. SCHÖTZAU ET AL.

Proof. The proof for the lateral faces parallel to thez-axis can be carried out as the proof
of Lemma 25. Whenf is given byz = ±1, we can use the results in Schötzauet al. (2003,
Lemma 6.10) for three-dimensional shape-regular elements and a scaling argument.�

8. Divergence stability on edge patches

Let T n,σ
e be an edge patch on̂Q. We show thatQk − Qk−1 elements are stable on

such patches with an inf-sup constant ofO(k−3/2). The main result of this section is the
following theorem.

THEOREM 27 Let T n,σ
e be an edge patch on̂Q with a grading factorσ ∈ (0, 1) andn

layers of refinement. Letk � 1. Then

sup
0�=v∈Ṽk

h(T n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� Ck−3/2‖q‖0,Q̂, q ∈ Qk−1

h (T n,σ
e ; Q̂),

with a constantC > 0 that solely depends onσ andδ0, but is independent ofk, n, and the
aspect ratio of the elements inT n,σ

e .

REMARK 28 Weemphasize that the result in Theorem 27 holds fork = 1, thus including
Q1 − Q0 elements. In particular, the same techniques as the ones presented here lead to a
stability result ofQ1−Q0 elements on irregular geometric meshes in two space dimensions.
This case was not covered in Schötzauet al. (2003).

The proof of Theorem 27 is carried out in the next sections. We first use the results of
Section 7.4, in order to prove a stability property for the Raviart–Thomas interpolant on
edge patches in Corollary 29. The proof then relies on the combination of the two weaker
stability results in Lemmas 31 and 32, respectively.

8.1 Stability of Raviart–Thomas interpolants on edge patches

Wedefine the Raviart–Thomas interpolantΠ = Π k : H1(Q̂)3 → Vk+1
h (T n,σ

e ; Q̂) by

Π u|K = Π k
K (u|K ), K ∈ T n,σ

e . (8.1)

Wenote thatΠ u has a continuous normal component across elements that match regularly.
If the elements match irregularly, the normal component has jumps; see, e.g. Ainsworth
& Pinchedez (2002, Section 3.5). However, ifu ∈ H1

0 (Q̂)3 then Π u belongs to
Ṽk+1

h (T n,σ
e ; Q̂).

Wefirst note the following stability result.

COROLLARY 29 Let T n,σ
e be an edge patch on̂Q with a grading factorσ ∈ (0, 1) andn

layers of refinement. Ifu ∈ H1
0 (Q̂)3 andΠ ku is the Raviart–Thomas interpolant in (8.1),

then there exists a constant that solely depends onσ andδ0, but is independent ofk, n, and
the aspect ratio of the elements inT n,σ

e , such that‖v‖2
h,Q̂

� Ck2|u|2
1,Q̂

.

Proof. This follows by combinings Lemma 24–26 and the definition of the penalization
functionδQ̂ . �
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FIG. 3. Edge mesh forσ = 0·5 andn = 4. The patchM j , j = 3, is the union of the shaded elements. The four

interior facesf j
11, f j

21, f j
23 and f j

33 in M j are shown in bold lines.

8.2 Auxiliary stability results

We establish two auxiliary stability results that we need for the proof of our main result in
Theorem 27.

First we define a seminorm for the space of pressures on edge patches. We consider
the interior faces of an edge patchT n,σ

e on Q̂. For 2 � j � n, the patchM j consists of
six elements, the cross sections of which are shown in Fig. 3. The patchM1 consists of the
four smallest elements of sizeσ n . On apatchM j , j � 2, the four inner faces will have to

be treated separately. We denote them byf j
11, f j

21, f j
23 and f j

33, as illustrated in Fig. 3.
For 2� j � n, we introduce the seminorm

|q|2h, j =
∑

i=1,2

h
f j
i1

∫
f j
i1

|[[[[[[q]]]]]]|2 ds +
∑

i=2,3

h
f j
i3

∫
f j
i3

|[[[[[[q]]]]]]|2 ds.

We then set

|q|2h =
n∑

j=2

|q|2h, j . (8.2)

First, we prove the following technical result.

LEMMA 30 Let T n,σ
e be an edge patch on̂Q with a grading factorσ ∈ (0, 1) andn layers

of refinement. Then there exists a constant that solely depends onσ , but is independent of
k, n, and the aspect ratio of the elements inT n,σ

e , such that∣∣∣∣ ∫EI∩Q̂
[[[[[[q]]]]]] · {{u − Π ku}} ds

∣∣∣∣ � C |u|1,Q̂ |q|h,

for u ∈ H1(Q̂)3, q ∈ Qk
h(T n,σ

e ; Q̂), andΠ ku the interpolant in (8.1).
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Proof. By density, we may assume thatu ∈ C∞(Q̂)3. We note that the integral over
EI ∩ Q̂ can be written as a sum of contributions over facesf ⊂ EI . In addition, if f is
a regular face, i.e. it is an entire face of two neighbouring elementsK and K ′, then the
second orthogonality condition (7.4) ensures that its contribution vanishes. Indeed, in this
caseu andΠ ku have a continuous normal component acrossf and the normal vector[[[[[[q]]]]]]
belongs toQk,k( f ). Therefore, we obtain∫

EI∩Q̂
[[[[[[q]]]]]] · {{u − Π ku}} ds =

n∑
j=2

∑
i=1,2

∫
f j
i1

[[[[[[q]]]]]] · {{u − Π ku}} ds

+
n∑

j=2

∑
i=2,3

∫
f j
i3

[[[[[[q]]]]]] · {{u − Π ku}} ds.

We first bound the contribution overf = f j
11. Denote byK1 and K2 the elements that

share f , assuming thatf is an entire face ofK1. Let q1 andq2 be the restrictions ofq to
K1 and K2, respectively. Further, we setv = Π ku, as well asu|Ki = ui = (ui

x , ui
y, ui

z)

andvi = (vi
x , v

i
y, v

i
z) for i = 1, 2. Therefore,∫

f
[[[[[[q]]]]]] · {{u − Π ku}} ds = 1

2

∫
f
(q1 − q2)(u

1
x − v1

x ) ds

+1

2

∫
f
(q1 − q2)(u

2
x − v2

x ) ds

= 1

2
T1 + 1

2
T2.

We start with a bound forT1 and proceed as in the proof of Lemma 25. We use the
representation result of Lemma 22, the fact that(q1 − q2) is a polynomial of degreek
in thez-direction, the properties ofπ0,z

k and the Cauchy–Schwarz inequality to obtain

|T1| = |
∫

f
(q1 − q2)(u

1
x − π

0,z
k π

1,x
k+1π

0,y
k u1

x ) ds|

= |
∫

f
(q1 − q2)(u

1
x − π

1,x
k+1π

0,y
k u1

x ) ds|

�
(
h f

∫
f

|[[[[[[q]]]]]]|2 ds
) 1

2
(
h−1

f

∫
f
(u1

x − π
1,x
k+1π

0,y
k u1

x )
2 ds

) 1
2 .

Sinceπ
1,x
k+1π

0,y
k is the first component of the two-dimensional Raviart–Thomas projector

and since the underlying two-dimensional geometric meshT n,σ
xy is shape-regular, we can

apply Lemma 18 and obtain

h−1
f

∫
f
(u1

x − π
1,x
k+1π

0,y
k u1

x )
2 ds � C‖∂x u1‖2

0,K1
+ C‖∂yu1‖2

0,K1
.

Combining with the analogous argument forT2 gives

|
∫

f
[[[[[[q]]]]]] · {{u − Π ku}} ds| � C

(
h f

∫
f

|[[[[[[q]]]]]]|2 ds
) 1

2

·(‖∂x u1‖2
0,K1

+ ‖∂x u1‖2
0,K1

+ ‖∂x u2‖2
0,K2

+ ‖∂x u2‖2
0,K2

) 1
2 .
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The contributions of the other facesf j
ik can be bounded analogously. Summing over all

faces and using the Cauchy–Schwarz inequality completes the proof. �
The previous lemma allows us to prove a stability result that is weaker than the inf-sup

condition in Theorem 27.

LEMMA 31 Let T n,σ
e be an edge patch on̂Q with grading factorσ ∈ (0, 1) andn layers

of refinement. Then, fork � 1,

sup
0�=v∈Ṽk

h(T n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� Ck−1‖q‖0,Q̂

(
1 − |q|h

‖q‖0,Q̂

)
, q ∈ Qk−1

h (T n,σ
e ; Q̂),

with a constantC > 0 that solely depends onσ andδ0, but is independent ofk, n, and the
aspect ratio of the elements inT n,σ

e .

Proof. Let q ∈ Qk−1
h (T n,σ

e ; Q̂). Thanks to the continuous inf-sup condition (2.3) forΩ =
Q̂, there existsu ∈ H1

0 (Q̂)3 such that

B(u, q) = ‖q‖2
0,Q̂

, |u|1,Q̂ � (1/γQ̂) ‖q‖0,Q̂ . (8.3)

Wechoosev = Π k−1u, with Π k−1 the interpolant in (8.1). We then have

Bh,Q̂(v, q) = B(u, q) − Bh,Q̂(u − Π k−1u, q) � ‖q‖2
0,Q̂

− |Bh,Q̂(u − Π k−1u, q)|.
Using (6.4) and the first orthogonality property in (7.4), we can write

Bh,Q̂(u − Π k−1u, q) =
∫

Q̂
(v − Π k−1u) · ∇hq dx

−
∫
EI∩Q̂

[[[[[[q]]]]]] · {{u − Π k−1u}} ds

= −
∫
EI∩Q̂

[[[[[[q]]]]]] · {{u − Π k−1u}} ds.

Using Lemma 30 and the second bound of (8.3) thus yields

Bh(v, q) = Bh(u, q) + Bh(v − u, q) � ‖q‖2
0,Q̂

− C‖q‖0,Q̂ |q|h . (8.4)

Using Corollary 29 and (8.3) gives

‖v‖h,Q̂ � Ck|u|1,Q̂ � Ck‖q‖0,Q̂,

which concludes the proof. �
We end this section by providing a second inf-sup condition in terms of the pressure

seminorm| · |h in (8.2). Its proof is given in Appendix A.

LEMMA 32 Let T n,σ
e be an edge patch on̂Q with a grading factorσ ∈ (0, 1) andn layers

of refinement. Fork � 1,

sup
0�=v∈Ṽk

h(T n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� C k−3/2|q|h, q ∈ Qk−1

h (T n,σ
e ; Q̂),

with a constantC > 0 that solely depends onσ andδ0, but is independent ofk, n, and the
aspect ratio of the elements inT n,σ

e .
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8.3 Proof of Theorem 27

Wenow combine Lemmas 31 and 32. Ift denotes the ratio|q|h/‖q‖0,Q̂ , we find

sup
0�=v∈Ṽk

h(T n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� Ck−3/2‖q‖0,Q̂ min

t�0
f (t), q ∈ Qk−1

h (T n,σ
e ; Q̂),

where f (t) = max{1− t, t}. The proof is concluded by noting that mint�0 f (t) is equal to
1/2.

9. Divergence stability on geometric edge meshes

In this section, we consider geometric edge meshes onΩ and prove Theorem 9.

9.1 Trivial patch

Wehave the following result.

THEOREM 33 Let T̂ be the trivial patch given by the mesĥT = {Q̂}. Fork � 1,

sup
0�=v∈Ṽk

h(T̂ ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� C k−1 ‖q‖0,Q̂, q ∈ Qk−1

h (T̂ ; Q̂),

with a constantC > 0 independent ofk.

Proof. SinceT̂ only consists of one element, givenu ∈ H1
0 (Q̂)3, we have

Bh,Q̂(Π k−1
Q̂

u, q) = B(u, q), ‖Π k−1
Q̂

u‖h,Q̂ � Ck|u|1,Q̂,

for all q ∈ Qk−1
h (T̂ ; Q̂), whereΠ k−1

Q̂
is the Raviart–Thomas interpolant from Section 7.3

on Q̂ and we have used the orthogonality properties in (7.4) and the results in Schötzau
et al. (2003, Lemmas 6.9 and 6.10). We note thatΠ k−1

Q̂
u ∈ Ṽk

h(T̂ ; Q̂). The divergence

stability property is then a consequence of the continuous inf-sup condition (2.3) forΩ =
Q̂. �

9.2 Corner patches

The stability of corner patches is proven by using the macro-element technique.

THEOREM 34 Let T n,σ
c be a corner patch on̂Q with a grading factorσ ∈ (0, 1) andn

layers of refinement. Fork � 2,

sup
0�=v∈Ṽk

h(T n,σ
c ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
� Ck−3/2‖q‖0,Q̂, q ∈ Qk−1

h (T n,σ
c ; Q̂),

with a constantC > 0 that solely depends onσ andδ0, but is independent ofk, n, and the
aspect ratio of the elements inT n,σ

c .
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Proof. We use the macro-element technique in Theorem 12 and Proposition 13 with
Ω = Q̂, the corner meshT = T n,σ

c and the macro-element meshTm = T n,σ
c,m .

The stability result (6.7) for piecewise constant pressures onTm then trivially holds by
choosingXh as the space of continuous, piecewise quadratic velocities; see Stenberg
& Suri (1996) for regular meshes and Toselli & Schwab (2003) for irregular meshes.
Condition (6.15) in Proposition 13 is satisfied due to Theorem 33 (trivial patch) and by
noting that the anisotropically refined elements inT n,σ

c,m are particular edge patches that are
stable according to Theorem 27. �

9.3 Proof of Theorem 9

The proof of Theorem 9 now follows similarly from the macro-element technique in
Theorem 12 and Proposition 13. Indeed, the low-order stability result (6.7) onTm holds by
choosingXh again as the space of continuous, piecewise quadratic velocities; see Stenberg
& Suri (1996). Condition (6.15) in Proposition 13 is satisfied due to Theorem 33 (trivial
patch), Theorem 27 (edge patch) and Theorem 34 (corner patch).

REMARK 35 Since we choose the low-order spaceXh in (6.7) as the space of continuous,
piecewise quadratic velocities, Theorems 9 and 34 only hold fork � 2.
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GEORGOULIS, E. & SÜLI , E. (2001) hp-DGFEM on shape-irregular meshes: reaction–
diffusion. Technical Report NA 01–09. Oxford University Computing Laboratory.
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Appendix. Proof of Lemma 32

Weproceed in several steps.
Step 1: A lifting operator. Let K = Kxyz = Ix × Iy × Iz with Ix = (x1, x2) andhx =

x2 − x1. Consider the facefx1 = {x = x1}. We define the operatorE fx1
k,K : Qk,k( fx1) →

Qk+1,k,k(K ) by

(E fx1
k,K ϕ)(x, y, z) = M

fx1
k (x)ϕ(y, z), M

fx1
k (x) = (−1)k+1

2
(Lk+1(x) − Lk(x)),

where{Li } denote the Legendre polynomials onIx . This lifting operator was originally
proposed in Ainsworth & Pinchedez (2002) and then employed in Schötzauet al. (2003).

Note that(E fx1
k,K ϕ)(x1, y, z) = ϕ(y, z) and(E fx1

k,K ϕ)(x2, y, z) = 0, thanks to the properties
of {Li }, cf. Bernardi & Maday (1997, Section 3). From the results in Schötzauet al. (2003,
Lemma 6.8) and a scaling argument we have

‖M
fx1

k,K ‖2
0,Ix

� Chx k−1, |M fx1
k,K |21,Ix

� Ch−1
x k3. (A.1)

Analogous definitions and bounds hold for the other faces ofK . Furthermore, forϕ ∈
Qk,k( fx1), we have ∫

K
(E fx1

k,K ϕ) w dx = 0 ∀w ∈ Qk−1,k,k(K ). (A.2)

This follows from the definition of the lifting operators and orthogonality properties of the
Legendre polynomials. Analogous results are valid for the other faces.

Step 2: Stability on the layer j . Let M j , 2 � j � n, denote the patch of elements
illustrated in Fig. 3. It consists of six elements: we denote the inner elements byKi , i =
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FIG. A.1. Two-dimensional illustration of the elements and faces in a patchM j , for σ = 0·5.

1, 2, 3, and the outer ones byK ′
i , i = 1, 2, 3. The four interior faces connecting elements

{Ki } and{K ′
i } are denoted byf11, f21, f23, and f33. These faces are entire faces of the

inner elements only. The faces connecting the inner elements areg12 andg23· The exterior
faces are denoted byf1, f ′

1 and f3, f ′
3, respectively. In Fig. A.1, we show the configuration

of the elements and faces inM j .
Let q ∈ Qk−1

h (T n,σ
e ; Q̂) for k � 1. We denoteq|Ki by qi andq|K ′

i
by q ′

i , i = 1, 2, 3.

Using the lifting operators from Step 1, we define the functionv ∈ Vk
h(T n,σ

e ; Q̂) by

v|K1 = v1 = ( − h f11E
f11

k−1,K1
(q1 − q ′

1), 0, 0
)
,

v|K2 = v2 = ( − h f21E
f21

k−1,K2
(q2 − q ′

1), −h f23E
f23

k−1,K2
(q2 − q ′

3), 0
)
,

v|K3 = v3 = (
0, −h f33E

f33
k−1,K3

(q3 − q ′
3), 0

)
,

and byv|K = 0 on the remaining elements ofTe. In particular, note that the functionv
is equal to zero on the faces adjacent to layerj + 1 and layer j − 1 and satisfiesv ∈
Ṽk

h(T n,σ
e ; Q̂).

We further note that
∫

Ki
∇q · v dx = 0, i = 1, 2, 3. This follows from the definition of

v and property (A.2). We defineBh,M j (·, ·) and‖ · ‖0,M j as in (6.1) and (6.2), respectively.
Thus,

Bh,Q̂(v, q) = Bh,M j (v, q) = −
∫
EI∩M j

[[[[[[q]]]]]] · {{v}} ds

= 1

2

∑
i=1,2

∫
fi1

h fi1|[[[[[[q]]]]]]|2 ds + 1

2

∑
i=2,3

∫
fi3

h fi3|[[[[[[q]]]]]]|2 ds = 1

2
|q|2h, j . (A.3)

Next, we bound the norm‖v‖h,M j in terms of|q|h, j .
Westart by considering the elementK1. Writing K1 = Ix × Iy × (−1, 1), we have

‖∂x v1‖2
0,K1

= h2
f11

|M f11
k−1|21,Ix

∫
f11

|[[[[[[q]]]]]]|2 ds � Ch f11k3
∫

f11

|[[[[[[q]]]]]]|2 ds.



MIXED hp-DGFEM ON GEOMETRIC EDGE MESHES 307

Here, we used the second estimate in (A.1) and the fact that all mesh sizes are comparable
in the underlying two-dimensional meshT n,σ

xy . Then, from the inverse estimate for
polynomials in Schwab (1998, Theorem 3.91) and the first estimate in (A.1), we have

‖∂yv1‖2
0,K1

= h2
f11

‖M f11
k−1‖2

0,Ix

∫
f11

|∂y[[[[[[q]]]]]]|2 ds

� Ch3
f11

k−1h−2
f11

k4
∫

f11

|[[[[[[q]]]]]]|2 ds = Ch f11k3
∫

f11

|[[[[[[q]]]]]]|2 ds.

Similarly,

‖∂zv1‖2
0,K1

= h2
f11

‖M f11
k−1‖2

0,Ix

∫
f11

|∂z[[[[[[q]]]]]]|2 ds

� Ch3
f11

k−1k4
∫

f11

|[[[[[[q]]]]]]|2 ds = Ch f11k3
∫

f11

|[[[[[[q]]]]]]|2 ds.

Again, we used (A.1) and the inverse estimate in Schwab (1998, Theorem 3.91) on the
interval(−1, 1) in thez-direction.

The same techniques yield the analogous estimates forv on the elementsK2 andK3.
It remains to bound the jumps ofv over the various faces.

Westart by considering the jump overf11. Thanks to (3.1), we have∫
f11

δ|[[v]]|2 ds � Ck2h−1
f11

∫
f11

h2
f11

|[[[[[[q]]]]]]|2 ds = Ch2
f11

k2
∫

f11

|[[[[[[q]]]]]]|2 ds.

The jump over f33 can be bounded similarly. Let us now consider the faceg12. Writing
g12 = Ix × {y1} × (−1, 1), we have∫

g12

δ|[[v]]|2 ds � k2h−1
g12

C
∫

g12

h2
f11

|E f11
k−1,K1

(q1 − q ′
1)|2 ds

+k2h−1
g12

C
∫

g12

h2
f21

|E f21
k−1,K2

(q2 − q ′
1)|2 ds

� Ck2h f11‖M f11
k−1‖2

0,Ix

∫ 1

−1
|[[[[[[q]]]]]]| f11

(y1, z)|2 dz

+Ck2h f21‖M f21
k−1‖0,Ix

∫ 1

−1
|[[[[[[q]]]]]]| f21

(y1, z)|2 dz

� Ckh2
f11

∫ 1

−1
|[[[[[[q]]]]]]| f11

(y1, z)|2 dz + Ckh2
f21

∫ 1

−1
|[[[[[[q]]]]]]| f21

(y1, z)|2 dz

� Ck3h f11

∫
f11

|[[[[[[q]]]]]]|2 ds + Ck3h f21

∫
f21

|[[[[[[q]]]]]]|2 ds.

Here, we used the definition ofv, the fact that all mesh sizes are comparable in the
underlying two-dimensional meshT n,σ

xy , the L2-bound in (A.1), and the inverse estimate
in Schwab (1998, Theorem 3.91) for polynomials.

Exactly the same techniques allow us to bound the jumps overg23, f23, f21, f1 and f3
in terms of|q|h, j . Finally, the same approach gives bounds for the top and bottom faces
z = ±1.
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Combining the above estimates yields

‖v‖2
h,Q̂

= ‖v‖2
h,M j

� Ck3|q|2h, j . (A.4)

Step 3: The assertion. Let q ∈ Qk−1
h (T n,σ

e ; Q̂). On M j , there is a velocity fieldv j that
satisfies (A.3) and (A.4). We setv = ∑n

j=2 v j . By construction,v ∈ Ṽk
h(T n,σ

e ; Q̂). Using
(A.3), we find

Bh,Q̂(v, q) =
n∑

j=2

Bh,Q̂(v j , q) =
n∑

j=2

Bh,M j (v j , q) � C
m∑

j=2

|q|2h, j = C |q|2h .

Furthermore, from (A.4) and the fact that the support of the fieldsv j is locally in the patch
M j , we have‖v‖2

h,Q̂
� C |q|2h . This concludes the proof. �


