
Geophys. J. Int. (1996) 125,813-829 

Upper-crustal seismic velocity heterogeneity as derived from a 
variety of P-wave sonic logs 

K. Holliger 
Institute of Geophysics, Swiss Federal Institute of Technology, ETH-Honggerberg, CH-8093 Zurich, Switzerland 

Accepted 1996 January 29. Received 1995 November 23; in original form 1995 June 29 

SUMMARY 
Sonic-log measurements provide detailed 1-D information on the distribution of elastic 
properties within the upper crystalline crust at scales from about one metre to several 
kilometres. 10 P-wave sonic logs from six upper-crustal drill sites in Europe and North 
America have been analysed for their second-order statistics. The penetrated lithological 
sequences comprise Archean volcanic sequences, Proterozoic mafic layered intrusions, 
and Precambrian to Phanerozoic gneisses and granites. Despite this variability in 
geological setting, tectonic history, and petrological composition, there are notable 
similarities between the various data sets: after removing a large-scale, deterministic 
component from the observed velocity-depth function, the residual velocity fluctuations 
of all data sets can be described by autocovariance functions corresponding to band- 
limited self-affine stochastic processes with quasi-Gaussian probability density functions. 
Depending on the maximum spatial wavelength present in the stochastic part of the 
data, the deterministic trend can be approximated either by a low-order polynomial 
best fit or by a moving-average of the original sonic-log data. The choice of the trend 
has a significant impact on the correlation length and on the standard deviation of the 
residual stochastic component, but does not affect the Hurst number. For trends 
defined by low-order polynomial best fits, correlation lengths were found to range from 
60 to 160m, whereas for trends defined by a moving average the correlation lengths 
are dominated by the upper cut-off wavenumber of the corresponding filter. Regardless 
of the trend removed, the autocovariance functions of all data sets are characterised 
by low Hurst numbers of around 0.1-0.2, or equivalently by power spectra decaying 
as - l/k. A possible explanation of this statistical uniformity is that sonic-log fluctu- 
ations are more sensitive to the physical state, in particular to the distribution of 
cracks, than to the petrological composition of the probed rocks. 
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INTRODUCTION 

The ever-improving quality of seismic data has drawn attention 
to the importance of small-scale (wavelength to sub-wavelength) 
seismic heterogeneities in the crust, and has raised questions 
as to the validity of layered earth models. A priori constraints 
on the nature of small-scale seismic heterogeneities are useful 
for the planning of seismic experiments as well as for the 
interpretation, processing, and inversion of upper-crustal seis- 
mic data. Information on the statistical distribution of seismic 
velocities within the crust and lithosphere can be obtained 
from the inversion of scattered seismic waves (e.g. Wu & Aki 
1985), or from a stochastic analysis of pertinent geological 
cross-sections and corresponding petrophysical data (e.g. 
Hurich & Smithson 1987; Holliger & Levander 1994a,b; 
Levander et al. 1994). 

Borehole sonic-log data provide an opportunity to examine 
the nature of the small-scale seismic heterogeneity of the 
uppermost crust (Levander et al. 1994; Wu, Xu & Li 1994; 
Holliger, Green & Juhlin 1996). Sonic-log velocities are deter- 
mined by measuring the time seismic waves take to travel 
between an ultrasonic source and one or more receivers. Source 
frequencies typically lie between 10 and 50 kHz (corresponding 
to wavelengths of about 0.10 to 0.60m in crystalline rocks), 
source-receiver spacings range from about 1 to 3m, and 
measurements are taken every 0.1 to 0.3 m along the borehole. 
The accuracy of a P-wave traveltime measurement is typically 
of the order of 1 per cent (Serra 1984). Sonic-log data thus 
represent 1-D, in si tu measurements of seismic velocities with a 
resolution that is at least one order of magnitude higher than 
estimates obtained from the inversion of surface seismic data 
or from geological/petrophysical studies. The high resolution 
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of sonic-log data is of particular interest in view of the 
increasing importance of high-resolution seismic reflection 
and tomographic imaging of the upper crystalline crust (e.g. 
Milkereit et al. 1994; White et a/. 1994). 

For several decades sonic-log measurements have been 
performed routinely on sedimentary rocks for hydrocarbon 
exploration purposes. Applications of sonic-log data include 
the 'ground-truthing' of coincident or nearby seismic data, the 
calibration of stacking-, VSP-, and migration-velocity esti- 
mates, and, most importantly, estimation of porosities (e.g. 
Telford, Geldart & Sheriff 1990). For sedimentary environ- 
ments, it is generally assumed that much of the local variability 
observed in sonic logs is due to primary or secondary porosity, 
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level of saturation and the nature of the fluids filling the pores 
(e.g. Wyllie, Gregory & Gardener 1956; Telford et ul. 1990). 
During the last decade, there has been a significant increase in 
the number of sonic logs measured in crystalline rocks for 
scientific and mineral exploration purposes. The most common 
application of sonic logs from crystalline terranes is the cali- 
bration of nearby seismic reflection and VSP data (Milkereit 
et al. 1994; White et al. 1994). These sonic logs show a level 
of small-scale variability that is similar to that of their sedi- 
mentary counterparts. However, the physical processes associ- 
ated with these variations are not as well understood for 
crystalline rocks as they are for sedimentary environments. 

The local variability of sonic-log velocities can be described 
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Figure 1. Raw sonic-log data considered in this study: (a) Leuggern (northern Switzerland), (b)  Bottstein (northern Switzerland), (c) KTB-1 (south- 
eastern Germany), (d) KTB-2 (south-eastern Germany), (e) Stenberg-1 (Siljan Ring, Sweden), ( f )  Sudbury-1 (Sudbury structure, Canada), 
( 8 )  Sudbury-2 (Sudbury structure, Canada), (h)  Abitibi-1 (Abitibi Greenstone Belt, Canada), ( i )  Abitibi-2 (Abitibi Greenstone Belt, Canada), 
(j) Cajon Pass (California, USA). Note the different scales of the plots. 
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using a statistical approach. Resulting stochastic models of 
seismic heterogeneity are useful for characterizing seismic 
scattering in the upper crust, predicting attenuation and phase 
fluctuations, quantifying stratigraphic filtering effects, and 
optimizing deconvolution and inversion operators (Frankel 
& Clayton 1986; Todoeschuck & Jensen 1988; Pilkington & 
Todoeschuck 1991). Most of the research in this field has 
been conducted on sonic logs from sedimentary environments 
(Walden & Hosken 1985). In a previous paper, I presented a 
stochastic analysis method for upper-crustal sonic-log data 
(Holliger et a/. 1996). In an attempt to place constraints on 
the origin of the small-scale variability of sonic-log velocities, this 
method is applied here to a wide variety of P-wave sonic-log 
data from the upper crystalline crust. 

DATA BASE 

This section gives a brief description of the sonic-log data 
analysed in this study (Fig. 1). 

Switzerland: Leuggern and Bottstein 

The Leuggern (Fig. la) and Bottstein (Fig. lb) holes are located 
some 2 km apart and were drilled by Nagra (Swiss National 
Cooperative for the Disposal of Radioactive Waste) as part of 
a project to investigate the physical properties of the Variscan 
basement in the northern foreland of the Alps (Thury et al. 
1994). Both holes are approximately 1500 m deep and penetrate 
200 to 400 m of Mesozoic sediments before reaching the 
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Figure 1. (Continued.) 
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crystalline basement. Lithologies along the basement section 
of the Leuggern borehole are amphibolite-facies paragneisses 
to a depth of 1380 m, followed by granitic rocks to the base 
of the hole at 1690m. The sedimentary protoliths of the 
paragneisses were deposited during the Late Proterozoic and 
were subsequently multiply deformed and metamorphosed. 
The basement section of the Bottstein hole consists entirely of 
granitic rocks. Radiometric dating indicates early Carboniferous 
ages, both for the intrusion of the granitic rocks and for the 
amphibolite-facies metamorphism of the paragneisses. The sonic 
data were acquired at 0.152 m intervals using a compensated 
sonic tool (see e.g. Telford et al. 1990) with a minimum source- 
receiver spacing of about 1.0 m. 

Germany: KTB-1 (main hole) and KTB-2 (pilot hole) 

The two boreholes at the German deep drill site are only 
200m apart and reach depths of approximately 9000 (KTB-1; 
Fig. lc) and 4000 m (KTB-2; Fig. Id). Here sonic-log data for 
KTB-1 are considered to a depth of about 7200 m. The scientific 
objectives of this deep continental drilling project were to 
investigate the structure and composition of the Variscan upper 
crust and to explore the origins of seismic reflections from 
the crystalline crust. Both boreholes penetrate amphibolite- 
facies paragneisses interlayered with metabasites (Franke 
1989). Radiometric age dating suggests an early to middle 
Variscan peak of metamorphism for the paragneisses and mafic 
rocks (Hansen, Teufel & Ahrendt 1989). The sonic-log data 
are sampled at 0.152m intervals. The uppermost 4000rn of 
both boreholes were logged with a sonic array tool. For the 
remaining part of KTB-1, a sonic shear tool was used. Both 
tools have minimum source-receiver spacings of about 1.0 m 
(X.-P. Li, personal communication 1994). 

Central Sweden: Stenberg-1 

The Stenberg-1 borehole (Fig. le) is located in Precambrian 
rocks of the Siljan Ring impact structure. It was drilled for the 
exploration of abiogenic gas flux through the crystalline base- 
ment. The hole mostly penetrates granitic rocks containing 
intrusions of doleritic dykes and sills (Juhlin 1990). These 
granites and dolerites were intruded at various times during 
the Proterozoic, whereas the impact event occurred during the 
Devonian. Sonic-log data are available from 770 to 6569m 
depth and are sampled at 0.304m intervals. The data were 
acquired using a sonic array tool with an approximate mini- 
mum source-receiver spacing of 1.0 m (C. Juhlin, personal 
communication 1994). 

Canada: Sudbury impact structure 

Located along the north rim of the Sudbury structure, the 
Sudbury-1 (Fig. I f )  and Sudbury-2 (Fig. lg) boreholes reach 
depths of about 900 and 2000 rn, respectively (Milkereit et al. 
1994; White et al. 1994). Both boreholes were drilled for mineral 
exploration purposes. The Sudbury structure was formed as a 
result of an early Proterozoic impact event and consists of 
layered mafic intrusive rocks and impact breccia. The boreholes 
were logged at 0.1 m intervals using an uncompensated sonic 
tool with a minimum source-receiver spacing of about 1.0 m 
(B. Milkereit, personal communication 1994). 

Canada: Abitibi Greenstone Belt 

The Abitibi Greenstone Belt is located in the Archean Superior 
Province and consists of volcanic-plutonic arc sequences that 
were accreted to the Superior craton when it stabilized 2600 
to 2800 Ma ago. The two boreholes considered here were 
drilled for mineral exploration purposes. They are referred to 
as Abitibi-1 (Fig. lh) and Abitibi-2 (Fig. li) and reach depths 
of about 900 and 1700 m, respectively. Abitibi-1 penetrates 
andesites, rhyolites, and gabbros. Lithologies encountered along 
the Abitibi-2 borehole are andesites, rhyolites, tonalites, and 
tuffs (B. Milkereit, personal communication 1995). Both bore- 
holes were logged at 0.1 m intervals using an uncompensated 
sonic tool with a minimum source-receiver spacing of about 
1.0 m (B. Milkereit, personal communication 1995). 

USA: Cajon Pass 

The Cajon Pass borehole (Fig. lj) is located 32 km north of 
San Bernardino, California, 4 km from the San Andreas fault 
(see special editions of Geophysical Research Letters, vol. 15, 
pp. 931 ff., 1988; Journal of Geophysical Research, vol. 97, 
pp. 4991 ff., 1992). The borehole is 3500 m deep and penetrates 
490 m of late Mesozoic to Neogene clastic sediments before 
entering the crystalline basement. Penetrated basement consists 
of various gneissic and granitic rocks of Precambrian to 
Mesozoic age (Silver & James 1988). Lithological contacts 
within the basement section seem to be mostly associated with 
larger shear zones. The first 400 m of the crystalline basement 
consists of pervasively sheared and deformed crystalline rocks. 
The borehole was logged at 0.152 m intervals using a com- 
pensated sonic tool with a minimum source-receiver spacing 
of about 1.0 m (P. Leary, personal communication 1995). 

SEPARATION OF STOCHASTIC A N D  
DETERMINISTIC COMPONENTS 

Eqs ( A l )  to (AS) in the Appendix provide the information 
required to invert the observed sonic-log data for the second- 
order statistics of the small-scale in situ velocity fluctuations 
(Goff & Jordan 1988; Holliger et al. 1996). To do this, the 
stochastic and deterministic components of the observed sonic- 
log velocities must first be separated. It has to be pointed out 
that, although the removal of large-scale trends is a common 
practice in statistics (e.g. Chatfield 1980), there are no clear rules 
or systematic guidelines as to how this separation of deter- 
ministic and stochastic components should be performed. In 
particular, there are conflicting points of view as to the maxi- 
mum frequency that should be contained in the deterministic 
component. 

From a purely statistical point of view, a possible objective 
of trend removal is to make the residual stochastic process 
stationary. This may be achieved by subtracting trends con- 
taining significant high-frequency information, for example by 
differencing the observed data sequence, which is equivalent 
to subtracting a two-point running mean (e.g. Chatfield 1980). 
For many applications, this practice is questionable because 
the residual data sequence is likely to be dominated by 
uncorrelated noise, and because the trend itself is so variable 
that its classification as deterministic may be inappropriate. 
From a seismological point of view, it is natural to associate 
the stochastic and deterministic parts of crustal velocity struc- 
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ture with the scattered and specular parts, respectively, of 
seismic wavefields. Based on this classification, the deter- 
ministic trend primarily depends on the dominant frequency, 
or wavelength, of the seismic signal considered. Although the 
transition from scattering to specular wave propagation is not 
sharp, it is generally expected to occur for c c / i > >  1, i.e. for 
heterogeneity scales CI that are significantly (at least 5 to 10 
times) larger than the dominant wavelengths 1 of the seismic 
signal considered (Wu & Aki 1988). It should be understood 
that c1 is independent of the correlation length u used to 
characterize random media (see Appendix). For an average 
upper-crustal velocity of 6000 m s- '  the minimum wavelength 
c1 of the deterministic trend thus lies at about 3000m for a 
dominant frequency of 10 Hz (local earthquake and crustal wide- 
angle seismic data), at about lo00 m for a dominant frequency 
of 30 Hz (deep crustal reflection seismic data), and at  about 
300 m for a dominant frequency of 100 Hz (high-resolution 
reflection seismic data). 

With reference to low-to-intermediate seismic frequencies 
(< 50 Hz) the deterministic trend may therefore be approxi- 
mated by a low-order polynomial best fit of the sonic-log 
data. The order of the polynomial should increase with the 
length of the sonic log and/or the frequency of the seismic 
data considered. From a methodological point of view, this 
approach agrees with the one proposed by Bendat & Piersol 
(1986), who recommend fitting a low-order polynomial to the 
observed data. They point out that the chosen trend should 
be physically reasonable and clearly apparent in the original 
data. From a phenomenological point of view, this is consistent 
with results of seismic wide-angle experiments (Mueller 1977) 
and laboratory measurements (Christensen 1979; Burlini & 
Fountain 1993), both of which suggest a quasi-linear increase 
of the large-scale upper-crustal velocity4epth function. 

In the following, the effects of removing trends containing 
progressively higher maximum frequencies from the data are 
investigated, and the Leuggern (short sonic log) and KTB-1 
(long sonic log) data sets are used to illustrate interpretation 
concepts and results. After analysing all available sonic logs, 
these two data sets were found to be representative of the data 
base considered. 

ANALYSIS ASSUMING LOW-ORDER 
POLYNOMIAL DETERMINISTIC T R E N D S  

For all data sets of this study, the slopes of the best-fitting 
(in a least-squares sense) linear trends were compatible with 
results from wide-angle seismic data (Mueller 1977) and labora- 
tory experiments (Christensen 1979; Burlini & Fountain 1993). 
After removing such a linear trend, the residual sonic-log 
velocity fluctuations could be characterized reasonably well by 
Gaussian probability distributions (Fig. 2). As is evident in 
Fig. 2, the most significant deviations from the corresponding 
best-fitting Gaussian probability density functions are the 
extended negative tails, i.e. low velocities. The fact that a 
Gaussian-type distribution is characteristic of both short 
(< 10OOm) and long (>70OO m) sonic logs suggests that i t  
reflects an intrinsic statistical property of the upper-crustal 
seismic fabric and is not simply a consequence of the central 
limit theorem (Bendat & Piersol 1986). 

Inverting the residual stochastic process yields the parameters 
defining the autocovariance function of the in situ velocity 
variations along the borehole (Table 1). The inversion algorithm 

w 

Figure 2. Probability density functions of(a) Leuggern and (b) KTB-1 
data after removing a linear trend defined by a corresponding least- 
squares best fit through the original data. Solid lines: probability 
density functions of observed data; dashed lines: best-fitting Gaussian 
probability density functions. 

used is essentially identical to that developed by Goff & Jordan 
(1988) for bathymetric data. Starting values for the Hurst 
numbers and correlation lengths were derived from the slopes 
of the power spectra (see eq. A6; Wu et ul. 1994) and from the 
first zero-crossings of the autocovariance functions (Goff & 
Jordan 1988), respectively. The autocovariance functions of 
the residual sonic-log velocities are shown in Fig. 3, together 
with their best-fitting (in a least-squares sense) model auto- 
covariance functions. In all cases the data model described 
in the Appendix provided a good-to-excellent match to the 
autocovariance functions of the residual sonic-log fluctuations. 

Despite the different geological settings of the individual 
boreholes and different noise levels of the sonic logs, the results 
are surprisingly uniform: low Hurst numbers of between 0.09 
and 0.18, short to intermediate correlation lengths of 60 to 
160m, and standard deviations (defined as the square root 
of the variance) of 170 to 400 m (Table I ) .  The uncertainties 
of the Hurst numbers and correlation lengths are estimated to 
be 20 per cent or less, i.e. Hurst numbers and correlation 
lengths differing by more than 20 per cent from the values 
listed in Table 1 lead to a n  unacceptable match between the 
observed and modelled autocovariance functions. These error 
estimates are based on the diagonal elements of the parameter 
covariance matrix. 
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V: HLUSI number; a: correlation length; Oh: standard deviation of in situ velocity fluctuations; 
0,: standard deviation of white noise present in the sonic.log data. 

Table 2. 

BoreholelTrend V 

KTB- 1 
linear trend 0.10 
second-order polynomial 0.10 
third-order polynomial 0.10 
300 m running-mean 0.10 

KTB-2 
linear trend 0.13 
second-order polynomial 0.13 
third-order polynomial 0.13 
300 m xunning-mean 0.13 

Stenberg-1 
linear trend 0.09 
second-order polynomial 0.09 
third-order polynomial 0.09 
300 m running-mean 0.09 

Cajon Pass 
linear trend 0.11 
second-order polynomial 0.11 
third-order polynomial 0.1 1 
300 m running-mean 0.11 

160 
130 
120 
45 

150 
150 
140 
55 

160 
140 
120 
40 

140 
90 
85 
40 

315 72 
309 12 
308 72 
241 72 

358 75 
349 75 
34 1 75 
27 1 I5  

300 253 
292 253 
289 253 
248 253 

399 17 1 
383 171 
368 17 1 
304 171 

There is a certain trade-off between Hurst number, cor- 
relation length, and the system filter, yet I found it impossible 
to compensate significantly larger Hurst numbers with corre- 
spondingly shorter correlation scales, even when ignoring the 
filtering effects of the logging tool (Fig.4). Moreover, in all 
cases considered, the low Hurst numbers inferred are also 
consistent with the average slopes of sonic-log power spectra 

(Wu et al. 1994; Sato & Shiomi 1995; H. Sato, personal 
communication 1995). 

Comparable results were obtained when removing quadratic 
and cubic polynomials, defined by least-squares best fits 
through the sonic-log data, from the KTB, Stenberg-1, and 
Cajon Pass sonic logs (Table 2). Although shorter correlation 
lengths (Fig. 5) and smaller standard deviations of the velocity 
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Figure 3. Autocovariance functions of (a) Leuggern and (b) KTB-1 
sonic-log data after removing a best-fitting linear trend. Solid lines: 
autocovariance functions of observed data; dashed lines: best-fitting 
von Karman autocovariance functions. 
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Figure 4. Solid line: autocovariance function of KTB-1 data; dashed 
lines: exponential autocovariance functions (Hurst number v = 0.5) for 
a variety of correlation lengths (a = 5, 10,20 and 40 m). No corrections 
for system response and noise have been applied. 
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Figure 5. Autocovariance functions of KTB-1 data after removing 
different polynomial trends defined by corresponding least-squares 
best fits through the original sonic-log data. Solid line: linear trend; 
dashed line: quadratic trend; dotted line: cubic trend. 

fluctuations are observed after subtracting such higher-order 
polynomials, the results are quite similar to those obtained for 
a linear trend (Table 2). In particular, the Hurst numbers and 
the standard deviations of the white system noise do not seem 
to be affected by the order of the polynomial defining the trend. 

ANALYSIS ASSUMING HIGHER- 
FREQUENCY DETERMINISTIC TRENDS 

The estimation of seismic heterogeneity relevant to the scat- 
tering of higher-frequency (> 100 Hz) seismic data requires the 
removal of all spectral components with wavelengths longer 
than a given threshold from the sonic-log data. For the longer 
sonic logs considered here, this has been achieved by removing 
a running mean with a window length of a = 300 m (see above). 
Fig. 6 illustrates this trend for the KTB-1 data. The removal 
of such a trend notably reduces the standard deviation and 
the correlation length of the velocity fluctuations but again 
does not affect the Hurst number and the standard deviation 
of the white noise (Fig. 7; Table 2). 

An interesting observation is that the correlation length 
estimates seem to be even more consistent between the different 
data sets than was the case after removing low-order poly- 
nomials. This may be due to the fact that the largest wave- 
number kfilte, contained in the trend is larger than the corner 
wavenumber of the power spectrum of the stochastic process, 
which is defined by k,,,,, = l/a (see Appendix). The removal 
of such a high-frequency trend is equivalent to applying a 
high-pass filter, and results in a modified band-limited power- 
law process [( 1 + k2a&tcr)-8/2-decay of the power spectrum] 
whose correlation length afilter is determined by the upper cut- 
off wavenumber of the filter kfilter. For a 300m running- 
mean filter, the reciprocal value of the cut-off wavenumber is 
afilter = l/kfilte, = 300/2n = 48 m, which is in fact quite close to 
the corresponding estimates of the correlation lengths shown 
in Table 2. 
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Figure 6. Running mean with a window length of 300 m of KTB-1 sonic-log data (dashed line) together with the original data. The trend defined 
by this running mean has been shifted by + 1500m sC1 for clarity. 
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Figure 7. Autocovariance functions of KTB-1 sonic-log data after 
removing a linear trend (solid line) and a 300 m running-mean trend 
(dashed line). 

Table 3. 

STATISTICAL UNIFORMITY 

For the longer sonic logs in the considered data base it is 
important to know how representative the global stochastic 
estimates (Table 1) are for smaller subsets of the sonic logs. 
For this purpose the linearly trend-corrected KTB-1 log has 
been subdivided into five 1375 m long subsets. The length of 
such a subset is thus comparable to that of the shorter sonic 
logs analysed in this study. These subsets have been analysed 
separately, and the results are shown in Table 3. The largest 
discrepancies between the local and global estimates of the 
Hurst numbers and correlation lengths are about 30 per cent. 
Given that the inherent uncertainty of the inversion process lies 
in the same range, it is argued that, although the strict criteria 
of statistical stationarity may not be fulfilled, the stochastic 
nature of the KTB-1 sonic-log fluctuations is relatively uniform 
over the entire length of the log and largely independent of 
the lithological sequence penetrated. Similar results were 
obtained for the KTB-2 and Cajon Pass logs. The subsets of 
the Stenberg-1 log show a larger internal variability, which 
seems to reflect variations in data quality (Holliger et al. 1996). 
Overall, these results are consistent with those of Li & Haury 

Fulllog 285-7160 0.10 160 315 72 

Subset 1 285-1660 0.11 170 342 57 
Subset 2 1660-3035 0.09 130 256 50 
Subset 3 3035-4410 0.12 205 292 50 
Subset 4 4410-5785 0.09 150 308 90 
Subset 5 5785-7160 0.08 170 357 97 
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1000 

(1995), who used the wavelet transform to calculate local 
variations in the slope of the power spectrum of the KTB data. 
Their results indicate that the fluctuations are small and 
centred around a relatively uniform global average, which is 
consistent with the results of Table 3. 

(b) 
- 

COMPARISON WITH SYNTHETIC DATA 

To assess the importance of non-Gaussian components in the 
sonic-log fluctuations, synthetic realizations with correspond- 
ing stochastic parameters (Table 1 )  and Gaussian probability 
density functions were generated. These synthetic data were 
created by employing the following procedure: (1) filter a 
uniformly distributed random number sequence with the square 

root of the power spectrum of the considered stochastic process; 
(2)  take the inverse Fourier transform; (3) filter the resulting 
stochastic process with the estimated system filter of the sonic 
tool and scale with respect to the standard deviation of the 
in situ velocity fluctuations; and (4) add the estimated amount 
of white noise. The resulting synthetic sonic-log variations 
are shown in Fig. 8, together with the observed sonic-log data. 
As expected, because of the good match between the mod- 
elled and observed autocovariance functions (Fig. 3), the syn- 
thetic stochastic sonic logs compare well with the real ones, 
apart from lacking the negative outliers and being somewhat 
too uniform. The presence of negative outliers in the observed 
data and the more uniform nature of the synthetic data are 
both indicative of higher-order (> 2) statistical moments, i.e. 
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Figure 8. Comparison of the observed sonic-log variations after subtracting a linear deterministic trend with corresponding synthetic data. 
(a) Observed Leuggern data; (b)  synthetic Leuggern data; (c) observed KTB-1 data; (d)  synthetic KTB-1 data. 
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deviations from ideal Gaussian probability density functions, 
which are not included in this analysis. 

C O M P A R I S O N  W I T H  O T H E R  E S T I M A T E S  
OF C R U S T A L  S E I S M I C  H E T E R O G E N E I T Y  

Estimates from borehole data 

Levander et al. (1994) have analysed a short (-350m long) 
sonic log from the Cornubian granite in south-western England, 
and have inferred a von Karman autocovariance function with 
a Hurst number of 0.20-0.25 and a correlation length of 10 to 
20 m. They speculate that this correlation length may corre- 
spond to  the spacing of joint sets along the borehole. These 
estimates are comparable to the results summarized by Wu & 
Aki (1988) for similarly short logs. 

The results for the two KTB boreholes can be compared 
directly to those of recent studies by Wu et al. (1994) and 
Kneib (1995). Wu et al. (1994) subtracted linear trends from 
the KTB-1 and KTB-2 P-wave sonic logs and then used the 
slope of the power spectra to estimate the Hurst numbers. 
Their estimates of the Hurst numbers agree very well with 
those given in Table 1. After plotting the power spectrum in 
double-logarithmic format, a change in slope is expected to 
occur near ka z 1 for band-limited self-affine data (see eq. A6). 
However, Wu et al. (1994) found no evidence of a change in 
slope at intermediate to low wavenumbers, and therefore 
argued that self-affine behaviour extends unchanged from very 
short wavelengths of a few metres to a maximum wavelength 
of at least 1OOOm. This conclusion is not supported when 
modelling the observed autocovariance functions as von 
Karman-type functions, which are the time-domain expressions 
of the type of power spectrum used by Wu et at. (1994). The 
discrepancy may be due to the typically large fluctuations of 
the power spectrum, to its relatively slow decay (characteristic 
of low Hurst numbers), and/or to the inherently low resolution 
of the double-logarithmic scale, all of which tend to obscure 
changes in slope. To illustrate this, the power spectra of both 
the observed and synthetic KTB-1 data (Figs 8c and 8d) are 
shown in Fig.9. In neither case is a change in slope in the 
low-wavenumber range obvious. 

Kneib (1995) analysed the sonic (P- and S-wave) and density 
data of the KTB main hole. He computed local estimates of 
the autocovariance function in 244 m long data windows after 
subtracting the local mean value. The individual data windows 
overlapped by 122 m. The resulting local autocovariance func- 
tions were stacked in order to obtain a high-pass filtered 
estimate of the autocovariance function of the entire sonic log. 
This global estimate of the autocovariance function was then 
modelled by superposing two exponential autocovariance func- 
tions with correlation lengths of 1 and 20m. This stochastic 
analysis approach explicitly excludes any wavelengths longer 
than 244 m. As outlined above, applying such a high-pass filter 
to a power-law process, i.e. k-8-decay of the power spectrum 
in the relevant wavenumber range, is expected to produce a 
correlation length of the order of 40m. Moreover, super- 
position of several exponential stochastic processes (Hurst 
number v = 0.5) produces an ensemble process dominated by 
a Hurst number close to zero and a correlation length corre- 
sponding to about 1-2 times the largest correlation length 
present in the superposed exponential processes (here 20 m); 
at scales smaller than the shortest correlation length (here 

1 m), the resulting ensemble process is dominated by 
exponential behaviour (Walden & Hosken 1985). Fig. 10 
demonstrates that Kneib’s (1995) ensemble process is in fact 
well approximated by a von Karman function with a Hurst 
number of 0.13 and a correlation length of 30m, and that 
exponential behaviour at short lags is consistent with the 
low-pass filtering effects of the logging process. In summary, 
although not immediately apparent because of the combination 
of several exponential autocovariance functions, Kneib’s ( 1995) 
results are fully consistent with the findings of this study. 

Leary (1991) used the ‘rescaled-range technique’ (Mandelbrot 
1983) to analyse the Cajon Pass sonic-log data from 2000 to 
3500m depth. He inferred a Hurst number of 0.7 and scale 
independence from 1.5 to at least 1500m. This technique is 
based on the cumulative sums of parts of the observed data 
sequence, and thus emphasizes large-scale trends rather than 
small-scale local fluctuations. As in the case of power spectra, 
the analysis is carried out in the double-logarithmic domain. 
Neither the inferred Hurst number nor the scale range is 
compatible with the results obtained here, and these parameters 
(Hurst number 0.7; correlation scale > 1500 m) do not allow 
for the generation of synthetic data sets that bear any close 
resemblance to the observed sonic-log data (Fig. 11). This 
finding is in agreement with the findings of North & Halliwell 
(1994), who showed that Hurst number estimates by the 
rescaled-range technique tend to be biased towards values that 
are significantly too high. 

Stochastic analysis of geological cross-sections and 
petrophysical data 

Detailed geological cross-sections of pertinent parts of the 
Earth’s crust have been converted to stochastic seismic velocity 
models (Holliger & Levander 1994a,b; Levander et al. 1994). 
Each mapped lithology is assigned a representative average 
velocity, and the statistical properties of the resulting seismic 
velocity models are examined in a fashion similar to that 
described in the Appendix of this paper. So far, this tech- 
nique has been applied to the Phanerozoic middle- and lower- 
crustal sections exposed in the Ivrea and Strona-Ceneri zones 
(northern Italy) (Holliger & Levander 1994a, b), and to the 
Archean middle crust of the Lewisian gneiss complex (Scotland) 
(Levander et al. 1994). The resulting autocovariance functions 
were found to be well approximated by von Karman functions, 
albeit with generally higher Hurst numbers (0.5-0.2) and more 
variable and generally longer correlation lengths (38-2600 m) 
than obtained here. Moreover, the inferred probability density 
functions are discrete (binary/ternary) rather than Gaussian. 
Differences between the results presented here and those of other 
studies can be explained by the inherently lower resolution of 
the geological maps analysed (10 to 100 m as opposed to 1 to 
2 m  for the sonic logs), and by the effective smoothing and 
binning of the seismic structure that occurs when each mapped 
lithology is assigned a single distinct velocity. 

O R I G I N  OF S M A L L - S C A L E  V E L O C I T Y  
V A R I A T I O N S  I N  SONIC LOGS 

Variability of crustal velocities evidenced by petrophysical 
studies 

The results of this study show no clear relationship between 
the statistics of sonic-log velocities and the lithological sequences 
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Figure 9. Power spectra of (a) observed KTB-1 data (Fig. 8c) and (b) corresponding synthetic data (Fig. 8d). A best-fitting linear trend has been 
subtracted from the observed data. The change in slope at high wavenumbers is due to inherent averaging of the logging process over the active 
length of the tool. 

penetrated by the boreholes. For example, despite the approxi- 
mately bimodal petrology of the lithologies (mafic amphibolites 
and intermediate-to-acid paragneisses) penetrated by the KTB 
boreholes, the corresponding sonic-log velocity variations have 
quasi-Gaussian distributions (Fig. 2; Wu et al. 1994). This 
could be due to the overlap of velocities for different rock 
types and to the variability of seismic velocity within the same 
lithological units (Christensen 1979). 

Salisbury, Iuliucci & Long (1994) have analysed the seismic 
velocities of the various lithologies encountered in the two 
Sudbury boreholes. The average ultrasonic velocities of the 
different crystalline lithological units, measured in the lab- 
oratory at 600 MPa pressure and room temperature, ranged 

from 6100 to 6600 m s-', and the corresponding standard 
deviations from 130 to 250 m s-'. These velocities and standard 
deviations compare reasonably well with those from the sonic 
logs (Milkereit et al. 1994; White et al. 1994). Burlini & 
Fountain (1993) analysed numerous gneissic rocks of similar 
composition from the exposed middle- and lower-crustal cross- 
section in the Ivrea and Strona-Ceneri zones in northern Italy. 
The average velocities of the ultrasonic P-wave velocities and 
their respective standard deviations, measured at 600 MPa 
pressure and room temperature, were 6400 190 m s-l  for 
mid-crustal samples and 6790 +_ 380 m s-l for the lower-crustal 
samples. The variability of velocities within lithologically simi- 
lar units documented by these investigations is comparable to 

0 1996 RAS, GJI 125, 813-829 



824 K .  Holliger 

1000 

P 
E O- 

-1 000 

o.gR 

- 

- 

I I 
0 2 4 6 8 10 12 14 16 I 8  20 

Lag (m) 

Figure 10. Solid line: autocovariance function resulting from the 
superposition of two exponential functions with correlation lengths of 
1 and 20 m (Kneib 1995). Also shown is the best-fitting von Karman 
autocovariance function with a correlation length of 30 m and a Hurst 
number of 0.13 with (dashed line) and without (dotted line) consider- 
ation of system response. System filter f ( z )  is a running mean with a 
window length of 1.0 m, which corresponds approximately to the 
minimum source-receiver spacing of the sonic tools used to acquire 
the KTB data. All autocovariance functions are normalized. 

1 

that found in sonic logs considered in this work. Since the 
above measurements were made at high confining pressures, 
corresponding approximately to lithostatic pressure at 18 km 
depth, it is generally assumed that microcracks are largely 
closed and that the observed velocity variability primarily 
reflects chemical and/or microstructural variability between 
the individual samples. 

Variability of upper-crustal velocities due to fracturing 

Fractures of all scales are ubiquitous in the upper crystalline 
crust, and their statistical distribution follows self-affine scaling 
laws that appear to be independent of geological age, litho- 
logical composition, tectonic setting, and depth (Scholz et al. 
1993). Paillet & White (1982) modelled the sonic-log response 
of fractured media. They found that sonic transit times, and 
thus sonic-log velocities, are heavily dependent on both micro- 
and macrofractures. This theoretical result has been supported 
by Moos & Zoback (1983), who compared the distribution of 
macrofractures with sonic-log velocities in several boreholes 
penetrating the upper crystalline crust. For the Cajon Pass 
borehole, Leary ( 1991) found a significant correlation between 
sonic and resistivity logs, but no comparable correlation of 
these log data with the natural gamma logs. Since natural 
gamma logs are primarily sensitive to the petrology of the 
penetrated lithologies, Leary ( 1991) argued that sonic and 
resistivity logs are likely to be dominated by the effects of 
fracturing. 

In order to explain the surprisingly uniform S-wave aniso- 
tropy found in various types of upper crust, Crampin (1994) 
proposed the concept of 'fracture criticality'. According to this 
model, the range of crack densities between the extreme, and 
rarely observed, cases of totally intact and totally disintegrated 
brittle rocks is similarly narrow for most common rock types. 
Therefore, a possible explanation for the statistical uniformity 
of sonic-log fluctuations could lie in a similarly uniform distri- 
bution of micro- and macrofractures and related porosities 
within the upper crystalline crust (Scholz et al. 1993; Crampin 
1994). 

The effects of fractures on seismic velocity are governed by 
crack-induced porosity and the degree of saturation of these 
pores. The respective elastic moduli for dry and saturated 
cracked media can be approximated as (BourbiC, Coussy & 
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Figure 11. (a) Sonic-log data from Cajon Pass after removing a linear trend defined by a least-squares best fit through the original data, and 
(b) synthetic data assuming a Hurst number of 0.7 and a correlation scale of 1500 m. 
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Zinszner 1987) 

and 

where A , ,  A, ,  B, and B, are empirical constants with values 
typically close to unity; K and p are the bulk and shear moduli 
as functions of porosity 4; K O  and pa are the shear and bulk 
moduli when all pore spaces are closed; and e is the aspect 
ratio of the pore spaces ( ~ ~ 1 . 0  for cracks). In the above 
equations, the porosity is expressed as the fraction of the total 
considered volume that is occupied by pore spaces. For 
example, 4 = 0.1 implies that pore spaces make up 10 per cent 
of the total volume. For A ,  = A, = B,  = B, = 1.0 the respective 
P-wave velocities for dry and saturated cracked media are thus 
given by 

and 

Laboratory studies on samples from the KTB boreholes sug- 
gest that the theory upon which eqs (1) and (2) are based is 
adequate to relate crack densities to seismic velocities (Zinke, 
Gehlen & Berckhemer 1993; J. Zinke, personal communication 
1995). Crack-related pores are characterized by small aspect 
ratios (es0.01; BourbiC et al. 1987; Wong, Fredrich & 
Gwanmesia 1989) and therefore may contribute significantly 
to the velocity variability observed in sonic logs. Fig. 12(a) 

shows a hypothetical, synthetic porosity-depth profile with a 
Hurst number of 0.15, a correlation length of 100 m, an average 
crack porosity of 0.20 per cent, a standard deviation of the 
porosity of 0.30 per cent, and a Rayleigh-type probability 
density function. The cracks are assumed to have a constant 
aspect ratio e of 0.01. Both the magnitude of the porosities 
and the average aspect ratio of the cracks represent rather 
conservative estimates (Bourbie et al. 1987; Wong et al. 1989). 
The physical basis of this hypothetical porosity distribution 
is the empirically observed fractal nature and Rayleigh- or 
lognormal-type distributions of crack apertures (Wong et al. 
1989). 

Using eqs (1) and (2) and assuming that crack porosity is 
the only cause of small-scale velocity variations, the random 
porosity distribution of Fig. 12(a) has been transformed into 
the velocity distributions corresponding to dry (Fig. 12b) and 
saturated (Fig. 12c) cracked media. These velocity fluctuations 
can again be modelled by a von Karman autocovariance 
function with a Hurst number of 0.15 to 0.17 and a correlation 
length of 90 to 110 m. Similar to the observed sonic-log velocity 
fluctuations (Figs 1,8a, 8c), these synthetic velocity fluctuations 
(Figs 12b and 12c) contain abundant negative outliers, which 
is the direct, and expected, consequence of the l/$-type 
transformation of the Rayleigh-distributed porosity profile 
(see eq. 2). The resulting velocity fluctuations are similar in 
character but have significantly differing standard deviations 
(approximately 280 m s- '  for dry cracks and 120 m s-'  for 
saturated cracks). In reality, one would expect cracks to be 
neither completely dry nor completely saturated. 

DISCUSSION 

This study suggests that small-scale cracks may contribute 
significantly to the stochastic nature of upper-crustal sonic logs. 
Therefore, an important question to be addressed is whether 
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Figure 12. (a) Synthetic crack-porosity profile versus depth with a mean porosity of 0.20 per cent and a standard deviation of 0.30 per cent. The 
profile has a Hurst number of 0.15 and a correlation length of 100 m. Also shown are the corresponding velocity fluctuations for (b) dry (eq. 2a) 
and (c) saturated cracks (eq. 2b) assuming constant elastic parameters for the uncracked medium ( K O  = 59.8 GPa, p O  = 35.9 GPa, p = 2800 kg m-3). 
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the crack porosity interpreted from sonic-log variations is 
representative of larger volumes of rocks or only of the 
excavation damage zone in the close vicinity of the borehole 
wall. Hornby (1993) used sonic-log traveltimes recorded over 
various distance ranges to perform a tomographic reconstruction 
of the velocity distribution near the borehole wall. He found 
that in soft sediments, such as clays, there may be low-velocity 
regions several tens of centimetres thick due to mechanical 
damage introduced during drilling. Although this excavation 
damage zone has proved to be much less significant in con- 
solidated sandstones, its potential effects cannot be ignored. 
One way to assess the importance of the excavation damage 
zone on the results of this study is to compare sonic-log data 
recorded with significantly different source-receiver spacings, 
i.e. penetrations. The only boreholes for which both short 
(- 1.0 m) and relatively long (- 3.0 m) source-receiver offsets 
are available are Leuggern and Bottstein. Table 4 compares 
the second-order statistics of both the short- and the long- 
offset measurements. In general, the noise level of the long- 
offset measurements is lower than for the short-offset ones. 
Otherwise, the measurements are statistically quite similar. 
This result may indicate that either the excavation damage 
zone is very thin and thus not important for sonic logs in 
crystalline rocks, or that it is so thick that it affects short- and 
long-offset measurements equally. 

The separation of deterministic and stochastic components 
is one of the most controversial and most subjective aspects 
of stochastic data analysis. In practice, the determination and 
removal of the deterministic trend is therefore typically guided 
by the objectives of the subsequent stochastic analysis. An 
interesting outcome of this study is that the choice of deter- 
ministic trend, or rather its maximum frequency content, 
critically affects the estimates of the correlation length and the 
standard deviation of the velocity fabric, but not the Hurst 
number (Table 2). Therefore, the Hurst number, or equivalently 
the slope of the power spectrum, seems to be a robust 
parameter, which can be directly compared to the results of 
other studies regardless of filtering or conditioning of the 
original sonic-log data. As outlined above, the analyses of the 
KTB data by Wu et al. (1994) and Kneib (1995) are consistent 
with the low Hurst numbers found in this study. Recently, 
power spectral slopes corresponding to uniformly low Hurst 
numbers (-0.1-0.2) were reported for sonic logs from 
numerous upper-crustal drill sites in Japan (Sato & Shiomi 
1995; H. Sato, personal communication 1995). Finally, and 
possibly most remarkably, Walden & Hosken’s ( 1985) analyses 
of sonic logs from a wide variety of sedimentary basins also 
provided Hurst numbers of similar magnitude and uniformity 
to those in this study. Stochastic signals with such low Hurst 

Table 4. 

numbers (-0.0-0.2) are commonly referred to as ‘l/k-’ or 
‘flicker noise’, which is a ubiquitous but poorly understood 
characteristic of a wide variety of dynamic phenomena (e.g. 
electric noise, stock market fluctuations, traffic jams). Exploring 
the origin of this flicker-noise nature of sonic-log data should 
therefore be a major objective of future research. 

CONCLUSIONS 

Small-scale P-wave velocity fluctuations recorded on sonic 
logs from 10 boreholes drilled in six tectonic environments in 
Europe and North America have been analysed. These bore- 
holes penetrate the first few kilometres of upper crystalline 
crust in which the geological age, tectonic evolution, and 
lithological composition vary significantly. Surprisingly, this 
geological variability is not reflected in the statistics of the 
velocity variations measured by the sonic logs. After removing 
deterministic large-scale trends, the residual small-scale velocity 
variations of all sonic logs have quasi-Gaussian probability 
density functions and closely resemble each other in terms of 
their second statistical moments, i.e. their autocovariance 
functions. These autocovariance functions can be modelled by 
so-called von Karman functions, which characterize band- 
limited self-affine media. The removal of higher-frequency 
trends results in systematic reductions of the correlation lengths 
and standard deviations of the stochastic velocity variations, 
but leaves the Hurst numbers and the standard deviations of 
the white noise essentially unaffected. 

The similarity of sonic-log velocity variations in widely 
differing types of upper crystalline crust may be attributed to 
the intrinsic variability of seismic velocities documented by 
petrophysical studies, and/or to crack-related porosity. Although 
it is not possible to establish the importance of the respective 
contributions on the basis of the available data, the statistical 
uniformity of the sonic-log variations regardless of the probed 
lithologies, as well as the fact that the velocity distributions 
are systematically skewed toward small values, may argue in 
favour of the dominance of fracturing effects. Fracturing is a 
common phenomenon throughout the upper crystalline crust, 
and there is evidence that fractures obey similar geometric and 
statistical laws regardless of lithological composition and 
tectonic history. Although total pore space related to cracks 
is typically volumetrically small, cracks have potentially large 
effects on the elastic parameters due to their planar geometry. 
Therefore, it is tentatively suggested that crack-related 
porosities may at least partially explain the statistical nature 
and uniformity of sonic-log velocity fluctuations in crystalline 
rocks. 

Leuggern 
Short tool 0.14 60 3 17 66 
Long tool 0.15 68 302 49 

BGttstein 
Short tool 0.12 80 370 71 
Long tool 0.14 93 364 52 
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1-6. 

APPENDIX A: STOCHASTIC ANALYSIS OF 
SONIC-LOG DATA 

Data model 

The basis for this analysis is a separation of the velocity-depth 
function V(z) observed in the sonic logs into a deterministic 
part V,(z) and a stochastic part s(z): 

V(Z) = V,(z) + s(z) . (‘41) 

The deterministic part of the velocity-depth function is gener- 
ally considered to be known, for example from wide-angle 
seismic measurements. Analysis of the small-scale stochastic 
fluctuations of the sonic log is based on the approach described 
by Goff & Jordan (1988). Methodological and algorithmic 
details of the corresponding adaptation to sonic-log data are 
given by Holliger et al. (1996), and therefore only a summary 
of the most relevant aspects is given here. 

A key assumption of this technique is that a sonic log is a 
linear system. Small-scale fluctuations may then be represented 
as a statistical data sequence consisting of noise n(z) plus the 
actual in situ velocity fluctuations along the borehole filtered 
by the system response of the logging tool: 

s(z) =f(zf* h(z) + n(z) .  (A21 

Under this assumption, the dominant effect of the logging 
response f ( z )  is the averaging of the in situ velocity fabric h(z) 
over the minimum source-receiver spacing of the tool (Serra 
1984). The logging system filter f ( z )  thus represents some form 
of a low-pass filter with a spatial cut-off frequency close to 
l/(averaging interval of the sonic tool). Here, f ( z )  is approxi- 
mated by a running-mean filter with a window length corre- 
sponding to the minimum source-receiver spacing of the sonic 
tool. This corresponds to the expected system response of an 
uncompensated sonic tool. How well this basic low-pass filter 
approximates the filtering effects of compensated tools or 
modern sonic array tools is, however, difficult to assess, since 
the geometry of the active sources and receivers and the 
averaging procedure used to calculate the velocity at each 
observation point are often only known to the contractor. 

Second-order statistics 

Analogous to variations in sea-floor topography (Goff & 
Jordan 1988), velocity fluctuations in sonic logs would prob- 
ably fail formal tests of normality. In practice, however, their 
probability distribution can be approximated as Gaussian. 
Thus, sonic-log fluctuations are characterized well by their 
second statistical moments, i.e. their autocovariance functions 
or, equivalently, their power spectra. In this study a ‘biased’ 
estimator was used to calculate the autocovariance function 

and therefore the value at zero lag corresponds to the variance 
of the process (Bendat & Piersol 1986). For white system noise 
n(z), the autocovariance function of s(z) is given by 

where < is the lag, oi  is the variance of the white system noise, 
6(() is the delta function, and c&), c h h ( [ ) ,  and cJJ(() are the 
respective autocovariance functions of the observed sonic-log 
velocity variations, the actual in situ velocity variations along 
the borehole wall, and the system filter (Goff & Jordan 1988; 
Holliger et al. 1996). Note that f ( z )  and thus C f f ( ( )  are 
assumed to be known. The total variance a: of s(z), and thus 
the trade-off between o: and a,”, is given by 

where 02 and of are the respective variances of the in situ 
velocity fluctuations along the borehole wall and the noise 
present in the sonic-log data. In reality, noise is unlikely to be 
completely white and the decision to model this end-member- 
type noise is essentially an expression of the lack of knowledge 
of the detailed character of noise in sonic logs. However, since 
the noise correlation length is expected to be much shorter 
(say a few measurement intervals or 0.5 to 1.0 m) than that of 
the velocity fluctuations (at least a few tens of metres) eqs (A3) 
and (A4) may provide a reasonable minimum estimate of the 
total amount of noise present in the data. Following Goff 
& Jordan (1988) the variance of the white noise 0: is thus 
estimated by taking the difference between the first two samples 
of css. 

Parametric model of the autocovariance function of 
crustal seismic heterogeneity 

In order to quantify the small-scale velocity fluctuations h(z), 
a parametrized model of the corresponding autocovariance 
function c,,h(() is required. During the past decade, the scale 
independence and associated self-affine or fractal geometry of 
many natural phenomena have received significant attention 
(Mandelbrot 1983; Turcotte 1992). The von Khrman auto- 
covariance function characterizes a family of stochastic pro- 
cesses that are self-affine at scales smaller than the correlation 
length a: 

where v is the Hurst number, is the gamma function, and 
K ,  is the modified Bessel function of the second kind of order 
O t v <  1. The fractal dimension D is related to the Hurst 
number v by D = E + 1 - v (Goff & Jordan 1988). In the case 
of a stochastic data sequence, the Euclidean dimension E is 
one, so D lies between 1.0, a very smooth sequence, and 2.0, a 
very rough sequence. 

The Fourier transform of eq. (A5) corresponds to the power 
spectrum of the stochastic process h(z). In E dimensions it is 
given by (Goff & Jordan 1988) 

where k is the wavenumber. For ka << 1 P h h ( k )  thus corresponds 
to a white spectrum, whereas for ka >> 1 it decays in proportion 
to k - ( 2 v + E ) .  The latter is referred to as power-law behaviour 
(Turcotte 1992), which is typical of random fractal phenomena. 
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The transition from a white to a power-law spectrum occurs 
around ka x 1. Many scientists work with pure power-law 
processes ( K 8  fall-off of the power spectrum over the entire 
wavenumber range), which are mathematically quite awkward 
(Pilkington & Todoeschuck 1991). Moreover, the power-law 
behaviour of natural phenomena normally does not extend 
beyond a certain lower wavenumber limit. Partially because 
of its band-limiting property, the von Karman family of 
autocovariance functions has proved to be a useful and versatile 
tool for describing a wide variety of fractal phenomena, such 
as turbulence (von Karman 1948), sea-floor morphology (Goff 
& Jordan 1988), and crustal seismic heterogeneity (Wu & Aki 
1985; Frankel & Clayton 1986; Holliger & Levander 1994a,b; 
Levander et al. 1994). 

Inversion of sonic-log velocities for small-scale seismic 
structure 

Eqs (Al) to (A5) provide the information required to invert 
s(z) for the second-order statistics of the actual in situ velocity 
fluctuations, that is ch,,([): 

( 1) after removing the deterministic trend, evaluate the 
autocovariance function C,,((') of the stochastic part of 
the sonic-log variations s(z) and take the second sample as the 
variance of the process Css(i = 2) x 02;  

(2) make educated guesses for v based on the slope of the 
power spectrum, and for a from the distance to the first zero- 
crossing of the autocovariance function (Goff & Jordan 1988; 
Wu et al. 1994); 

(3) limit the maximum considered lag of the observed 
autocovariance function C$([) to three times the initial guess 
of the correlation length a; 

(4) calculate the corresponding von Karman function 
Chh([)  and filter it with the autocovariance function C j j ( ( )  of 
the system filter f ( zF th i s  yields the calculated value of 

(5) adjust a and v to minimize the misfit between 
the observed and calculated autocovariance functions 
IC:p([) - C$'([)I using a standard least-squares method. 

CSS(O = c;m; 

The choice of the system filter f(z) influences the decay rate 
of C;:"([) near zero lag and thus may affect the estimated 
value of the Hurst number v. Since the nature of the system 
filter is not yet fully understood for sonic-log data, all Hurst 
number estimates were verified by independent analysis of the 
slopes of the corresponding power spectra. In the spectral 
domain, low-pass filtering effects of the system response are 
only present at very high wavenumbers (Fig. 9) and thus can 
be easily isolated and excluded from the analysis (Goff & 
Jordan 1988). 
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