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The influence of resistivity and Hall current on the Rayleigh—Taylor problem
involving two superposed fluids of finite density in the presence of gravitational
and magnetic fields normal to the fluid interface is examined. Unlike the related
problem in which the magnetic field is parallel to the interface, it appears that
the dispersion relation does not exhibit singular behaviour in the zero resistivity
limit. The 'potentially stable' situation is considered throughout. The results
are compared with earlier ideal and resistive theories, and an apparent anomaly
regarding the existence of normal modes in such systems is resolved.

1. Introduction
In Kalra et al. (1970), the effect of Hall current and resistivity on the stability

of a gas liquid system in the presence of a horizontal magnetic field was discussed.
It was found that the dispersion relation derived (cf. Singh & Tandon 1969)
does not reduce exactly to the dispersion relation derived from non-resistive
Hall current theory (Hosking 1965, 1968; Talwar & Kalra 1967) in the limit as
resistivity tends to zero. This singular behaviour is associated with the existence
of a 'dipole layer' at the gas-liquid interface in the zero resistivity limit (cf.
Woods 1962, 1964). Hosking (1971) gives a detailed discussion of the boundary
conditions used in studying the stability of superposed fluid systems, but to
date no account has been given in which the non-resistive problem is solved
using such a dipole layer.

In the problem discussed in the present paper, however, a vertical seed field
replaces the horizontal magnetic field considered by both Singh & Tandon (1969)
and Kalra et al. (1970), and one may note that the omission of resistivity does
not reduce the order of the differential equation for the system (see below).
Thus, in the presence of Hall current, one might expect the result of ignoring
resistivity from the outset to be the same as that of including resistivity in the
basic equations, but allowing it to tend to zero in the final analysis.

The Rayleigh-Taylor problem in the presence of a vertical magnetic field, and
in which both fluids are perfectly conducting, was considered by Chandrasekhar
(1961). He concluded that, for the case where the system is stable in the absence
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554 0. G. Lister and R. J. Hosking

of a magnetic field, no normal mode solutions to the dispersion relation exist.
This conclusion has also been supported by Roberts & Boardman (1962), who
have exhaustively studied the effect of resistivity and viscosity on the propaga-
tion of gravity waves at a fluid vacuum interface. They conclude that, even in
the presence of resistivity and viscosity, there is still a small band of wave-
numbers k, for which no normal mode solutions exist. The assumption on which
both papers base their conclusions is the apparently self-evident fact that per-
turbations, whose spatial dependence is an increasing function of the distance
from the interface, are not permitted. Schatzman (1964), in a paper which
discusses the problem of the oscillations of a slab of gas confined by two semi-
infinite media of different temperature, contradicts this assumption. He claims
that, in the absence of reflexion of the perturbations at infinity, perturbations
with infinite amplitude at infinite time are perfectly acceptable normal mode
solutions. The present problem is developed from the viewpoint of the Schatzman
paper, and a fuller discussion of the divergence between this approach and that
of Chandrasekhar and Roberts & Boardman is given in § 6.

In this paper, the potentially stable analogue of the Rayleigh-Taylor problem
at the interface between a non-conducting fluid and one which supports finite
resistivity and Hall current in the presence of a vertical magnetic field is dis-
cussed. Both fluids are assumed to be incompressible and initially homogeneous.
A dispersion relation is obtained, which contains both the effects of Hall current
and resistivity, and this is shown to be equivalent in the limit of zero resistivity
to the dispersion relation obtained when resistivity is neglected from the outset.
If resistivity and Hall current are both allowed to tend to zero we find a set of
normal mode solutions exists for the dispersion relation in the potentially stable
configuration, one of which corresponds to the 'gravity waves' studied by
Rayleigh (1900) in the absence of a magnetic field. The effect of resistivity and
Hall current on the modes obtained for the ideal fluid is then discussed in both
the long and short wavelength limits.

2. The basic equations and the equilibrium configuration
The Eulerian forms of the equations for an electron-ion system are (in mks)

V.v = 0, (1)

.Vvj+Vp = /t jxH+pg, (2)(J
£ -Vjpe = 9J> (3)
ivee ivee

VxH = j , (4)
V.H = 0, (5)

OTT

VxE = - / i —, (6)

where v is the fluid velocity, p is the mass density, p is the fluid pressure, ft is
the magnetic permeability, g is the gravitational field, j is the current density,
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| g | H .

Region 2 (.\>0)
non-conducting fluid

Region 1 (.v<0)
conducting fluid

FiGtrRE 1. The equilibrium configuration for the Rayleigh-Taylor problem
with vertical magnetic field.

H is the magnetic field intensity, E is the electric field, Ne is the electron number
density, e is the electronic charge, pe is the electron pressure, and T\ the resistivity.
Implicit in (1)-(6) are the assumptions that the plasma is isotropic, incompressible
and quasi-neutral.

The equilibrium configuration for the system under consideration is shown in
figure 1. A finitely conducting fluid with non-zero Hall current occupies region 1
(x < 0), whilst a non-conducting fluid occupies region 2 (x > 0). Both fluids are
homogeneous, and they are separated by the horizontal boundary x = 0. The
equilibrium magnetic field, which is constant throughout, is given by

Ho = (#0,0,0),
and the gravitational field by g = (g, 0, 0).

The equilibrium fluid velocity is zero and the equilibrium hydrostatic pressure
satisfies r,

in each of the fluids, where D = djdx.
Throughout the following discussion, the subscripts 1, 2 on the field quantities

refer to the respective regions below and above x = 0.

3. The perturbation equations

In the present problem, the axes may always be oriented such that the wave
vector k is parallel to the z axis (say). Thus we may take a Fourier-Laplace
transform of the field quantities of the form

f{x, z, <) = r—: dk\ dsf(x, k, s) exp {ikz + st},

where L indicates a path of integration in the right half plane from — ioo to
+ ioo. The perturbation equations in each fluid are discussed separately.
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556 G. 0. Lister and B. J. Hosking

3.1. Perturbation equations in the conducting fluid

For the homogeneous incompressible fluid, 8px = 0 and the Fourier-Laplace
transform of (2) is to first order

H0) (7)

while, from (3), together with (6) one obtains

shx = Ho. V (Syx--L8^ - , V x 8)v (8)

where H0.V = H0D,

and h represents the perturbed magnetic field. Taking the curl of (7) and (8)
and eliminating V x 5vx one obtains

x h 1 = ^ D ( D 2 - k 2 ) h ± , (9)
JSee

where v\ = /.iHo/pOl.
A

If the solutions for hx are assumed to be of the form AeXx, (9) can be solved
n 0 t i n § VxiUah, (10)

where a2 = k2 — A2.

Onehasa = 0or (v^ + rfs) A2- — v2
AaA-(s2 + vk2s) = 0, (11)

where d)t = e/iHg/m^
There are either two or four distinct pairs of solutions (A, a) to (11), depending

on whether Hall current is absent or present, respectively. (In the limit of
zero Hall current, two of these 'pairs' coalesce with the other two.) We note,
however, that, if (Aj-,a3) is a solution to (11), so is ( —A;-, —a3) and clearly we
reject values of A with negative real part in the region x < 0. Thus, in general
there is either one (Hall current absent) or there are two (Hall current present)
values of A, which may be obtained from (11).

There is one solution A = k corresponding to a = 0, so that the set (Â , k)
defines the base solutions for the perturbed field and velocity. The general
solution for the perturbed field in the finitely conducting fluid is thus

(12)

where A;- are the solutions to (11) with positive real part and A}- denote constant
vectors. The corresponding solution for the perturbed velocity, obtained from
(7) and (8), is

^ i = ^ ( A i A 1 ^ + AaAaeM)+ * A , ^ . (13)

Finally, from the x component of (7) one obtains

^ * ] (14)
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Rayleigh-Taylor problem 557

In passing, one may note that the solution form (12) in the limit i\ -> 0 is
identical with that obtained from non-resistive theory (TJ = 0). This non-singular
behaviour is expected, since the governing differential equation (obtained by
taking the curl of (9)) is

which remains sixth-order even as v -> 0.

3.2. Perturbation equations in the non-conducting fluid

In the non-conducting fluid, the perturbed quantities are given by

ha = A4e-**, <>v2 = A6e-**, Sp2 = ^dv2x. (15), (16), (17)

I t may be remarked in passing that the form of the perturbations in the
non-conducting fluid is quite different from that for an infinitely conducting fluid.
Thus, it is not possible to compare the equations derived by Chandrasekhar
(1961) with those derived in the present paper in the limit of zero resistivity and
Hall current, except in the special case of a fluid-vacuum interface where the
forms of the perturbation are identical.

4. The boundary conditions
We now show that the boundary conditions for the present problem may be

derived without reference to Ohm's law, so that they are independent of the
presence (or absence) of either resistivity or Hall current or both.

Assuming (1), (2), (4) and (5) are valid in a narrow transition region near the
surface of discontinuity, integration in the usual way (cf. Stix 1962) yields

n.[v] = 0, (18)

n[p]-/ij*xU = 0, (19)

nx[H] = j * , (20)

n.[H] = 0, (21)

where n is the unit normal to the interface, H is the average of the magnetic
field strengths at the two sides of the interface, the brackets denote the change
in the quantity across the interface, and

p )dx.
e-*0J —e

To first order (18) is
(22)

By definition the zeroth-order magnetic field satisfies [Ho] = 0. Hence, from (20),
j * = 0; thus, from (19), |j)0] = 0. Thus, to first order, (19) may be written

. Vp0] ex = /iH08j* x ex,
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where § = - 8\. Therefore
• ' s iSp + %.VPo] = O (23)

arid <Jj* x ex = 0. Equation (21) is to first order

ex.[h] = 0 (24)

and hence, from (20), [h] = 0. • (25)
Conditions (22), (23) and (25) form a complete set.

In deriving the dispersion relation, it is convenient to replace (25) by condition
(24), together with the conditions

ex.[Dh] = 0 and ex.[5j] = 0, (26), (27)

which follow from (25) and the solenoidal character of h.

5. The complete dispersion relation
If both resistivity and Hall current are included, the x components of the

perturbed magnetic field and velocity can be written in the form

where Cj are constants, while from (14) the perturbed pressure is given by

For the non-conducting, incompressible fluid

where C4, C5 are constants. From the Fourier-Laplace transforms of the boundary
conditions (22)-(24), (26) and (27), one obtains

^ | (28)

= 0, (29)

Ci, (30)

-kCi, (31)

0, (32)

where P=poJpO i .

A non-trivial solution of (28)-(32) exists, provided

l-P)gk])
'is*' ( '

One may note that dispersion relation (33) limits to the non-resistive form
when r\ ->• 0, as is expected from the earlier comment that the form of the per-
turbation solutions and the boundary conditions are independent of whether or
not resistivity is included. From (33), one finds that reversing the direction of
the gravitational field is equivalent to interchanging the fluid densities. In the

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237780000684X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:41:31, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237780000684X
https:/www.cambridge.org/core


Rayleigh-Taylor problem 559

present paper, discussion is limited to the potentially stable case; one may
consider (without loss of generality) that pOi < pOi(P< 1) and g < 0.

In §6 the limit in which the conducting fluid is ideal (resistivity and Hall
current negligible) is discussed as a basis for the theory in which resistivity and
Hall current are considered finite, which is given in § 7.

6. The ideal limit
In the limit of zero resistivity and Hall current, one has, from (11),

Af,Al->A2 = s 2 K, (34)

together with the condition that Re A > 0. From the definition of the Laplace
transform (Re s > 0), the value A = - s\vA must be rejected, and we are left with
the value A = s\vA. We may now use this value of A in (33) to obtain a set of
modes for the system. Replacing s by w in (33), where w represents the analytic
continuation of s in the entire complex plane, we obtain

(w-kvA) [(1 + P) w3 + 2kvA(l + P)o)2 + {2kvA- (1 -P)g}ho-2(1 -P)gkzvA] = 0.
(35)

After removal of the spurious root co = kvA (i.e. A = k) from (35), one may note
that the remaining equation,

v (l+P)o)3 + 2kvA(l+P)(o2 + {2kvA-(l-P)g}kw-2(l-P)gkivA = 0, (36)

agrees with the dispersion relation obtained by Chandrasekhar (1961), provided
P= 0. The modes described by (36) are not, in the strict mathematical sense of
the term, 'normal modes'. Nevertheless, they are perfectly valid modes for the
system, and correspond to what one normally means by 'normal modes' in
a physical context,.

When g < 0, the three roots of (36) have a negative real part. Thus, whilst the
amplitude of the waves at a fixed point decreases with time, at a given time the
amplitude grows with the distance from the interface. This apparent anomaly is
similar to one considered by Schatzman (1964). Its explanation lies in the fact
that Alfve'n waves take energy from the disturbed interface, and hence the
amplitude of the waves on it decreases with time. As a result of this, we would
expect that those waves which have progressed the furthest from the interface
at a certain time would be the ones with the greatest amplitudes. Both Chan-
drasekhar (1961) and Roberts & Boardman (1962) assumed the non-existence
of normal modes in the above situation; but, at the end of their paper, Roberts &
Boardman (1962) solved an initial-value problem in which behaviour similar to
the above is observed.'

Thus we conclude that (36) provides a valid set of modes for the system under
consideration. In the limit where k ->• 0, one finds

and w = -2kvA~ — ^ , (38)

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237780000684X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:41:31, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237780000684X
https:/www.cambridge.org/core
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while, in the limit k ->• oo, one obtains

a) = kvA[-l±i(l-P2)l] (39)

and u_l±

The mode described by (37) shows the effect of a long wavelength perturbation,
or a weak magnetic field, on the 'gravity' waves found by Rayleigh (1900)
in the absence of a magnetic field. In the presence of a large magnetic field, or
for short wavelength perturbations, (39) and (40) show that these gravity waves
are completely swamped by the presence of the magnetic field.

7. The effect of resistivity and Hall current
We now proceed to examine the effects of resistivity and Hall current on the

'ideal' modes described in § 6. The algebra involved in obtaining the dispersion
relation in the form of a polynomial in co is extremely tedious, and in § 7 we
introduce a simplification by considering a simple plasma-vacuum interface
(i.e. P = 0). In this case, (33) becomes

2> ( '

where, following the argument of § 6, we have replaced s by CJ, requiring Re A^s),
ReA2(s) > 0. One may note that, in the absence of Hall current, (41) is the
equation found by Roberts & Boardman (1962) for a resistive fluid.

After much manipulation, including the squaring of (41) twice, we arrive at
the fifteenth-order polynomial in <u,

w15 - igkw13 + 4TJVA &4W12 + [5g* + {g + 2kvA)* + 4gkvA] k*a)n - %gr)vA

+ [l6gvA k + (g + 2kvA) (g + 4kv*A) + 4kWA] gWtf + 8(gr- 2kv2
A) 7igHA Wo?

2 - 2vA k^

kW + 4[4gf2

gf^ifc10w- Wrjv^gW* = 0. (42)

In the limit k -> 0 one finds, as expected, that the effect of Hall current be-
comes negligible for all modes. The effect of resistivity on the gravity waves in (37)
is found to be of order r)2k% in this limit, and thus may also be neglected, while
a modification is introduced to the mode described by (38) such that

o) = - 2kvA + P2(9/ - 8ti/0). (43)

In the limit k -*• oo with either finite resistivity or Hall current or both, one is able
to reproduce the gravity waves of (37). When both Hall current and resistivity
are included, one finds
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while for zero Hall current (i.e. (ot -=• oo) one finds the modes described by
Roberts & Boardman (1962, §6, (6.14a)):

a) = -v*Ll4V±i(\g\k)i. (45)

Thus, in the short wavelength limit, one finds a set of gravity waves which are
heavily damped in the presence of small resistive and/or Hall current terms. As
TJ -> 0 and U)i -> oo, the above approximation breaks down and we are forced to
consider the modes given by (39) and (40). All other modes found from (42) in
the limit h -> oo are spurious roots introduced by the double squaring process.

8. Conclusions
It is apparent from the discussion of the dispersion relation in this paper that,

in contrast to the problem discussed by Kalra et al. (1970), singular behaviour
does not occur in the limit of zero resistivity. The effect of allowing resistivity to
tend to zero in the final analysis is identical to that obtained when resistivity is
zero from the outset. We have noted that, in the present problem, inclusion of
finite resistivity does not alter the order of the differential equations, and that
the boundary conditions are independent of the presence, or absence, of either
resistivity or Hall current or both.

In contrast to Chandrasekhar (1961) and Roberts & Boardman (1962), we
conclude that under all conditions we are able to find a set of modes for the system,
to describe the effect of a small perturbation at the interface between a plasma
and a non-conducting fluid when a vertical magnetic field is present. We have
attributed the explanation of this discrepancy to Schatzman (1964), but note
that, in discussing an initial-value problem near the end of their paper, Roberts &
Boardman (1962) do in fact find similar behaviour to that described in the present
paper for the case of an ideal fluid.

Finally, we find the introduction of finite resistivity and Hall current is of
little consequence in the long wavelength (k -> 0) limit, whereas in the short wave-
length limit these terms permit the existence of 'gravity waves', which were not
found in the ideal theory.
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