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New therapeutic approaches to counter the increasing prevalence of obesity
and type 2 diabetes mellitus are in high demand. Deregulation of the
phosphoinositide-3-kinase (PI3K)/v-akt murine thymoma viral oncogene
homologue (AKT), mitogen-activated protein kinase (MAPK) and AMP-activated
protein kinase (AMPK) pathways, which are essential for glucose homeostasis,
often results in obesity and diabetes. Thus, these pathways should be attractive
therapeutic targets. However, with the exception of metformin, which is
considered to function mainly by activating AMPK, no treatment for the
metabolic syndrome based on targeting protein kinases has yet been
developed. By contrast, therapies based on the inhibition of the PI3K/AKT and
MAPK pathways are already successful in the treatment of diverse cancer types
and inflammatory diseases. This contradiction prompted us to review the signal
transduction mechanisms of PI3K/AKT, MAPK and AMPK and their roles in
glucose homeostasis, and we also discuss current clinical implications.

Metabolic syndrome is generally defined as a
cluster of risk factors for cardiovascular disease
and type 2 diabetes mellitus (T2DM) including
central obesity, arterial hypertension,
dyslipidaemia and elevated fasting glucose
(Ref. 1). Impaired glucose homeostasis, as
observed in patients with metabolic syndrome,
frequently progresses to overt T2DM, which in
2010 affected 344 million patients worldwide
(Ref. 2). Hyperglycaemia in diabetic patients can
lead to life-threatening complications such as

coronary heart disease, stroke and nonalcoholic
fatty liver disease (Refs 3, 4, 5).

Strict control of the level of circulating glucose
within a narrow physiological range supplies
sufficient energy for organs and avoids
hyperglycaemia. Glucose homeostasis is largely
maintained by the insulin–glucagon system,
which compensates for physiological
fluctuations in blood glucose caused by food
intake and physical activity, or by stress
conditions such as hypoxia and inflammation.
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Insulin and glucagon are released from β- and α-
cells, respectively, in the endocrine part of the
pancreas. Insulin lowers blood glucose by
stimulating glucose uptake and storage
(glycogen synthesis and lipogenesis) in skeletal
muscle and adipose tissue. In the liver, insulin
blocks the release and neogenesis of glucose and
stimulates glucose storage. In addition, insulin
stimulates protein synthesis, regulates
mitochondrial biogenesis and blocks autophagy.
Glucagon antagonises the action of insulin,
mostly in the liver, where it stimulates
gluconeogenesis and thereby increases blood
glucose level. The secretion of insulin and
glucagon is regulated in a reciprocal manner,
which avoids glycaemic volatility because of
their opposing effects. It was proposed that the
glucose-induced secretion of insulin inhibits
glucagon secretion from α-cells in a paracrine
manner (Ref. 6). Furthermore, incretin hormones
[e.g. glucagon-like peptide 1 (GLP-1)] secreted
postprandially by the gut potentiate glucose-
mediated insulin secretion and block glucagon
secretion (Ref. 7). In addition, physiological
conditions such as low intracellular energy level
and cellular stress affect whole-body glucose
homeostasis by interfering with insulin action.
Signal transduction from a stimulus to the

regulation of cellular processes, including those
involved in glucose homeostasis, is primarily
dependent on protein kinase signalling. On
activation, protein kinases determine the output
of metabolic processes by transcriptional and
post-translational regulation of rate-limiting
enzymes, such as glycogen synthase 1
(GYS1) and fatty acid synthase (FASN, FAS).
The insulin receptor (INSR, IR) activates
various downstream pathways that control
energy homeostasis, including
phosphoinositide-3-kinase (PI3K)/v-akt murine
thymoma viral oncogene homologue [AKT, also
known as protein kinase B (PKB)] and the
mitogen-activated protein kinase 3/1 (MAPK3/
1, ERK1/2). Whereas the PI3K/AKT pathway is
considered to be the major effector of metabolic
insulin action, insulin-independent kinases also
contribute to metabolic control. AMP-activated
protein kinase (AMPK) is mostly activated by
low intracellular energy levels and inhibits
anabolic processes, stimulates energy-producing
catabolic processes and lowers blood glucose
level. Because correct functioning of the PI3K/
AKT, MAPK and AMPK pathways is essential

for proper metabolic control and their
dysfunction often leads to impaired glucose
homeostasis, these pathways are attractive
therapeutic targets (Refs 8, 9, 10). However,
PI3K/AKT, MAPK and AMPK are also involved
in several other fundamental cellular processes,
including cell proliferation and survival, and
thus global therapeutic modification of their
activities could induce severe side effects.

Today, specific kinase inhibitors are used
successfully for immunosuppression and in the
treatment of inflammatory disease and diverse
cancer types. However, because proper
activation of the PI3K/AKT pathway is required
for insulin action, kinase inhibitors targeting
PI3K/AKT and downstream effectors might
impair metabolic control. Even though
inappropriate activation of MAPKs, especially of
c-Jun N-terminal kinase (MAPK8, JNK), is
considered to have a critical role in acquired
insulin resistance, no therapies based on MAPKs
are available so far. The only drug targeting
protein kinase activity that is widely used today
in the treatment of insulin resistance and
diabetes is metformin, which is thought to
operate mainly by activating AMPK. Although
our understanding of the role of protein kinases
in the regulation of glucose homeostasis has
increased significantly during the past decade,
only limited translation into therapies against
the metabolic syndrome has occurred. The
purpose of this present review is to summarise
the signal transduction mechanisms involving
PI3K/AKT, MAPK and AMPK with respect to
their role in glucose homeostasis and to discuss
current clinical implications.

The PI3K–AKT signalling pathway is the
major effector of metabolic insulin action
Insulin is an indispensable regulator of glucose
homeostasis, and T2DM is characterised by
postreceptor insulin resistance combined with β-
cell failure. Insulin signalling is initiated by the
binding of insulin to the extracellular α-subunits
of the heterotetrameric IR. This interaction
induces conformational changes and facilitates
autophosphorylation of tyrosine residues on
the intracellular part of membrane-spanning
β-subunits. These phosphotyrosines then attract
a family of adaptor molecules, the insulin
receptor substrates (IRSs). On interaction with
the IR, IRS proteins themselves are tyrosine
phosphorylated, which is partially mediated by
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the tyrosine kinase activity of the IR and also
by other kinases. Once phosphorylated, IRS
proteins attract downstream signalling
molecules, thereby linking the activated IR to
the various downstream signalling pathways
(Ref. 11).

Molecular mechanism of the PI3K/AKT
signalling pathway downstream of insulin
The PI3K/AKT pathway is required for insulin-
dependent regulation of systemic and cellular
metabolism (Ref. 8). Besides insulin, many other
growth factors, cytokines and environmental
stresses can activate PI3K/AKT, mainly in the
regulation of cell proliferation, motility,
differentiation and survival (Ref. 12). Thus,
PI3K/AKT action is highly context dependent,
which is at least partially mediated by the
recruitment of different isoforms of PI3K
(including p85α, p110α, p110β) and AKT
(AKT1, AKT2, AKT3) downstream of individual
stimuli (Refs 13, 14, 15). The AKT isoforms are
encoded by individual genes located on
different chromosomes, share approximately
80% identity in their amino acid sequences and
form the same protein structure, including an N-
terminal pleckstrin homology (PH), a catalytic
domain and a C-terminal regulatory domain
(Ref. 16). Among the AKT isoforms, AKT2 is
considered to be the major isoform required for
metabolic insulin action. Although intensively
investigated, the exact molecular mechanisms
underlying isoform and context specificity are
still not fully elucidated. Here we focus on the
function of the PI3K/AKT pathway downstream
of IR and IRS proteins and its role in glucose
homeostasis.
The PI3K/AKT pathway is activated

downstream of the IR by binding an SH2
domain within the regulatory subunit of PI3K
(p85) to phosphotyrosines in IRS1/2. This leads
to recruitment and activation of the catalytic
subunit of PI3K (p110). Once activated, PI3K
converts phosphatidylinositol-4,5-bisphosphate
(PIP2) to phosphatidylinositol-3,4,5-triphosphate
(PIP3) at the plasma membrane. AKT binds
through its PH domain to PIP3, which facilitates
activation of AKT by upstream kinases. Initially,
3-phosphoinositide-dependent protein kinase-1
(PDPK1, PDK1) induces about 10% of kinase
activity by phosphorylating Thr308 in the
catalytic domain of AKT. Subsequently,
mammalian target of rapamycin complex 2

(mTORC2), DNA-dependent protein kinase
(DNA-PK) and ataxia telangiectasia mutated
kinase (ATM) induce full kinase activity of AKT
by phosphorylating Ser473 in the regulatory
domain. Although DNA-PK can phosphorylate
AKT at Ser473 on insulin stimulation in vitro, it
is thought to activate AKT in vivo mainly
following stress such as DNA damage (Refs 17,
18, 19). mTORC2 is considered to be the
predominant AKT Ser473 kinase downstream of
insulin and growth factor stimuli (Ref. 18). On
activation, AKT is released from the plasma
membrane and translocates to cellular
compartments, such as the cytoplasm,
mitochondria and nucleus, where it
phosphorylates its many substrates. Substrates
implicated in the regulation of cellular
metabolism include glycogen synthase kinase 3β
(GSK3β), forkhead box protein O1 (FOXO1) and
AKT substrate 160 (TBC1D4, AS160), which
regulate glycogen synthesis, gluconeogenesis
and glucose uptake, respectively. AKT also
activates mTORC1 by inhibiting tuberous
sclerosis complex 1/2 (TSC1/2). Activated
mTORC1 upregulates mitochondrial biogenesis,
inhibits autophagy and induces protein
synthesis by regulation of peroxisome
proliferator-activated receptor gamma
coactivator 1α (PGC1α), unc-51-like kinase 1
(ULK1), and ribosomal protein S6 kinase (S6K)
and eIF4E-binding protein 1 (4E-BP1),
respectively. PDK1 also activates isoforms of
protein kinase C (PKCλ/ζ), which are required
for Glut4-dependent regulation of glucose
uptake. Moreover, AKT and PKCλ/ζ control de
novo lipogenesis by regulating lipogenic genes,
such as sterol regulatory element-binding
transcription factor 1 (SREBF1, SREBP1c) and
peroxisome proliferator-activated receptor γ
(PPARγ) (Refs 20, 21). The mechanisms by
which AKT and PKCλ/ζ regulate lipogenic
genes are not yet completely understood.

The insulin–PI3K/AKT pathway is negatively
regulated at different levels. Phosphatases,
including protein tyrosine phosphatase
nonreceptor type 1 (PTPN1, PTP1B),
phosphatase and tensin homologue (PTEN)
and protein phosphatase 2A (PP2A),
dephosphorylate and thereby inhibit IR, IRS1/2,
PIP3 and AKT, respectively. AKT activity can
also be inhibited by binding partners, such as
thioesterase superfamily member 4 (THEM4,
CTMP) and tribbles homologue 3 Drosophila
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(TRIB3) (Refs 22, 23).Whereas the function ofmost
AKT-binding partners in glucose homeostasis
remains to be elucidated, TRIB3 was shown to
inhibit insulin signalling (Ref. 23). Furthermore,
negative-feedback loops are implemented in the
PI3K/AKT pathway that downregulate insulin
signalling. GSK3β, mTORC1 and S6K can
phosphorylate IRS on serine residues, which can
lead to their ubiquitylation and proteolytic
breakdown (reviewed in Refs 12, 24, 25) (Fig. 1).

Genetic alterations in components of the
insulin signalling pathway can impair or
improve metabolic control
Many studies have been carried out in mice and
humans and have been pivotal in defining the
molecular events underlying insulin signalling.
Most patients develop insulin resistance and
T2DM as a result of polygenetic predisposition
in combination with overnutrition and obesity
(acquired insulin resistance). Monogenetic
defects causing diabetes account for only 1–5%
of cases and have been found in loci encoding
elements of the insulin signalling pathway,
transcription factors and rate-limiting enzymes
of glucose metabolism (e.g. hepatocyte nuclear
factor 4α and glucokinase) and also in
mitochondrial genes (Ref. 26). Interestingly, both
enhancement of insulin signalling by deletion of
negative regulators and specific interference
with its action by deleting targets normally
activated by insulin can improve metabolic
control and protect against diabetes in mice.

From IR to AKT: genetic mutations and
their effects on insulin sensitivity
in humans and mice
Patients with loss-of-function mutations in IR are
severely insulin resistant and display signs of
hyperglycaemia and hyperinsulinaemia, thus
indicating that IR is essential for insulin action
(Refs 27, 28, 29). Experiments in vitro have
confirmed that amino acid substitutions in the
tyrosine kinase domain of IR found in patients,
such as glycine (G) to valine (V) at position 996
(G996V) and Q1131R, indeed block insulin
signalling, as shown by markedly reduced IR
tyrosine kinase activity and diminished
phosphorylation of IRS1/2 (Refs 28, 30).
Of the postreceptor gene mutations in the

insulin signalling cascade, only a few were
found to cause severe insulin resistance in
humans. Several variants of IRS1 and IRS2 have

been identified in patients with insulin
resistance. Two IRS1 variants, a common
(G972R) and a rare (T608R) polymorphism, were
associated with reduced insulin sensitivity in
obese men and severe insulin resistance,
respectively (Refs 31, 32). Both polymorphisms
are located in regions implicated in PI3K
binding and abolished insulin-stimulated PI3K
activity in cell culture models (Refs 32, 33). By
contrast, variants of IRS2 were not associated
with insulin resistance, and their biochemical
properties were not characterised (Refs 34, 35).
Of the known polymorphisms in p85α and
p110β subunits of PI3K, only an R409Q amino
acid substitution in p85α was shown to
compromise insulin-stimulated PI3K activity
(Refs 36, 37). Remarkably, a mutation identified
in AKT2 resulting in an R274H amino acid
substitution in the kinase domain was
associated with autosomal dominant inherited
severe insulin resistance. AKT2 R274H has
greatly reduced kinase activity and acts in a
dominant-negative manner in that its
overexpression blocks the inhibition of FOXA2
in HepG2 cells and impairs adipocyte
differentiation in vitro (Ref. 38).

Findings in transgenic mice complement the
above observations. Mice deficient in the IR
develop severe hyperglycaemia within hours
after birth and die within days as a result of
severe ketoacidosis (Refs 39, 40). IRS1-deficient
mice have peripheral insulin resistance, but
show only slight hyperglycaemia because of
compensatory hyperinsulinaemia (Refs 41, 42).
A more severe metabolic phenotype was
observed in mice deficient in IRS2. These
animals are also insulin resistant, but show
hyperglycaemia as a result of impaired
adaptation of β-cell mass (Ref. 43). By contrast,
specific loss of elements of insulin signalling can
also improve metabolic control. It was shown
that mice with an adipose-tissue-specific
deletion of Ir are protected against obesity and
obesity-related insulin resistance (Ref. 44).
Whereas p85α R409Q is associated with reduced
insulin sensitivity in humans, loss of p85α by
mutation of the corresponding gene Pik3r1
(which encodes p85α, p55α and p50α) resulted
in improved glucose tolerance and
hypoglycaemia in mice (Refs 45, 46). It was
suggested that the loss of p85α is compensated
by p50α, which generated an increase in PIP3
on insulin stimulation (Ref. 45). However, there
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may be further compensatory mechanisms, given
that mice lacking all three isoforms of Pik3r1 are
also hypoglycaemic (Ref. 46). These studies

demonstrate that ablation of proteins can have
effects different from loss-of-function mutations
and also from inhibitor treatments in which the
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Simplified view of insulin-stimulated PI3K/AKT signalling and its substrates 
involved in cellular metabolism
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

SREBP1-c PPARγ

Figure 1. Simplified view of insulin-stimulated PI3K/AKTsignalling and its substrates involved in cellular
metabolism. A detailed description is given in the text. Abbreviations: ACACA, ACC, acetyl-CoA carboxylase;
AKT, v-akt murine thymoma viral oncogene homologue 1; 4E-BP1, eIF4E-binding protein 1; FOXO1, forkhead
box O1; G6Pase, glucose-6-phosphatase; GSK3β, glycogen synthase kinase 3β; GYS1, glycogen synthase;
INSR, IR, insulin receptor; IRS1/2, insulin receptor substrates 1/2; ME1, malic enzyme 1; mTORC1,
mammalian target of rapamycin complex 1; mTORC2, mTOR complex 2; PDPK1, PDK1,
3-phosphoinositide-dependent protein kinase-1; PGC1α, peroxisome proliferator-activated receptor
gamma, coactivator 1α; PI3K, phosphoinositide-3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate;
PIP3, phosphatidylinositol-3,4,5-triphosphate; PKC1, PEPCK, phosphoenolpyruvate carboxykinase 1;
PKCλ/ζ, protein kinase Cλ/ζ; PPARγ, peroxisome proliferator-activated receptor g; PP2A, protein
phosphatase 2A; PTPN1, PTP1b, protein tyrosine phosphatase, non-receptor type 1; RPS6, S6, ribosomal
protein S6; SCD, stearoyl-CoA desaturase; S6K, ribosomal protein S6 kinase; SLC2A4, GLUT4, solute
carrier family 2; SREBF1, SREBP1-c, sterol regulatory element binding transcription factor 1; TBC1D4,
AS160, AKT substrate 160; TRIB3, tribbles homologue 3; TSC1/2, tuberous sclerosis complex 1/2; ULK1,
unc-51-like kinase 1.
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inoperative protein remains present. For detailed
descriptions of these mouse models, the reader
is referred to another review (Ref. 47).
As described above, loss-of-function mutations

in genes of the insulin signalling pathway mostly
reduce insulin sensitivity to varying degrees.
These findings support the notion that these
genes are required for insulin action and are the
basis of our understanding of the molecular
mechanisms underlying insulin signalling and
the development of diabetes. Thus, at first sight,
it appears desirable to enhance insulin signalling
in order to counteract the development of
diabetes. However, the observation that adipose-
tissue-specific IR deficiency can improve
metabolic control and protect against obesity
suggests an interesting alternative.

Diverse effects on glucose homeostasis are
observed after deletion of individual AKT
isoforms and downstream protein kinases
in mice
Themechanismsof insulin signalling at the level of
and downstream of, AKT isoforms have been
studied extensively in transgenic mouse models.
AKT1 and AKT2 are ubiquitously expressed,
with high levels in classical insulin target tissues
such as the liver, skeletal muscle and adipose
tissue (Refs 48, 49). By contrast, the expression
of AKT3 appears more restricted and is found
mainly in the brain, the testis, adipose
tissue and pancreatic islets (Refs 48, 49). As in
the case of humans, mice lacking AKT2
are insulin resistant, hyperglycaemic and
hyperinsulineamic (Refs 8, 48, 50). Deficiency in
AKT3 does not result in metabolic aberrations.
However, somewhat conflicting results have
been obtained with mice deficient in AKT1. Two
studies reported no role for AKT1; however, a
third study described higher insulin sensitivity
and improved metabolic control (Refs 48, 51,
52). The molecular mechanisms underlying this
improved insulin sensitivity in AKT1-deficient
mice have not been defined. Although highly
similar in structure, loss of individual
AKT isoforms results in distinct phenotypes,
indicating that AKT isoforms exert
nonredundant functions. This can be partially
explained by divergent expression patterns, but
we are far from understanding the molecular
mechanisms underlying specificity (Ref. 15).
The results obtained in mouse models indicate

that individual downstream effectors of AKT

exert distinct and tissue-specific functions.
GSK3β inhibits glycogen synthesis by
phosphorylating GYS1 and is negatively
regulated by AKT. Accordingly, mice with
specific deletion of Gsk3b in skeletal muscle but
not in the liver showed improved glucose
tolerance owing to enhanced GYS1 activity and
glycogen deposition (Ref. 53). Additionally, it
was shown that mice with a pancreatic β-cell-
specific deletion of Gsk3b display increased
β-cell mass and improved glucose tolerance and
are protected against genetically and diet-
induced diabetes. This increase in β-cell mass
might occur as a result of loss of GSK3β-
mediated feedback inhibition of insulin
signalling, which is known to increase β-cell
proliferation (Refs 54, 55).

mTORC1 and its downstream target S6K are
indirectly activated by AKT2, and their roles
have also been studied in mice. Activation of
mTORC1 in β-cells by deletion of Tsc1 or Tsc2
increased cell size, proliferation and insulin
production. Thus, β-cell-specific activation of
mTORC1 improved glucose-stimulated insulin
secretion and glucose tolerance in mice (Refs 56,
57). Conversely, mice with a whole-body S6K
deficiency showed reduced β-cell mass and
hypoinsulinaemia (Ref. 58). Ablation of
mTORC1 activity in skeletal muscle in mice by
deletion of Raptor reduced oxidative capacity by
the downregulation of genes involved in
mitochondrial biogenesis. Moreover, the
glycogen content of the muscle in these mice
was increased, most likely because of enhanced
inhibition of GSK3β by hyperactivated AKT. As
a result, these mice suffered from progressive
muscle dystrophy and were glucose intolerant
(Ref. 59). Interestingly, mice with an adipocyte-
specific mTORC1 deficiency as well as those
with a whole-body S6K deficiency were
protected against diet-induced obesity and
insulin resistance. The authors proposed that the
protective effects are based on increased energy
expenditure and enhanced insulin signalling,
which are probably due to loss of negative
feedback regulation in adipose tissue (Refs 60,
61). Recently, it was shown that mice with liver-
specific activation of mTORC1 by deletion of
Tsc1 are glucose intolerant but, are protected
against diet-induced hepatic steatosis. The
authors also showed that inhibition of mTOR by
rapamycin does not reduce hepatic lipid
accumulation in mice fed a high-fat diet. Thus, it
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was concluded that mTORC1 is not required and
not sufficient to increase hepatic lipids, but rather
protects against diet-induced hepatic steatosis by
enhancing fat utilisation and gluconeogenesis in
the liver (Ref. 62) (Table 1).
These findings show that not onlyAKT isoforms

but also their downstream effectors perform
distinct functions in the regulation of glucose
homeostasis. Moreover, the impact on metabolic
control of modulating the activity of
downstream components in the insulin
signalling cascade largely depends on the
targeted tissue, as demonstrated in the case of
mTORC1 and S6K. Thus, the development of
techniques for tissue-specific, but not systemic,
targeting of downstream components could
allow further adaption of current therapies to
individual demands, such as improving β-cell
function, reducing hepatic lipid content and
restoring insulin response in skeletal muscle.

Improved glucose homeostasis in mice
lacking negative regulators of PI3K/AKT
Asmentioned above, phosphatases such as PTP1B
and PTEN antagonise insulin signalling. PTP1B
downregulates insulin-stimulated PI3K/AKT
signalling by dephosphorylating IR and IRS1/2
in a more specific manner than PTEN, which
inhibits PI3K/AKT signalling by
dephosphorylating PIP3. Because several other
growth factors, such as EGF and PDGF, can also
increase levels of PIP3 by stimulating PI3K,
PTEN appears to be a critical antagonist of all
PI3K-dependent AKT stimuli. Notably, both
PTP1B deficiency and Pten hemizygosity result
in improved glucose tolerance and insulin
sensitivity in mice (Refs 63, 64). Similar
phenotypes were found in mice with tissue-
specific PTP1B deficiency in muscle or liver, and
PTEN deficiency in muscle, adipose tissue or
liver (Refs 65, 66, 67, 68, 69, 70). Furthermore, it
was shown that mice with whole-body and
muscle-specific PTP1B deficiency, and mice
lacking PTEN in muscle and pancreas, are
protected against diet-induced insulin resistance
(Refs 63, 65, 67, 71). In contrast to PTP1B-
deficient mice, mice with Pten hemizygosity and
mice with PTEN deficiency in hepatocytes
develop tumours in various organs or
progressive hepatic steatosis with the
development of liver cancer, respectively
(Refs 69, 70, 72) (Table 2). These phenotypes
indicate that PTEN is required to control

growth-factor-stimulated PI3K/AKT signalling.
Moreover, PTEN was shown to have a
phosphatase-independent tumour-suppressive
function in the nucleus, which might also have a
role in tumour development in mice (Ref. 73).

Recent evidence suggests that the targeting of
negative regulators further downstream, such as
TRIB3, might enhance insulin signalling without
global activation of the PI3K/AKT pathway.
Whereas mice with whole-body TRIB3
deficiency showed no alterations in metabolic
control under normal conditions, TRIB3 was
shown to be upregulated in the liver of diabetic
mice and hepatic overexpression of TRIB3
impaired glucose tolerance (Refs 23, 74, 75).
Because TRIB3 seems to be dispensable under
normal conditions, but seems to contribute to
obesity-induced insulin resistance, it might
represent an attractive therapeutic target.

As underlined by the complex phenotype of
PTEN-deficient mice, the inhibition of negative
regulators can lead to global activation of
PI3K/AKT with severe side effects such as
hepatic steatosis and cancer. Thus, the safe
targeting of negative regulators of insulin
signalling may be out of reach until the
regulation of context-specific stimulation is
understood. The targeting of negative regulators
further downstream, such as TRIB3, could be
more specific and have improved side-effect
profiles.

mTOR inhibitors in clinical use and how
they affect glucose homeostasis
Although results from the studies described above
show that interfering with PI3K/AKT/mTOR
signalling mostly leads to insulin resistance, its
inhibition is an attractive treatment option for
various other diseases. Inhibition of PI3K/
AKT/mTOR signalling should be considered
especially in cancer therapy, because
inappropriate activation of this pathway is
frequently observed in many tumour types.
Indeed, the mTOR inhibitors temsirolimus and
everolimus have been approved for the treatment
of metastatic renal cell carcinoma (mRCC) and
improve overall or progression-free survival
(Refs 76, 77). Current trials explore the efficiency
of mTOR inhibitors when used in combination
with other therapies, including small-molecule
tyrosine kinase inhibitors or VEGF-directed
antibodies (Ref. 78). In addition to mRCC, an
increasing number of clinical trials study the
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Table 1. Overview of mouse models for AKT isoforms and downstream targets

Gene Deleted in Insulin
sensitivity

Glucose
tolerance

Further characteristics Refs

Akt1 Whole body + + Reduced body size, increased
neonatal mortality

48,
49

Akt2 Whole body − − Diabetes-like phenotype with
compensatory increase in
pancreatic β-cell mass, protected
against genetic- and diet-induced
hepatic steatosis

8, 20,
48,
50,
159

Hepatocytes NR NR Protected against genetic- and diet-
induced hepatic steatosis

20

Akt3 Whole body UC UC Impaired postnatal brain
development, no obvious metabolic
phenotype

48,
160

Gsk3a Whole body + + Increased hepatic glycogen content,
reduced adipose tissue mass

161

Gsk3b Whole body
(−/−)

NR NR Embryonic lethal 55

Whole body
(+/−)

NR NR Ameliorates genetically induced
diabetes

55

Pancreatic
β-cells

NR + Increased pancreatic β-cell mass,
protected against diet-induced
diabetes

54

Hepatocytes UC UC No distinct metabolic phenotype 53

Skeletal
muscle

+ + Increased muscle glycogen content 53

Tsc1 Pancreatic
β-cells

− + Increased pancreatic β-cell mass,
improvedglycaemic control in young
mice, obesity in old mice

56

Hepatocytes − − Protected against diet-induced
hepatic steatosis

62

Tsc2 Pancreatic
β-cells

NR + Increased pancreatic β-cell mass 57

Raptor Skeletal
muscle

NR − Increasedmuscle glycogen content,
progressive muscle dystrophy

59

Adipose
tissue

NR + Protected against diet-induced
obesity and hypercholesterolaemia

60

S6k Whole body + − Reduced pancreatic β-cell mass,
hypoinsulinaemia, protected against
age- and diet-induced obesity and
insulin resistance

58,
61

Further descriptions are given in the text. NR, not reported; UC, unchanged; +, improved; −, reduced; (−/−),
homozygous mutant; (+/−), heterozygous mutant.
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effects ofmTOR inhibition in other diseases, such as
pancreatic neuroendocrine tumours, astrocytomas,
lymphangioleiomyomatosis and autosomal
dominant polycystic kidney disease (Refs 79, 80,
81, 82, 83, 84). Owing to their inhibitory effect on
proliferation of lymphocytes, both compounds
have also been used for immunosuppression after
transplantation.
However, several side effects have been reported,

such as myelosuppression, pulmonary toxicity and
metabolic disturbances (Refs 85, 86). Treatment
of mRCC with mTOR inhibitors was associated
with increased blood glucose levels,
hypertriglyceridaemia and hypercholesterolaemia
(Refs 76, 77). Similarly, the use of mTOR
inhibitors after kidney transplantation was linked
to elevated cholesterol and triglyceride levels
compared with other immunosuppressive

regimens and, thus, the subsequent need for
lipid-lowering therapy (Ref. 87). Diabetes mellitus
is a frequent complication after solid organ
transplantation with an increased risk of
graft failure and cardiovascular mortality.
Whereas immunosuppressive treatments with
glucocorticoids and calcineurin inhibitors are
known to result in insulin resistance and
impaired insulin secretion, respectively, the role of
mTOR inhibitors in the development of diabetes
after transplantation is more controversial
(Refs 88, 89). Some studies indicate an
independent association of mTOR inhibitors with
diabetes onset after transplantation, but others
didnot come to the sameconclusion (Refs90, 91, 92).

Although mTOR inhibitors have been
implemented successfully in different clinical
settings, they may only be used in the treatment

Table 2. Overview of mouse models for the role of Pten and Ptp1b in glucose
homeostasis

Gene Deleted in Insulin
sensitivity

Glucose
tolerance

Further characteristics Refs

Pten Whole body
(−/−)

NR NR Embryonic lethal 64

Whole body
(+/−)

+ + Protected against genetically
induced diabetes, spontaneous
tumour development

64,
72,
162

Pancreatic
β-cells

NR NR Hypoglycaemia,
hypoinsulinaemia, protected
against streptozotocin- and diet-
induced diabetes

71

Skeletal
muscle

UC + Protected against diet-induced
insulin resistance and diabetes

67

Adipose
tissue

+ + Resistant to streptozotocin-
induced diabetes

68

Hepatocytes NR + Age-dependent hepatic steatosis
and its progressive forms

69, 70

Ptp1b Whole body + + Protected against diet-induced
diabetes

63

Skeletal
muscle

+ + Protected against diet-induced
insulin resistance

65

Hepatocytes + + Reduced hepatic lipid content
after 5 weeks of a high-fat diet,
protected against diet-induced
insulin resistance

66

UC, unchanged; +, improved; −, reduced; (−/−), homozygous mutant; (+/−), hemizygous.
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of specific tumour types, and their efficacy might
be limited by cellular escape mechanisms such as
rapamycin resistance (Ref. 77). Targeting multiple
components of the PI3K/AKT pathway might
improve antitumour potency and broaden the
spectrum of susceptible tumour types. Indeed,
based on structural similarities of PI3K and
mTOR, newly developed inhibitors aimed at
inhibition of both kinases simultaneously are
currently under investigation. In addition to
dual PI3K–mTOR inhibitors, selective AKT
inhibitors are being tested in xenograft mouse
models and early Phase I studies. However,
inhibitors targeting multiple components might
also have more severe side effects with regard to
metabolic control. The use of techniques such as
antibody-directed drug delivery could allow
cell-type-specific targeting of the PI3K/AKT
pathway and thus minimise side effects.

Stress response and MAPK signalling
in acquired insulin resistance

Although at the core of the problem there is still no
satisfying answer to the question of how insulin
resistance develops, a widely discussed concept
involves Ser/Thr kinases, which can
phosphorylate numerous sites in IRS1 and IRS2.
Phosphorylation of IRS proteins on Ser/Thr
residues can uncouple the activated IR from
downstream signal transduction modules
(reviewed in Ref. 93). This phenomenon
potentially depends on three different
mechanisms: prevention of docking of IRS to IR,
ubiquitylation followed by the proteolytic
breakdown of IRS, or prevention of the docking
of downstream effectors such as PI3K. Whereas
in the former two cases all insulin-induced
effects could be abolished, more selective defects
might develop in the latter case, dependent on
which modules are uncoupled from the
activated IR. Multiple negative inputs converge
at the level of IRS proteins. Of major importance
appears to be the increased secretion of
proinflammatory cytokines from adipocytes as
observed in obesity. Proinflammatory signalling
often involves activation of the inhibitor of κ
light polypeptide gene enhancer in B-cells,
kinase (IKBKB, IKK)–NF-κB axis, which is now
regarded as a critical pathway linking obesity-
associated chronic inflammation with insulin
resistance. For example, tumour necrosis factor-
dependent downregulation of IRS proteins
depends on IKK and can be inhibited by aspirin

(Ref. 94). Indeed, that salicylate can increase
insulin sensitivity is an old observation (Ref. 95).
Whereas IKK-knockout mice are embryonic
lethal, mice with IKK hemizygosity show lower
fasting blood glucose and insulin levels and
improved free fatty acid levels relative to
littermate controls when placed on a high-fat
diet or rendered leptin deficient (Ref. 96).
Furthermore, it has been shown that adipocyte-
derived factors can act through IKK to induce
insulin resistance in skeletal muscle (Ref. 97).

In addition to inflammation, the activation of
Ser/Thr kinases with concomitant
downregulation of the function of IRS proteins
has been observed downstream of various
conditions known to be associated with the
development of insulin resistance and T2DM,
such as hypoxia, endoplasmic reticulum (ER)
stress and the generation of reactive oxygen
species. Kinases activated under these conditions
are also called stress kinases, because their
activity positively correlates with the occurrence
of imbalances in cellular homeostasis. An increase
in circulating cytokines, as observed under
systemic low-level inflammation during obesity,
can also activate IRS Ser/Thr kinases (Ref. 93).
Among the kinases targeting IRS are GSK3, S6K,
p38 and several isoforms of the PKC family. The
PKC family consists of 12 isoforms grouped as
atypical PKCs (ζ and λ), conventional PKCs (α, β
and γ), novel PKCs (δ, e, η and θ), and protein
kinase Ns (PKN1, PKN2 and PKN3), from which
PKCδ, PKCλ/ζ and PKCθ are known to target
IRS. One widely discussed case is the activation
of JNK downstream of ER stress and the
unfolded protein response (Refs 98, 99). Obese
humans and rodents develop ER stress in
hepatocytes and adipocytes, leading to JNK-
dependent phosphorylation of IRS1 on Ser307
(numbering as in mouse) (Ref. 100) followed by
its ubiquitylation and proteolytic breakdown.
Indeed, global or conditional loss of JNK in
adipose tissue, skeletal muscle or the brain was
found to attenuate diet-induced insulin resistance
in mice fed a high-fat diet, supporting the notion
of a repressive role for JNK in insulin action
(Ref. 9). Surprisingly, mice in which the target site
for JNK in IRS1 (Ser307) was replaced by an
alanine were less insulin sensitive, as were mice
lacking JNK1 in hepatocytes (Refs 9, 101). The
latter two observations indicate that JNK is
required for insulin action in hepatocytes, once
more underlining the context dependence of
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insulin signal transduction. The case of JNK
exemplifies the dilemma: a significant number of
IRS kinases believed to be responsible for the
development of insulin resistance are also
required for insulin-dependent metabolic control.
For example, ERK1/2 are believed to link insulin
with cell proliferation, differentiation and the
regulation of lipid metabolism, whereas isoforms
of PKC may be required for insulin-induced
glucose transport (Refs 102, 103, 104, 105, 106,
107, 108, 109). These intricate interconnections
certainly complicate the development of
intervention strategies based on MAPKs in the
treatment of insulin resistance.

AMPK – an energy sensor targeted in the
treatment of metabolic syndrome

When intracellular energy levels are low, cellular
metabolism must shift from energy-consuming
anabolic processes towards energy-producing
catabolic processes. AMPK, a sensor of the
availability of intracellular energy, is activated at
low energy levels and regulates cellular
processes accordingly. This kinase inhibits
insulin-stimulated anabolic processes such as de
novo lipogenesis and glycogen synthesis.
Nevertheless, AMPK activity supports whole-
body glucose homeostasis and improves insulin
sensitivity by promoting processes such as
glucose uptake and energy expenditure. The
effects of the widely used antidiabetic drug
metformin have been shown to depend largely
on activation of AMPK (Ref. 110). Thus, AMPK
is currently the only protein kinase targeted in
the treatment of metabolic syndrome.

AMPK signalling pathway
AMPK is a heterotrimeric complex consisting of a
catalytic α-subunit and two regulatory subunits (β
and γ). There are several isoforms of each subunit
encoded by individual genes, including PRKAA1
(α1), PRKAA2 (α2), PRKAB1 (β1), PRKAB2 (β2),
PRKAG1 (γ1), PRKAG2 (γ2) and PRKAG3 (γ3)
(Ref. 111). The different isoforms of AMPK
subunits are expressed tissue specifically and
exert both overlapping and distinct functions
(Refs 112, 113). The AMPK pathway is activated
by a variety of physiological stimuli, such as
glucose deprivation, hypoxia, oxidative stress
and muscle contraction. The common result of
these stimuli is a reduction in cellular energy
level and an increase in AMP/ATP ratio, which
is crucial for AMPK activity. AMPK is also

activated by different hormones, including
leptin and adiponectin, but the mechanisms by
which these hormones activate AMPK are not
yet fully elucidated. For full kinase activity,
AMPK must be phosphorylated at Thr172 in the
catalytic domain of the α-subunit by upstream
kinases such as serine/threonine kinase 11
(STK11, LKB1) and calcium/calmodulin-
dependent protein kinase kinase β (CAMKKβ).
LKB1 is a constitutively active kinase and
considered to be the predominant upstream
kinase of AMPK, but also phosphorylates 13
other AMPK-related kinases (Ref. 114). Protein
phosphatases (PP2A and PP2C) antagonise
upstream kinases and inhibit AMPK activity by
dephosphorylation of Thr172. Most importantly,
AMPK activity and Thr172 phosphorylation are
highly dependent on the intracellular AMP/ATP
ratio. AMP and ATP bind to the γ-subunit of
AMPK in a competitive manner. When the
AMP/ATP ratio is high, binding of AMP to
AMPK allosterically activates kinase activity
fivefold and induces conformational changes
that block the dephosphorylation of Thr172 by
PP2A and PP2C, which preserves activation by
upstream kinases (reviewed in Refs 111, 115,
116). It has been recently proposed that binding
of AMP triggers exposure of a myristoyl group
at the AMPK β-subunit, which promotes
membrane association and primes AMPK for
activation by upstream kinases (Ref. 117). In
addition, it was shown that binding of ADP to
AMPK protects against dephosphorylation of
Thr172, but does not induce allosteric activation
of AMPK (Ref. 118). Activated AMPK
phosphorylates substrates such as AS160, GYS1,
acetyl-CoA carboxylase α (ACACA, ACC) and
malonyl-CoA decarboxylase (MLYCD, MCD),
thus stimulating glucose uptake, inhibiting
glycogen synthesis, inhibiting de novo
lipogenesis and enhancing β-oxidation,
respectively. AMPK also indirectly inhibits
mTORC1, thereby blocking protein synthesis,
enhancing respiration and probably improving
insulin sensitivity by counteracting mTORC1-
and S6K-induced inhibition of IRS1/2 (reviewed
in Ref. 116).

Complex role of AMPK isoforms
in metabolic control
As mentioned above, the antidiabetic effects of
metformin largely depend on AMPK activation.
Thus, characterising the role of AMPK isoforms
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in mammalian physiology is of great importance
and a prerequisite for the achievement of more
specific and efficient targeting of AMPK
compared with metformin. Genetic mutations in
elements of the AMPK pathway in humans and
their pathophysiological effects in glucose
homeostasis are not yet fully characterised.
Several polymorphisms in LKB1 and AMPK α2
and γ2 subunits are associated with insulin
resistance and T2DM in different subsets of
patients (Refs 119, 120, 121). Interestingly,
polymorphisms in LKB1, α1-, α2- and β2-
subunits of AMPK as well as in AMPK targets
myocyte enhancer factor 2A (MEF2A) and
MEF2D were found to be associated with
reduced response to metformin treatment
(Refs 119, 121). Because metformin is thought to
function mainly by activating AMPK, the
identified polymorphisms might affect the
functions of LKB1, AMPK, MEF2A and MEF2D.
However, the physiological and biochemical
consequences of the identified polymorphisms
remain to be characterised. Apart from that,
LKB1 has tumour suppressor functions and its
mutation can cause Peutz–Jeghers syndrome,
which is characterised by mucocutaneous
pigmentation, hamartomatous polyps
and increased risk of cancer (Ref. 122). In
addition, mutations in PRKAG2 were shown to
cause hypertrophic cardiomyopathy with
Wolff–Parkinson–White syndrome owing to a
glycogen storage disorder (Refs 123, 124, 125).
The complex roles of AMPK isoforms in insulin-

sensitive tissues have been studied in transgenic
mice. Whereas loss of AMPKα1 did not alter
metabolic control in mice, global or tissue-
specific loss of individual AMPK isoforms
mostly led to impaired glucose homeostasis
(Ref. 126). PRKAα2-knockout mice were glucose
intolerant and insulin resistant and showed
impaired glucose uptake on stimulation with the
AMPK activator 5-aminoimidazole-4-
carboxamide riboside (AICAR) (Refs 10, 126). In
addition, deletion of Prkaa2 specifically in β-cells
resulted in defective glucose-stimulated insulin
secretion (Ref. 127). Hepatocyte-specific deletion
of Prkaa2 in the liver revealed that AMPK
inhibits gluconeogenesis and release of glucose
in the liver (Ref. 128). PRKAβ2-knockout mice
had reduced maximal and endurance exercise
capacities and were more susceptible to diet-
induced weight gain and glucose intolerance;
PRKAγ3-knockout mice were shown to have

impaired AICAR-stimulated glucose uptake
(Refs 129, 130). By contrast, activation of AMPK
in the hypothalamus increased food intake,
suggesting that inhibition of AMPK in the
hypothalamus could protect against obesity-
induced insulin resistance (Ref. 131). Indeed,
mice lacking AMPKβ1, which is highly
expressed in the liver and brain, were protected
against diet-induced obesity, insulin resistance
and hepatic steatosis, probably because of
reduced food intake (Ref. 132).

These studies show that the effects of AMPK on
glucose homeostasis are highly complex as a result
of isoform- and tissue-specific functions.
Simultaneous modulation of its activity in
different tissues can have opposing effects on
glucose homeostasis, which could complicate the
development of therapeutic approaches directly
targeting AMPK. However, isoform- and tissue-
specific targeting could also provide a basis for
highly specific and effective therapeutic
approaches in addition to metformin treatment.

Metformin and AMPK in clinical use
Metformin has been used in the clinic for several
decades for the treatment of insulin-resistant and
diabetic patients. The drug improves insulin
sensitivity, lowers blood glucose and
cholesterol levels without risk of acute
hypoglycaemia and weight gain, and reduces
the risk of diabetes-related complications such
as cardiovascular disease (Ref. 133). The notion
that metformin elicits its beneficial effects
mainly through the activation of AMPK is
further underlined by observations of mice
with abolished hepatic AMPK activity due to
hepatocyte-specific LKB1 deficiency (Ref. 134).
Metformin failed to lower blood glucose in
these mice, indicating that activation of AMPK
through LKB1 in the liver is required (Ref. 134).
Nevertheless, several AMPK-independent
effects of metformin have been reported
(Ref. 110). It was recently shown that
metformin can block gluconeogenesis in
isolated mouse hepatocytes independently of
LKB1 and AMPK (Ref. 135).The mechanism of
AMPK activation by metformin is still
controversial. One hypothesis is that metformin
activates AMPK indirectly by inhibiting
complex I of the respiratory chain, which
compromises cellular energy production and
increases the AMP/ATP ratio (Refs 136, 137).
However, metformin also activates AMPK in an
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adenine-nucleotide-independent manner
(Ref. 138). More recently, it was proposed that
metformin activates PKCζ, which
phosphorylates LKB1 at Ser428, resulting in
nuclear export of LKB1 and activation of
AMPK (Ref. 139). Metformin may mainly
activate AMPK in the liver, muscle and
vasculature, because cellular uptake of the drug
is dependent on transmembrane transporters
such as solute carrier family 22 (organic cation
transporter), member 1 (SLC22A1, OCT-1).
Whereas OCT-1-deficient mice indeed have a
diminished response to metformin, the role of
OCT-1 polymorphisms in diabetic patients is
controversial (Refs 140, 141).
Metformin is used at inconveniently high

doses, and its clinical use is restricted in
patients with renal or hepatic disease owing to
increased risk of lactic acidosis (Ref. 133).
Hence, direct activation of AMPK by other
means would be an attractive alternative in the
treatment of diabetic patients. The AMPK
activator A-769662 efficiently lowered blood
glucose and triglycerides and transiently
reduced body weight gain in mouse models of
genetically induced obesity and insulin
resistance (Ref. 142). In addition, treatment
with AICAR was shown to reduce blood
glucose levels in diabetic patients. One side
effect associated with the activation of AMPK
could be increased food intake because of its
role in the hypothalamus. However, treatment
with metformin reduces body weight in
patients by decreasing appetite and food intake
(Refs 143, 144). The underlying mechanisms
remain poorly understood (Refs 143, 144). A
transient reduction in food intake was reported
in obese mice, but not in lean mice treated with
A-769662, because this drug may not activate
AMPK in the brain (Ref. 142). By contrast,
increased food intake was observed in mice
treated with AICAR (Refs 131, 145). A-769662
and AICAR were also shown to have AMPK-
independent activity, and possible side effects
of long-term treatment have not been assessed
(Refs 146, 147).
Metformin is now also considered for use in

cancer therapy. Epidemiological studies have
assessed the association between obesity or
T2DM and cancer in large populations
(Refs 148, 149). Although intensively
investigated, the molecular mechanisms linking
cancer with obesity are still not fully

elucidated. Chronic hyperinsulinaemia has
been suggested to contribute to increased
tumour growth, because it may directly
activate insulin receptor on (pre-)neoplastic
cells or indirectly through promotion of
insulin-like growth factor 1 (IGF1) synthesis.
Both insulin and IGF1 enhance tumour growth
in xenograft models by increasing cell
proliferation and inhibiting apoptosis. There is
an ongoing debate as to whether the use of
insulin analogues in the treatment of obese and
diabetic patients could further increase the risk
of cancer. Whereas certain insulin analogues do
lead to tumour development in rats, their
effect in human patients remains controversial
(Refs 150, 151, 152). In line with the
amelioration of obesity and hyperinsulinemia
by metformin, observational data showed that
its use was associated with a reduced risk of
cancer (Refs 143, 153, 154). Additionally, it
might also inhibit tumor progression by
AMPK-mediated inhibition of mTORC1, and
possibly also by a Rac GTPase-dependent and
AMPK-independent mechanism (Ref. 155).
Combined cancer therapy with metformin and
drugs targeting the PI3K/AKT pathway might
result in the synergistic inhibition of mTORC1.
This strategy could also overcome impaired
glucose homeostasis resulting from PI3K/AKT
pathway inhibition.

Concluding remarks
The insulin signal transduction network and the
biochemical properties of its components have
been extensively studied. There is increasing
knowledge of how PI3K/AKT, MAPK and
AMPK signalling controls and how their failure
impairs glucose homeostasis. Moreover, studies
in transgenic mice have demonstrated that
specific modulation of protein kinase signalling
can effectively improve glucose homeostasis and
protect against obesity, acquired insulin resistance
and diabetes. However, very little translation into
clinical practice has taken place. Metabolically
relevant cellular functions such as glucose
transport, lipogenesis, glycogen synthesis and
gluconeogenesis are controlled by kinases that do
not act exclusively within the insulin signal
transduction network. It has emerged that all
signal transduction events within a cell are
interconnected and that mere description of the
network is not sufficient to define mechanisms
underlying both context and stimuli specificity.
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Hence, global modulation of kinase activity by, for
example deletion of PTEN and the use of mTOR
inhibitors might result in severe side effects such
as cancer and impaired metabolic control,
respectively. The development of safe kinase-
based therapies will probably remain elusive
until we understand how cells integrate
signalling information to implement context in
their respective intracellular signal transduction
network. In addition, the development of specific
inhibitors is complicated by high structural
similarities in the catalytic domains of different
protein kinases. Reduced specificity resulting in
the inhibition of multiple targets could be
beneficial in cancer therapy because it might
potentiate toxicity on cancer cells. Inhibitors used
for the treatment of metabolic syndrome should,
by contrast, be highly specific in order to
minimise side effects and allow long-term
treatment. Targeting kinases in their inactive
state, in which they show higher structural
diversity than in their active conformation, or
disrupting protein complexes of kinases was
suggested for the design of inhibitors with
increased specificity (Refs 156, 157, 158). Tissue-
specific targeting by using transmembrane
carriers or metabolic activation, as well as the
targeting of specific isoforms or effectors further
downstream, might provide a route to increased
specificity of drugs and minimal side effects.
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Features associated with this article

Figure
Figure 1. Simplified view of insulin-stimulated PI3K/AKT signalling and its substrates involved in cellular

metabolism.

Tables
Table 1. Overview of mouse models for AKT isoforms and downstream targets.
Table 2. Overview of mouse models for the role of Pten and Ptp1b in glucose homeostasis.
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