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S U M M A R Y
The representation of viscoelastic media in the time domain becomes more challenging with
greater bandwidth of the propagating waves and number of travelled wavelengths. With the
continuously increasing computational power, more extreme parameter regimes become ac-
cessible, which requires the reassessment and improvement of the standard ‘memory variable’
methods to implement attenuation in time-domain seismic wave-propagation methods. In this
paper, we propose a method to minimize the error in the wavefield for a fixed complexity of
the anelastic medium. This method consists of defining an appropriate misfit criterion based
on a first-order analysis of how errors in the discretized medium propagate into errors in
the wavefield and a simulated annealing optimization scheme to find the globally optimal
parametrization. Furthermore, we derive an analytical time-stepping scheme for the memory
variables that encode the strain history of the medium. Then we develop the coarse grained
memory variable approach for the spectral element method (SEM) and benchmark it using the
2.5-D code AxiSEM for global body waves up to 1 Hz. Showing very good agreement with a
reference solution, it also leads to a speedup of a factor of 5 in the anelastic part of the code
(factor 2 in total) in this 2.5-D approach. A factor of ≈15 (3 in total) can be expected for the
3-D case compared to conventional implementations.

Key words: Seismic attenuation; Computational seismology; Theoretical seismology; Wave
propagation.

1 I N T RO D U C T I O N

Ongoing advances in supercomputer architecture and numerical
methods enable the solution of the wave equation in increasingly ex-
treme parameter regimes, such as higher frequency waves in larger
modelling domains, having longer propagation distances in terms
of the number of travelled wavelengths. Numerical errors as well
as errors in physical approximations accumulate over these larger
distances and require more precision both in the numerical solu-
tion and in the physical medium representation. We address the
question of how accurate attenuation and the corresponding physi-
cal dispersion needs to be represented to accurately model seismic
waves including attenuation with a focus on global body waves,
although the treatment is more general and scale invariant. Even
though the quality factor Q is itself poorly constrained by existing
seismic studies, especially its 3-D structure and frequency depen-
dence (Romanowicz & Mitchell 2007, and references therein), we
consider it an essential pre-requisite to carefully evaluate the accu-
racy of the numerous numerical and physical approximations, be-
fore upscaling conventional methods of implementing attenuation
to the more extreme regimes that modern computational seismology
approaches.

While moving from purely elastic to viscoelastic media is easy
in the frequency domain via the correspondence principle and
introduction of complex-valued media properties, it is more in-
volved in the time domain since the multiplication in the consti-
tutive relation of the elastic medium needs to be replaced by a
convolution. A first method to transform the stress–strain relation
into a differential form using Padé approximations is introduced
by Day & Minster (1984). Later, Emmerich & Korn (1987) and
Carcione et al. (1988) suggested to improve this by approximat-
ing the medium properties with a discrete relaxation spectrum (Liu
et al. 1976) and fitting the parameters used to describe this spec-
trum to the observed behaviour numerically. These methods are
still common today (e.g. Komatitsch & Tromp 2002b; Graves &
Day 2003; Kristek & Moczo 2003; Käser et al. 2007; Fichtner et al.
2009; Savage et al. 2010), a more complete summary and historical
overview is given by Carcione (2007) and Moczo et al. (2014). In
this study, we suggest several improvements to this scheme leading
to better accuracy in the medium representation at zero extra cost.

Even if Q is large [on the global scale the minimum observed
value is about 50, Gung & Romanowicz (2004)] and the effect of
attenuation on the seismograms small, accounting for it typically
leads to an increase of the computational costs by a factor of two to
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four in both computation time and memory (e.g. Blanch et al. 1995;
Käser et al. 2007). Day (1998) suggested a method called the coarse-
grained memory variable approach to redistribute the medium prop-
erties on the subwavelength scale such that it behaves the same for
the wavefield, but is computationally significantly less expensive.
Day’s method was originally developed for the acoustic wave equa-
tion and regular grid finite-difference schemes. It is generalized
to the viscoelastic wave equation and improved by more appropri-
ate averaging schemes by Day & Bradley (2001) and Graves & Day
(2003). Kristek & Moczo (2003) further improved the scheme by in-
troducing material-independent memory variables to avoid artificial
averaging of material parameters at gridpoints where interpolation
of the memory variables is necessary (e.g. in the context of hetero-
geneous finite-differences methods at material discontinuities or for
thin layers). Ma & Liu (2006) apply the coarse-grained method to
a low-order finite-element scheme on unstructured grids. However,
their approach cannot directly be translated to higher-order meth-
ods such as the spectral element method (SEM), because in such
schemes the elements are too large compared to the wavelength
(less than four elements per wavelength). We propose to redistribute
the medium properties within the elements on the high-order basis
functions, which again is small scale compared to the wavelength.

On the global scale, high-frequency body waves are routinely
observed at propagation distances of 1000–2000 wavelengths and
more, a regime that is hardly accessible with current global 3-D
solvers and computers (Carrington et al. 2008). While the meth-
ods we propose for parameter optimization are completely general
and the coarse-grained memory variable approach applicable to all
high-order finite-element methods, we use the axisymmetric SEM
AxiSEM introduced by Nissen-Meyer et al. (2007a,b, 2008), fur-
ther developed to include anisotropy by van Driel & Nissen-Meyer
(2014) and published open source by Nissen-Meyer et al. (2014)
as an example implementation to test our theoretical arguments.
The efficiency of this 2.5-D approach allows very high-frequency
simulations (currently up to 2 Hz on the global scale) that are still
impossible to reach using full 3-D methods, so it provides a good
basis to test common physical and numerical approximations.

Other axisymmetric approaches to global and local wave prop-
agation have been presented (Alterman & Karal 1968; Igel &
Weber 1995, 1996; Chaljub & Tarantola 1997; Furumura et al.
1998; Thomas et al. 2000; Takenaka et al. 2003; Toyokuni et al.
2005; Jahnke et al. 2008), but only recently Toyokuni & Take-
naka (2006, 2012) generalized their method to include moment
tensor sources, attenuation and the Earth’s centre. These methods
are all based on isotropic media and especially the finite-difference
methods among them have to deal with large dispersion errors
for interface-sensitive waves such as surface waves and diffracted
waves (Igel & Weber 1995; Igel et al. 1995). We generalize AxiSEM
to viscoelastic anisotropic axisymmetric media to overcome these
issues. This enables the simulation of high-frequency body waves
with a particularly high sensitivity to attenuation, travelling dis-
tances over thousands of wavelengths such as transmitted, reflected
and diffracted core phases.

2 T H E O RY

Here, we introduce the concepts and our notation for time-domain
modelling of the memory variable approach to viscoelastic dissipa-
tion. We start with the simple 1-D case (scalar instead of tensorial
quantities) and generalize to the full 3-D problem subsequently.

2.1 Preliminaries

The most general linear stress–strain relation is the convolution,
that is, the strain ε from all times can linearly influence the stress σ

at time t:

σ (t) =
∫ ∞

−∞
M(t − τ ) · ε(τ ) dτ

=
∫ ∞

−∞
R(t − τ ) · ε̇(τ ) dτ. (1)

Here, R(t) is the stress relaxation function with the modulus
M(t) = Ṙ(t), that is, the stress response to a unit step in the strain.
Assuming causality [strain in the future cannot affect the current
stress state: M(t) = 0, t < 0], fading memory [more recent strain
has a larger impact on the current state: M(t) is monotonous and
converges to 0 for t → ∞] and solid behaviour in the limit of
low frequencies [a constant strain causes a constant nonzero stress:
limt → ∞R(t) = MR > 0], the time-dependent modulus takes the
general form shown in Fig. 1: zero for negative time and decaying
to a constant positive value for positive times (Christensen 1982).
This can be approximated with a discrete relaxation spectrum (Liu
et al. 1976)

R(t) =
⎡
⎣MR + δM

N∑
j=1

a j e
−ω j t

⎤
⎦ H (t), (2)

with N > 0 single peaks of strength aj > 0,
∑

jaj = 1 located at the
relaxation frequencies ωj > 0.

This frequency dependence can be interpreted using mechanical
models with combinations of springs and dash-pots such as the gen-
eralized Maxwell or Zener bodies. As shown by Moczo & Kristek
(2005), these two interpretations lead to different parametrization
of the medium, but result in the same mechanical behaviour. The
relation between the parameter sets in the Maxwell (aj and ωj) and
Zener body (τ εj and τ σ j, the strain and stress relaxation times) repre-
sentation can be found by comparing eq. (8) in Blanch et al. (1995)
and eq. (11) in Emmerich & Korn (1987):

a j
δM

MR
= τε j

τσ j
− 1, ω j = 1

τσ j
. (3)

In this paper, we will use the Maxwell body notation as introduced
by Emmerich & Korn (1987), but the results can be directly applied
to the Zener body formulation using the above relations. Using the

Figure 1. Stress relaxation function R for a viscoelastic medium in the time
domain, that is, the stress response to a unit step in strain. MU and MR denote
unrelaxed and relaxed modulus, respectively. Adapted from Emmerich &
Korn (1987) and Christensen (1982).
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discrete relaxation spectrum, the resulting stress–strain relation can
be written as

σ (t) = MU ε(t) −
N∑

j=1

ζ j (t), (4)

where influence of the strain history on the current state of the
material is encoded in the ‘memory variables’ ζ j. The memory
variables obey the N differential ‘memory variable equations’

ζ̇ j (t) + ω jζ
j (t) = a jω jδMε(t) (5)

that are driven by the strain of the medium ε(t). The resulting
frequency-dependent modulus and quality factor Q are (Emmerich
& Korn 1987):

M(ω) = MR +
∑

j

a jδM
iω

iω + ω j
, (6)

Q−1(ω) = ImM

ReM
= δM

MR

∑
j a j

ω/ω j

1+(ω/ω j )2

1 + δM
MR

∑
j a j

(ω/ω j )2

1+(ω/ω j )2

. (7)

Arbitrary frequency dependency of Q can hence be approximated
by a sum of absorption bands (see Fig. 2), by tuning the 2N param-
eters of the discrete relaxation spectrum aj and ωj. This is one non-
linear optimization problem for each set of Q and M in the model.
It is important to note that this optimization is subject to the addi-
tional non-linear constraint aj > 0 [equivalent τ ε > τσ for the Zener
model, compare Carcione (2007), eqs. 2.169 and 2.193].

An important consequence of causality are the Kramers–Kronig
relations stating that the real and imaginary part of M(ω) are related
by Hilbert transforms. The medium is therefore fully described by
either the modulus or the phase velocity at a reference frequency

Figure 2. Inverse quality factor Q−1 and real part of the modulus M for a
medium with three standard linear solids (see eqs 6 and 7). Dashed red lines
indicate contributions from the individual linear solids, black solid lines the
sum. Arbitrary frequency dependency (here: constant Q/logarithmic M in a
limited frequency range) can be approximated by a sum of absorption bands.
In the limit of large Q these take the form of Debye functions.

ωr, and the quality factor in the frequency range of interest Q(ω),
which in practice is often assumed to be constant or obey a power
law.

Given the modulus or phase velocity at a reference frequency
ωr inside the frequency range where Q is optimized, δM, MR and
MU can be found by evaluating eq. (6) at this frequency. As δM is
unknown before the optimization, a change of variables is necessary
defining new coefficients y j = δM

MR
a j . Then, with the yj found by

optimization, we can find

γ := 1∑
j y j

∑
j

y j

ω2
j

ω2
r + ω2

j

, (8)

δM = M(ωr )

/(
1∑
j y j

+ 1 − γ

)
, (9)

MU = M(ωr ) + γ δM, (10)

MR = M(ωr ) − (1 − γ )δM. (11)

A basic question is then what criterion to use in order to find
the parametrization of the medium for a numerical solution to the
wave equation. We strive to optimize this procedure by means of the
maximal error tolerance in the wavefield as defined by amplitude
and phase error estimates in the next section.

2.2 Optimal Q parametrization

In this section, we analyse the influence of deviations in M(ω) and
Q(ω) on the wavefield. As discussed, the optimization problem of
finding the best set of 2N parameters is inherently non-linear (also
for large Q due to the free choice of relaxation frequencies) and has
a non-linear constraint. Taking this as given, choosing a non-linear
optimization approach such as simulated annealing also enables
the free choice of optimization criteria. The goal of this section is
to define such a criterion for finding the material parametrization
for the discrete relaxation spectrum that minimizes the error in the
wavefield.

We analyse the performance of different medium parametriza-
tions using the dissipation operator (Müller 1983) in the approxi-
mation for large Q as suggested by Emmerich & Korn (1987):

D(ω) = exp

[
iωTr

(
1 −

√
|Mr |
M(ω)

)]
. (12)

Here Tr and Mr = M(ωr) denote the traveltime and the modulus at
the reference frequency ωr. The anelastic response is then found by
convolving the elastic response computed using the medium prop-
erties at the reference frequency with this dissipation operator. To
evaluate the influence of errors in the representation of the medium,
we separate amplitude and phase effects by writing this operator
as

D(ω) = A(ω)eiϕ(ω). (13)

In the case of large Q, these can be approximated with
M = M1 + iM2 = M1(1 + i/Q) as:

A(ω) ≈ exp

(
−1

2

ωTr

Q(ω)

√
|Mr |

M1(ω)

)
(14)

for the amplitude and

ϕ(ω) ≈ ωTr

(
1 −

√
|Mr |

M1(ω)

)
(15)
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for the phase. The relative error in Q is typically an order of magni-
tude larger than the relative error in M1. This can be seen from eqs (6)
and (7): while Q−1 depends in first order on the frequency, M is a con-
stant plus a small frequency-dependent term. Then, the first-order
effect of amplitude and phase errors in the medium parametrization
can be found as


A

A
= 1

4π


Q

Q

nλ

Q
(16)

and


ϕ = − 1

4π


M1

M1
· nλ, (17)

where nλ denotes number of propagated wavelengths and 
Q
Q and


M1
M1

are the relative errors in quality factor and real part of the
modulus. As expected intuitively, the phase error is determined by
the error in the real part of the modulus, which for large Q dominates
the phase velocity, while the error in amplitude is determined by the
error in Q.

Fig. 3 shows how the acceptable errors in the real part of the
modulus and Q can be determined based on the phase and ampli-
tude errors that are acceptable in a given application. For global
high-frequency body waves (t∗ = Tr/Q = 4s, nλ = 1000) and an
acceptable error of a few per cent in phase and amplitude, we con-

Figure 3. Given acceptable amplitude (top panel) or phase (bottom panel)
error, what are the requirements for the parametrization of the anelastic
medium in terms of acceptable error in quality factor Q and modulus M for
a range of number of travelled wavelengths nλ. Shaded areas indicate typical
global body waves, that is, t∗ = 1–4 s, period 1–10 s, traveltime 1000–2000 s.
Note the different scales on the y-axis.

clude that Q should be approximated to well below 1 per cent and the
modulus below 0.03 per cent. In contrast, the same seismic phase
observed at lower frequencies, that is, smaller nλ = 100 as typically
used in full 3-D global simulations, is well represented with errors
in Q and modulus that are 10 times larger.

2.2.1 Optimization criteria and variables

It is common practice (Emmerich & Korn 1987; Blanch et al. 1995;
Komatitsch & Tromp 2002b; Graves & Day 2003; Kristek & Moczo
2003; Käser et al. 2007; Savage et al. 2010) to find the medium
parametrization aj, ωj by choosing the relaxation frequencies ωj

a priori, mostly logarithmically spaced in the frequency range of
interest. Then, the aj can be found by sampling Q(ω) at a finite
number of frequencies ωk and solving an overdetermined inverse
problem. We propose the following three-fold strategy to improve
the parametrization: (1) a specific choice of the norm for the afore-
mentioned inverse problem, (2) invert for ωj instead of setting them
a priori and (3) fit the medium more accurately at the higher fre-
quencies.

As can be seen from eq. (14), variations in Q affect seismogram
amplitudes exponentially. The logarithmic error in the amplitude
is therefore of the same size when Q is multiplied or divided by
a constant. Also, Q is always positive, which motivates usage of
the logarithmic error for Q instead of the plain l2-norm. While in
the limit of small deviations these two norms are asymptotically
identical, the log-l2 norm emphasizes negative deviations from the
optimal Q that are larger than a few per cent. Eqs (16) and (17) also
show that high-frequency waves that have travelled more wave-
lengths are more sensitive to errors in the parametrization with the
factor nλ. This motivates a linear weighting of the frequencies and
we minimize

ε2 =
∫ (

ln(Qtarget)

ln(Qls)

)2

· w(ω) d ln ω, (18)

where Qtarget and Qls are the exact quality factor and its approxima-
tion by the linear solid from eq. (7), respectively. The weights w(ω)
are set to 1 by most authors (compare citations in the first para-
graph of this section), the linear frequency weighting we suggest is
w(ω) = ω. For the error in the real part of the modulus we use the
standard l2-norm, as the relative errors are very small anyway.

Fig. 4 visualizes the importance of including the relaxation fre-
quencies in the optimization: for log-spaced fixed frequencies, the
discretization of the medium does not converge towards the analyti-
cal behaviour, neither for increased N nor for smaller bandwidth for
which the medium is optimized. This is in contrast to the finding
by Savage et al. (2010), Fig. 2, whose results we are only able to
reproduce when ignoring the constraint aj > 0. For applications
where fitting of Q better than 1 per cent is needed (this is low Q
or many wavelength propagation as for global high-frequency body
waves, compare Fig. 3), inversion for the relaxation frequencies is
inevitable. This non-linear optimization problem with 2N param-
eters can effectively be solved by a simulated annealing approach
within seconds using 105–107 iterations for N ≤ 6, this was also
suggested by Liu & Archuleta (2006).

Fig. 5 shows three examples of seismograms calculated with dif-
ferent medium representations that have the same numerical com-
plexity in time-domain wave-propagation solvers due to the same
number of memory variables. Both the reference solution and the
approximations are calculated using the dissipation operator, the
difference is only in M(ω). The first column represents the standard
method of choosing the relaxation frequencies of the absorption
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Figure 4. Importance of the choice of relaxation frequencies for a good
approximation of constant Q for various numbers of absorption bands N as
a function of bandwidth: frequencies fixed log-spaced (dashed lines) versus
inversion using simulated annealing (solid line). Note that for fixed relax-
ation frequencies Q does not converge towards the optimal value, neither
for larger N, nor for smaller bandwidth, and the minimal error is about 1 per
cent. The dots correspond to the first two examples in Fig. 5.

bands log-spaced. Inverting for the frequencies can reduce both
the misfit in Q and consequently phase and amplitude errors of
the seismograms in all frequency bands by factors of 2–4 (second
column). Additional frequency weighting reduces the phase and en-
velope misfit by another factor of 2 in the highest frequency band
at the cost of worse fit in the lower frequency range (third col-
umn), resulting in same order of magnitude misfits in all frequency
bands.

2.2.2 The modulus

From the examples in Fig. 5, it can be observed that even when fitting
Q(ω) with high accuracy for the high frequencies, the modulus has
a maximum in the relative error close to the bounds of the frequency
band. This can be understood from a relation between Q and the
modulus that is valid in the approximation of large and almost
constant Q (Dahlen & Tromp 1998, eq. 6.75):

∂ ln M1(ω)

∂ ln ω
≈ 2

π Q(ω)
. (19)

Thus, the modulus takes a maximum in its derivative at the peaks
of Q(ω). Another disadvantage of optimizing Q only is that the
choice of the reference frequency where the modulus is known
has an important effect: if it coincides with one of the maxima
of the approximation of the modulus, the average value of M1 and
hence the phase velocity are skewed. This can be avoided by relaxing
the requirement that the approximate modulus matches the reference
exactly at the reference frequency. Instead the ratio MR/M1(ωr) can
be added as a parameter to the inverse problem. M(ω) can be found
via the Kramers–Kronig relations, either by numerical evaluation
or analytical, for example, for constant Q (Kjartansson 1979)

M(ω) = M(ωr )

(
iω

ωr

) 2
π tan−1 Q−1

. (20)

The fit of M1 can then be added to the inverse problem with
a weighting relative to the fit of Q. Fig. 6 shows an example,
where the reference frequency was deliberately chosen inconvenient

(fr = 2 Hz) at the upper limit of the frequency range. If the modulus
is determined by setting it to the reference value at the reference
frequency, its average value is too low, leading to large phase errors.
Adding the real part of the modulus to the optimization criterion
circumvents this problem and makes the result independent of the
choice of the reference frequency, while keeping essentially the
same Q(ω) (green). Additionally, the parametrization can be tuned
towards lower amplitude or phase errors by the weighting between
Q and M1 in the optimization criterion (red).

2.3 Determination of the optimal structural parameters in
full-scale applications

In full seismic applications, the material parameters aj and ωj need
to be determined for many values of Q and seismic velocities,
typically for each spatial gridpoint, that is, 106−109 times. The
performance of an algorithm to find them is thus important and
several approaches have been suggested.

For large Q values, eq. (7) can be linearized by realizing that
δM/MR becomes small:

Q−1(ω) ≈ δM

MR

∑
j

a j
ω/ω j

1 + (ω/ω j )2
. (21)

This was proposed by Emmerich & Korn (1987) and later be-
came more popular as the ‘τ -method’ by Blanch et al. (1995). The
advantage of this method is that it results in only one inverse prob-
lem while finding the parameters for different Q is trivial due to
the linearity of aj in Q−1. For low values of Q, this approxima-
tion introduces a logarithmic error to the resulting approximation
of constant Q, see blue curve in Fig. 7(a). The largest error shows
up at the high-frequency end of the frequency range of interest, that
is, where the wavefield is most sensitive to such errors, see earlier.
Furthermore, this problem becomes more dominant with increasing
bandwidth.

Often, the relaxation frequencies ωj are not inverted for, but fixed
log-spaced, since this allows for a linear (hence faster) inversion for
the parameters aj as suggested by Emmerich & Korn (1987) by
rearranging terms in eq. (7).

Similarly, Savage et al. (2010) use log-spaced frequencies, but
a simplex approach for the non-linear inversion and suggest to use
a look-up table to solve fewer inverse problems. However, these
methods cannot handle the constraint aj > 0.

Liu & Archuleta (2006) present empirical formulae to interpo-
late the parameters between the largest and smallest value of Q
in the model and use a simulated annealing approach to solve the
remaining two inverse problems. As they do not present a closed
form to find the coefficients in their interpolation, their formulae
can only be used for their specific setup of frequency range, number
of absorption bands N and Q range.

Here, we suggest a correction to the linearization as an easy-to-
implement and computationally light method, combining the ad-
vantages of the linearization (‘τ -method’) with increased accuracy
for low Q. As this results in a single inverse problem, the relatively
expensive simulated annealing method can be used allowing to in-
vert for the relaxation frequencies as well as including the constraint
aj > 0.

This correction can be found by realizing that the discrete relax-
ation frequencies are widely spaced, hence

ωk/ω j

1 + (
ωk/ω j

)2
≈ 1

2
δ jk (22)
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Figure 5. Influence of the parametrization of the medium on the accuracy of the seismograms simulated with dissipation operators for t∗ = 4 s [typical for
teleseismic S waves, see for example, Nolet (2008)] while keeping the complexity of the parametrization constant (three absorption bands). Left to right:
relaxation frequencies fixed log-spaced in the frequency band of interest (2.3 decades), optimized frequencies using simulated annealing, additional linear
weighting with the frequency. Top to bottom: seismograms filtered with Gabor-bandpass filters with centre period Tc, quality factor Q, modulus M and relative
error of the modulus as approximated with standard linear solids. EM and PM denote the envelope and phase misfit (Kristekova et al. 2009). Shaded region
indicates the frequency range used in the parameter optimization, vertical dashed lines the relaxation frequencies ωj and solid black lines the reference medium.
Optimization criterion was the log-l2 error of Q, see text for details. Note the large deviations of the optimal value in the modulus at the boundaries of the
frequency range.

and(
ωk/ω j

)2

1 + (
ωk/ω j

)2
≈

⎧⎪⎨
⎪⎩

0, (ωk < ω j )
1
2 , (ωk = ω j )

1, (ωk > ω j ).

(23)

Then, we insert these approximations into the exact relation for
Q−1 (eq. 7) evaluated at the relaxation frequencies ωj. Comparison
to the linearized version, eq. (21) leads to a correction factor for each
aj due to the term in the denominator neglected in the linearization.
These factors can be defined recursively starting from the lowest
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Figure 6. Optimized constant Q ≈ 250 (black) versus simultaneous opti-
mization of Q and real part of the modulus M1 (red + green) using the
relation by Kjartansson (1979) for a medium with three absorption bands:
additional optimization of the modulus makes the parametrization indepen-
dent of the choice of the reference frequency (here: fr = 2 Hz) and allows for
tuning the parametrization towards lower phase errors at the boundaries of
the frequency range (red) or lower amplitude errors (green). Vertical dashed
lines indicate the relaxation frequencies ωj. Frequency weighting was not
used for clarity.

relaxation frequency ω0 with yj as defined earlier:

recursion :

{
δ0 = 1 + 1

2 y0

δn+1 = δn + (
δn − 1

2

)
yn + yn+1,

y′
j = δ j · y j . (24)

The performance of this correction is visualized in Fig. 7, where
panel (a) compares Q computed using corrected parameters to the
linearization and the exact result for Q = 20. While the linearization
causes an error of almost 20 per cent in the high frequencies, the
corrected version is still quite close to the optimal solution using
the exact relation. Fig. 7(b) shows tests of the approximation as a
function of Q for a variety of different bandwidths and numbers of
absorption bands in terms of the frequency weighted log-l2 error
as defined earlier. The more accurate the approximation of constant
Q is desired, the higher the Q value where the linearization breaks
down: for example, at 2.2 decades bandwidth and using three ab-
sorption bands (red), the linearization (dashed) doubles the error
for Q values lower than 90, while the corrected ones hit this error
bound only for Q < 10. On the global scale, where Q typically takes
values larger than 50, this scheme allows to find the parameters aj

efficiently with very high accuracy.
This correction scheme has negligible computational imprint

such that it may be used in the time loop, which means that the
2N coefficients aj and wj need to be stored only once and not for
each gridpoint.

(a)

(b)

Figure 7. Recursive correction for the coefficients yj as in eq. (24): (a)
linearization of Q in yj as suggested by Blanch et al. (1995; ‘τ -method’)
leads to a logarithmic trend with the strongest effect in the high frequencies
(blue), the correction (red) results in a behaviour very close to optimizing
the exact relation (black) even for Q as low as 20 [on the global scale, the
minimum value is ≈50 in the 3-D model QRLW8 by Gung & Romanowicz
(2004)]. Errors are frequency-weighted, see text for details. (b) Frequency-
weighted log-l2 error in Q as a function of Q for the linearization (dashed),
the correction (solid) and the exact (dotted) relation.

2.4 Analytic time stepping

Many discrete schemes have been proposed to integrate the memory
variable equation, eq. (5), over time to determine the values of
the memory variables at the next time step: for example, finite
differences (Day & Minster 1984), some unspecified second-order
scheme (Emmerich & Korn 1987), second-order central difference
(Kristek & Moczo 2003), ADER (Käser et al. 2007) or fourth-order
Runge–Kutta (Komatitsch & Tromp 2002a; Savage et al. 2010). To
our best knowledge, integrating the equation analytically has not
been published in the seismological community.

The ‘memory variable’ equation is an ODE of the form

ζ̇ j (t) + ω jζ
j (t) = s j (t), (25)

with sj(t) = ajωjδMε(t). This can be solved by the standard method
of multiplication with an integrating factor and the solution is

ζ j (t + 
t) = e−ω j 
t

[
ζ j (t) +

∫ t+
t

t
s j (t ′)eω j (t−t ′)dt ′

]
. (26)
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The integral can then be solved depending on the global time
scheme and the corresponding time dependence of s(t). For exam-
ple, if the elastic equations are time integrated with a second-order
scheme, where s(t) is known at two times only [with linear inter-
polation: s(t ′) = s(t) + t ′−t


t (s(t + 
t) − s(t)] the resulting discrete
scheme is:

ζ j (t + 
t) = ζ j (t)e−ω j 
t

+ s j (t)

ω j

[
1

ω j
t
(1 − e−ω j 
t ) − e−ω j 
t

]

+ s j (t + 
t)

ω j

[
1 − 1

ω j
t
(1 − e−ω j 
t )

]
. (27)

Expanding the exponential functions in series, this agrees with the
Runge–Kutta scheme by Savage et al. (2010) up to the fourth order
in ωj
t. In contrast to numerical integration schemes, the accuracy
of this analytical scheme is only bounded by the accuracy of the
source term (i.e. the elastic strain), which is determined by the
time scheme used for the elastic equations. Thus, our formulation
automatically ties the viscoelastic accuracy to that of the global time
scheme.

2.5 Generalization to three dimensions

Generalization to three dimensions is rather straightforward and
extensive literature is available, for example, Carcione (2007) and
references therein. We restrict ourselves to slightly anisotropic me-
dia, where the effect of attenuation can still be treated as isotropic
and the anisotropy of attenuation is neglected as a second-order
effect. In this case, the eigenstrains and eigenstiffnesses are easy
to find as dilation and shear stresses and the stress–strain relation-
ship remains simple and computationally light, see for example,
Carcione & Cavallini (1994). The validity of this approximation for
global radial anisotropy as in PREM is verified by the benchmark
in Section 5.

Many authors neglect the effect of bulk attenuation and take
advantage by splitting the memory variable into the shear and bulk
contribution such that only five instead of six memory variables
for each absorption band are needed. However, this is no good
approximation when there is significant contribution of the bulk
quality factor Qκ to the P-wave quality factor Qp (e.g. Stein &
Wysession 2003,3.7.6):

Q−1
p = L Q−1

μ + (1 − L)Q−1
κ , (28)

L = 4

3

(
vs

vp

)2

. (29)

In the PREM model (Dziewonski & Anderson 1981), this is the
case in the inner core, where Qκ = 1327 has a significant effect
(around 30 per cent) on Qp. Although there is no general agreement
about the location of bulk attenuation in the Earth, it is needed to
simultaneously fit high Q radial mode data and surface wave data
(Romanowicz & Mitchell 2007). Hence we choose to keep the full
6 degrees of freedom and write the 3-D memory variable equation
as:

ζ̇
j

l (t) + ω jζ
j

l (t)

=
{

δκ aκ
j ω j trε + 2

3 δμ aμ

j ω j (3εl − trε) , (l = 1, 2, 3)

δμ aμ

j ω jεl , (l = 4, 5, 6)

(30)

with index l denoting components in the Voigt notation (index map-
ping: 1 → 11, 2 → 22, 3 → 33, 4 → 23, 5 → 31, 6 → 12).

Importantly, using the scheme from above to find the medium
parameters, ωj are the same for bulk and shear Q, while the aj are
found depending on the actual value of Qκ and Qμ. Identifying the
right-hand side with s(t) from eq. (25), the analytical time stepping
can readily be used in three dimensions.

3 A x i S E M D I S C R E T I Z AT I O N

In this section, we use AxiSEM (Nissen-Meyer et al. 2014) as an
example and generalize the derivation of the equations of motions
of the reduced 2-D equations in the weak form to include atten-
uation. The elastic anisotropic problem is treated by van Driel &
Nissen-Meyer (2014) and the basic framework is derived in detail by
Nissen-Meyer et al. (2007a,b, 2008). The reduced 2-D equations are
found by projecting the wave equation onto test functions having the
azimuthal dependence of monopole, dipole and quadrupole sources.
Taking the dot product of the wave equation with a test function w,
integrating over the domain � and using partial integration and the
free surface boundary condition yields∫

�

(
ρw · ü︸ ︷︷ ︸

mass

+ ∇w : σ︸ ︷︷ ︸
stiffness

)
d� =

∫
�

w · f︸︷︷︸
force

d�, (31)

with the viscoelastic constitutional relation

σ = σ el + σ anel = cU : ε − ζ . (32)

Here ζ := ∑N
j=1 ζ j denotes the total stress contribution of all

memory variables. As shown by Nissen-Meyer et al. (2007a) for
spherically symmetric models and generalized to anisotropic ax-
isymmetric models by van Driel & Nissen-Meyer (2014), the
displacement in an axisymmetric model can be expanded in the
series

u(s, z, ϕ)

=
∞∑

m=−∞

[
um

s (s, z) ês(ϕ) + um
ϕ (s, z) êϕ(ϕ) + um

z (s, z) êz

]
︸ ︷︷ ︸

=:um (s,ϕ,z)

eimϕ,

(33)

where s, ϕ, z are the cylindrical coordinates as in Fig. 8. In the case
of a moment tensor or single force point source on the symmetry
axis, all contributions for |m| > 2 vanish. Equivalent expressions
with sin ϕ and cos ϕ can be found by summing over pairs of ±m and
using the fact that u is real. For monopole, dipole and quadrupole
sources this results in

um = [
um

s ês + um
z êz

]
cos (mϕ + ϕ0) − um

ϕ sin (mϕ + ϕ0) êϕ, (34)

where ϕ0 depends on the orientation of the source. The reduced
equations of motion can then be found by inserting this into eq. (31)
and evaluating the integral in ϕ analytically.

3.1 Angular dependence and axial boundary conditions of
the memory variables

As the initial condition for the memory variables is ζ = 0 and
the memory variable equation is linear, the angular dependence is
determined by the source terms in eq. (30). The angular dependence
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Figure 8. The cylindrical coordinate system (s, ϕ, z) and the reduced semi-
circular 2-D domain �D for global wave propagation in axisymmetric media.

of the strain can be found from eq. (34) and we find

ζl (s, ϕ, z) =
{

ζl (s, z) · cos (mϕ + ϕ0) (l = 1, 2, 3, 5)

ζl (s, z) · sin (mϕ + ϕ0) (l = 4, 6),
(35)

where m = 0, 1, 2 for monopole, dipole and quadrupole sources,
respectively. With the same argumentation, the behaviour of the
memory variables at the axis can be analysed based on the be-
haviour of the strain at the axis (Nissen-Meyer et al. 2007a). For
the quadrupole case, ζ 4 and ζ 5 vanish at the axis with O(s), the
others and in the case of monopole and dipole source all memory
variables take finite values at the axis. These boundary conditions
are needed to evaluate the Gauss–Jacobi quadrature at the axis in
Section 3.3.

3.2 Anelastic stiffness terms in the weak form

The elastic stiffness terms σ el remain the same as in purely elas-
tic case, see van Driel & Nissen-Meyer (2014), where the elastic
moduli are replaced with the unrelaxed moduli. Additionally, the
contribution of the memory variables to the stiffness can be found
for the monopole source as:

1

2π

∫ 2π

0
∇w : ζ dϕ

= ∂swsζ1 + ∂zwsζ5 + ws

s
ζ2 + ∂swzζ5 + ∂zwzζ3, (36)

Equivalent expressions for dipole and quadrupole sources can be
found in Appendix A.

3.3 Spectral element discretization

The next step is to generalize the spatial discretization of the stiffness
terms from the anisotropic elastic case presented in van Driel &
Nissen-Meyer (2014) to the anelastic case. The approach is the same
as in the isotropic elastic case and we refer the reader to section in
Nissen-Meyer et al. (2007b) for details and restrict ourselves to a
short summary of the method and important aspects of the notation

in the interest of brevity. A more general and rigorous approach can
be found in Bernardi et al. (1999).

The collapsed 2-D domain �D (Fig. 8) is divided into non-axial
elements �e and axial elements �ē. The mapping between refer-
ence coordinates ξ , η ∈ [−1, 1] in each element and the physical
coordinates s, z is provided by the Jacobian determinant

J (ξ, η) = det

(
sξ sη

zξ zη

)
, (37)

where the subscript denotes partial differentiation, sξ = ∂ξ s, etc.
Both the test function w and the field variables u and ζ are expanded
in Lagrangian polynomials li of order Ngll (defined on the integration
points, see below) within each element as

uα(ξ, η, t) =
Ngll∑

i, j=0

uα
i j (t)li (ξ )l j (η),

ζl (ξ, η, t) =
Ngll∑

i, j=0

ζ l
i j (t)li (ξ )l j (η), (38)

for each component α ∈ (s, ϕ, z) and l ∈ {1, . . . , 6} and equivalently
to u for w. For the axial elements ξ = 0 is the axis. The integral over
the domain �D is then split into a sum of integrals over elements
and approximated using the Gauss–Lobatto integration rule∫

�e

u(s, z)s ds dz ≈
∑

pq

σpσq s(ξp, ηq )u pqJ (ξp, ηq ) (39)

with Gauss–Lobatto–Legendre (GLL) integration weights σ p and
integration points ξ p and ηq. For the axial elements, Gauss–Lobatto–
Jacobi (GLJ) quadrature is used for the ξ -direction with∫

�ē

u(s, z)s ds dz ≈
∑

pq

σ̄p(1 + ξ̄p)−1σq s(ξ̄p, ηq )u pqJ (ξ̄p, ηq ),

(40)

and GLJ integration weights σ̄p , integration points ξ̄p and the
Lagrangian interpolation polynomial on these points l̄(ξ ). This al-
lows to use l’Hospital’s rule to calculate derivatives at the axis where
needed.

Applying this discretization to eq. (31), choosing the set of test
functions to be 1 in one component at a specific integration point
and 0 at the others and summing over all elements we obtain the
global set of ordinary differential equations in time

Mü(t) + Ku(t) − z(t) = f(t), (41)

with the global mass matrix M, stiffness matrix K and the addi-
tional anelastic stiffness vector z. While the assembled mass matrix
is diagonal in the GLL/GLJ basis (hence trivial to invert), it is un-
necessary to compute K explicitly and we only evaluate its action
on the displacement (Ku). This term only appears on the right-hand
side of the second-order system

ü(t) = M
−1[f(t) − Ku(t) + z(t)], (42)

which is solved by explicit numerical time integration schemes,
additional to the memory variable equation, eq. (30). The stiffness
terms Ku and z are computed in each element first and the global
stiffness is assembled subsequently (Nissen-Meyer et al. 2007b,
section 4).

We split the original elemental stiffness integral into contribu-
tions from each component of the vectorial test function w, denoted
by the subscripts s and z. Furthermore, we revert to a tensorial
notation instead of elemental sums and define the matrix–matrix



Optimized viscoelastic wave propagation 1087

products

X = A ⊗ B : Xi j = ∑
k Aik Bkj , (43)

X = A � B : Xi j = Ai j Bi j , (44)

and vector–matrix and vector–vector products

X0 = A0 ⊗ B : X0 j =
∑

k

A0k Bkj ,

X0 = A0 � B0 : X0 j = A0 j B0 j ,

X = A0B0 : Xi j = Ai0 B0 j . (45)

The elemental anelastic stiffness can then be written in the
monopole case as

z = zs + zz (46)

with the definitions from Table 1:

zs = Dξ ⊗ (
Vzη

� ζ 1 + Vsη � ζ 5

)
+ (

Vzξ
� ζ 1 + Vsξ � ζ 5

) ⊗ DT
η + Y � ζ 2

+ δeēD0
ξ

[
V0

zη
� ζ 0

1 + V0
sη

� ζ 0
5

]
,

zz = Dξ ⊗ (
Vzη

� ζ 5 + Vsη � ζ 3

)
+ (

Vzξ
� ζ 5 + Vsξ � ζ 3

) ⊗ DT
η

+ δeē

{
D0

ξ

[
V0

zη
� ζ 0

5 + V0
sη

� ζ 0
3

]

+
[
V0

zη
� ζ 0

5 + V0
sη

� ζ 0
3

]
⊗ DT

η

}
. (47)

Here δeē is 1 in axial elements and 0 in all others and ζ 0 is the
vector of memory variables at the axis (i = 0). Equivalent terms for
dipole and quadrupole case can be found in Appendix B.

4 C OA R S E - G R A I N E D M E M O RY
VA R I A B L E S

In the following, we assume constant medium properties within
each element. This assumption is used in the derivation of most
spectral-element schemes, often without stating it explicitly. Em-
pirically it is clear however, that correct results are obtained when
this assumption is violated by small deviations only. We can then
write the approximation of the theoretical or optimal modulus with
standard linear solids as

Mopt(ω) ≈ Mr + δM(ω), (48)

with the reference frequency ωr that should be within the frequency
band of interest and the modulus at this frequency Mr, that is,
δM(ωr) = 0 (see Fig. 9 for a schematic sketch). This choice of ref-
erence is equivalent to the ‘element-specific modulus’ by Graves &
Day (2003), that is, the unrelaxed modulus that is used for the elas-
tic stiffness is not the reference and will hence be not constant over
the element. The idea of coarse grained attenuation then is to find
a medium where δM is a function of space with the constraints
(1) that it behaves macroscopically as the homogeneous medium
and (2) reduces the numerical burden. This calls for a method to
compute the macroscopic behaviour of a medium with structure on

Figure 9. Coarse-grained attenuation schematically: constant Q corre-
sponds to Mopt(ω). The problem is to find δM(ω) using standard linear
solids for the anelastic GLL points. The constraint is that averaged with the
elastic GLL points with modulus M0, the medium should behave as Mopt(ω)
in the frequency range of interest (shaded in grey).

the subwavelength scale where the deviations are relative small in
amplitude.

In a seminal paper, Backus (1962) showed how to average a lay-
ered medium to find a homogeneous long-wavelength equivalent
medium. A similar argument was introduced in the context of het-
erogeneous finite-difference methods by Boore (1972) and further
developed by Zahradnik et al. (1993) and Moczo et al. (2002). In
more recent developments of homogenization theory (e.g. Capdev-
ille et al. 2010; Guillot et al. 2010), more rigorous analytical argu-
ments are raised and in the 1-D case, it can be shown analytically
that the correct way of averaging the modulus is the harmonic av-
erage (Cioranescu & Donato 1999). Graves & Day (2003) show
that harmonic averaging also yields better results than arithmetic
averaging in the context of the coarse-grained memory variables in
the case of small values of Q < 20 (where δM is relatively large)
and yields the same results as arithmetic averaging if Q > 20. Al-
though Q is larger than 50 for most global models, it is not obvious
to generalize this conclusion to global body waves, because the test
cases presented by Graves & Day (2003) are dealing with an or-
der of magnitude-less wavelengths propagation distance (compare
Section 2.2). We thus consider arithmetic averaging at first because
of its simplicity and benchmark it in the next section, finding that it
does suffice for global high-frequency body waves.

In the case of arithmetic averaging, the modulus can be defined
as

M(r, ω) = Mr + w(r)δM(ω), (49)

with a weighting function w(r) and subject to the normalization
condition

Ve =
∫

Ve

dVe =
∫

Ve

w(r) dVe, (50)

where Ve denotes the volume of the element. The integrals are now
replaced by the quadrature rules of the SEM scheme. For AxiSEM,
we additionally assume an axisymmetric weighting function w(r) =
w(s, z) and split the volume integral into the analytical integration
in ϕ and the quadrature over the element. The constraint then reads

Ve =
∑

pq

γ pq
w =

∑
pq

γ pq
w w pq , (51)
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Table 1. Definitions for pre-computable matrices (i.e. prior to the costly time extrapolation) of the
anelastic stiffness terms, ± takes its value depending on the combination of xζ as in the right-
hand table. Subscript reference coordinates denotes partial derivation, for example, xζ = ∂ζ x. For
consistency with the summation notation in Nissen-Meyer et al. (2007a), we use indices i, j and I, J,
which all take the values in {0 . . . Ngll}.
Matrix Non-axial elements Axial elements (i > 0) (i = 0) Axial vectors

(Vxζ
)i j ±σi σ j x i j

ζ si j ±σ̄i σ j (1 + ξ̄i )−1xi j
ζ si j 0 (V0

xζ
) j = ±σ̄0σ j x0 j

ζ s0 j
ξ

(Y)i j σi σ jJ i j σ̄i σ j (1 + ξ̄i )−1J i j 0 (Y0) j = σ̄0σ jJ 0 j

(Dξ )I i ∂ξ lI(ξ i) ∂ξ l̄ I (ξ̄i ) ∂ξ l̄ I (ξ̄0) (D0
ξ )I = ∂ξ l̄ I (ξ̄0)

(Dη)J j ∂ηlJ(ηj) = ∂ξ lJ(ξ j) ∂ηlJ(ηj)

±(xζ ) ζ = ξ ζ = η

x = s + −
x = z − +

Figure 10. Distribution of Gauss–Lobatto–Legendre (GLL) integration
points in the reference element of the fourth-order scheme. For the coarse-
grained attenuation, anelasticity is concentrated on the four red GLL points,
while the black points are treated as elastic. During meshing, element sizes
are chosen to be smaller than 2

3 of the smallest wavelength, so that there are
at least three anelastic points per wavelength.

with

γ pq
w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σpσq J pq s pq , (non − axial)

σ̄p(1 + ξp)−1σq J pq s pq , (axial, p > 0)

σ̄0σq J 0q s0q
ξ , (axial, p = 0)

(52)

and wpq = w(ξ p, ηq). One possible solution is to assign the weight
of neighbouring elastic GLL points to the selected anelastic GLL
points as sketched in Fig. 10. The weighting function for the fourth-
order spacial scheme could then, for example, be chosen as:

w11 = 1

γ 11
w

[
γ 00

w + γ 01
w + γ 10

w + γ 11
w

+ 1

2

(
γ 02

w + γ 12
w + γ 20

w + γ 21
w

) + 1

4
γ 22

w

]
,

w13 = 1

γ 13
w

[
γ 03

w + γ 04
w + γ 13

w + γ 14
w

+ 1

2

(
γ 02

w + γ 12
w + γ 23

w + γ 24
w

) + 1

4
γ 22

w

]
,

w31 = 1

γ 31
w

[
γ 30

w + γ 31
w + γ 40

w + γ 41
w

+ 1

2

(
γ 20

w + γ 21
w + γ 32

w + γ 42
w

) + 1

4
γ 22

w

]
,

w33 = 1

γ 33
w

[
γ 33

w + γ 34
w + γ 43

w + γ 44
w

+ 1

2

(
γ 23

w + γ 24
w + γ 32

w + γ 42
w

) + 1

4
γ 22

w

]
,

wi j = 0, (else). (53)

The choice of GLL points is guided by the criterion derived by
Day (1998), stating that the periodicity of the medium should have
smaller scale than half the shortest wavelength to be propagated,
that is, the elastic equivalent of the Bragg condition for normal in-
cidence. In the specific case of five GLL points per element in each
dimension that are meshed with 2

3 λs as element size, this leads to
the choice of two anelastic points per element in each dimension.
In principle, the dissipation mechanisms for the lower absorption
bands could be placed even sparser, as they only affect longer wave-
lengths. While this would reduce memory usage and computational
complexity in time stepping of the memory variables, we chose
not to do so for simplicity in implementation and the fact that the
stiffness term ζ would end up less sparse if another distribution
was chosen. Also, additional source terms for the memory vari-
ables would cause extra cost, as the strain is no field variable in
our scheme. This might be different depending on the numerical
scheme used: if the strain is a field variable and does not require
extra computation, the decision might be different.

4.1 Numerical efficiency

The performance can benefit from the coarse grained implementa-
tion in multiple ways: The number of memory variables per element
is smaller, so these use less memory. Also, the number of memory
variable equations that need to be integrated in time and hence the
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Table 2. Memory usage relative to the elas-
tic case in terms of a multiplicative factor
(Newmark time integration).

N Full memory variables Coarse grained

3 1.7 1.1
4 1.8 1.1
5 1.9 1.1
6 2.0 1.1
7 2.2 1.2
8 2.3 1.2

number of points at which the source s(t) of these equations needs
to be computed is less. The pre-computed matrices for the anelas-
tic stiffness need only be computed and stored for the elastic GLL
points. On top of that, the sparsity of ζ can be exploited by using
sparse implementations of the matrix products ⊗ and �.

For the Hadamard product C = A � B, eq. (43), it is clear that C
has the joint sparsity of A and B. For the matrix product C = A ⊗ B,

eq. (44), the implementation depends on which of the two matrices
is sparse. In the specific case of chosen GLL points shown in Fig. 10
and sparse A we have

Ci j =
⎧⎨
⎩

Ai1 · B1 j + Ai3 · B3 j , (i ∈ {1, 3}, for all j)

0, (else)
(54)

and for sparse B

Ci j =
⎧⎨
⎩

Ai1 · B1 j + Ai3 · B3 j , ( j ∈ {1, 3}, for all i)

0, (else).
(55)

The observed performance gains in AxiSEM are summarized in
Tables 2 and 3, showing roughly a factor of 2 in total memory
reduction and a factor of 5 in computational time both for anelas-
tic stiffness and memory variable time stepping, resulting in a total
simulation speedup of around two. The additional cost of the anelas-
tic terms compared to the elastic ones hence reduces from 150–
200 per cent to 35–45 per cent for the Newmark time scheme. The
ideal value for the speedup in anelastic stiffness and memory vari-
able time stepping would be 25

4 = 6.25. In a full 3-D code, the
dimensionality would increase this to 125

8 ≈ 16. The anelastic addi-
tion to the elastic stiffness term in current implementations accounts
for about 2/3 of the total runtime, and would then be diminished
to the point where the elastic stiffness terms always dominate the
computational cost.

5 B E N C H M A R K

Solving the full 3-D wave equation for arbitrary earthquake sources
in axisymmetric anisotropic models, AxiSEM seems to be unique
among available codes. For benchmarking we thus revert to spheri-

cally symmetric models. As a reference, we use Yspec by Al-Attar
& Woodhouse (2008), which is a generalization of the direct ra-
dial integration method (Friederich & Dalkolmo 1995) including
self-gravitation (switched off for the benchmark).

While Nissen-Meyer et al. (2008) could only perform bench-
marks down to 20 s period due to limitations in the reference normal
mode solution, this limit is overcome using Yspec. Also, AxiSEM
since then has experienced some substantial development (Nissen-
Meyer et al. 2014), specifically the improved parallelization allows
us to perform production runs up to the highest frequencies observed
for global body waves.

Fig. 11 shows a record section of seismograms computed for
the anisotropic PREM model (Dziewonski & Anderson 1981) with
continental crust computed with Yspec and AxiSEM. The source
is a normal faulting event with a moment magnitude Mw = 5.0
in 117 km depth under the Tonga islands. The traces recorded at
some selected GSN stations are filtered between 10 and 1 s period.
Due to the high-frequency content, it is necessary to zoom in to see
any differences at all: the agreement between the two methods is
remarkable even though the highest frequencies have travelled more
than 1000 wavelengths (given the low-pass filter at 1 s, the time axis
is equivalent to the number of travelled wavelengths).

We use the phase and envelope misfit PM and EM as defined
by Kristekova et al. (2009) for quantitative comparison within the
zoom windows and find phase misfits below 1.6 per cent for all
windows and envelope misfits below 3.1 per cent for all windows
but the extremely small amplitude phase ScS at KNTN, where it
reaches a maximum of 4.4 per cent. These differences between
AxiSEM and Yspec are slightly larger than in the purely elastic case
(van Driel & Nissen-Meyer 2014), which is not surprising for a
number of reasons: While Q is approximated using standard linear
solids in AxiSEM, Yspec uses exactly logarithmic dispersion. The
symplectic time scheme was developed for conservative systems
(Nissen-Meyer et al. 2008), while here the attenuation causes a slight
energy loss. Also, the coarse-grained memory variable approach
was implemented using arithmetic averaging instead of harmonic
averaging and we neglected attenuation in the fluid outer core. Errors
in amplitude and phase are therefore negligibly small compared
to other errors when comparing these synthetics to data like, for
example, noise or the assumption of a 1-D model.

The total cost of this extreme case, demanding run over 1800
travelled wavelengths at very high accuracy with AxiSEM was about
88K CPU hours on 11 048 cores [four simultaneous parallel jobs
according to the decomposition described by Nissen-Meyer et al.
(2007a)] using a fourth-order symplectic time scheme and five re-
laxation frequencies on a Cray XE6. The mesh was built for periods
down to 0.8 s and the time step chosen 30 per cent below the CFL
criterion, as this run was meant to prove convergence to the same
result as Yspec. In applications where less accuracy is necessary
one could either use the same traces at higher frequencies or reduce
this cost substantially by choosing a larger time step and a coarser
mesh (for instance, a dominant period of 1.6 s at otherwise fixed

Table 3. Computation time relative to elastic case in terms of a multiplicative factor (Newmark time integration).

Elastic Full memory variables Coarse-grained Total Anelastic stiffness Anelastic time step
N runtime runtime runtime speedup speedup speedup

3 1 2.55 1.35 1.9 5.3 4.3
4 1 2.75 1.38 2.0 5.2 4.5
5 1 3.0 1.41 2.1 5.3 4.7
6 1 3.16 1.44 2.2 5.5 4.7
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Figure 11. Comparison of vertical displacement seismograms (bandpass filtered from 10 to 1 s period) for a moment magnitude Mw = 5.0 event in 126 km
depth under the Tonga islands, computed with AxiSEM and Yspec in the anisotropic PREM model without ocean but including attenuation. The traces are
recorded at the GSN stations indicated in the map. The zoom windows are indicated with red rectangles in the record section and the timescale is relative to
the ray-theoretical arrival. EM and PM denote the envelope and phase misfit in the time window plotted (Kristekova et al. 2009). The largest envelope error is
4.4 per cent for the small amplitude phase ScS at KNTN.

parameters is already an order of magnitude cheaper to compute
due to the scaling with the third power of the period).

The additional cost for attenuation using the fourth-order sym-
plectic time scheme and coarse-grained memory variables com-
pared to a purely elastic simulation was only 26 per cent.

6 C O N C LU S I O N A N D O U T L O O K

In this paper, we presented three improvements for more efficient
implementation of attenuation in time-domain wave-propagation
methods. First, we showed how to find the optimal set of
medium parameters to minimize errors in the wavefield at a fixed
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numerical complexity. To do so, we analysed first-order effects of
errors in this parametrization onto the wavefield. Also, we derived
an approximate method to find these parameters in a full-scale appli-
cation, that is, for 106 or more different values of Q and the modulu.
Furthermore, we suggested an analytical time-stepping scheme, that
ties the error of the anelastic time integration to that of the global
scheme. These findings are completely independent of the spatial
scheme.

Finally, we generalized the coarse-grained memory variable ap-
proach to the spectral element scheme, noting that the same method
could be used in other high-order finite-element schemes. This is a
physical approximation reducing the cost of attenuation by a factor
of 5 in the 2-D case of AxiSEM. Future work includes implemen-
tation of the coarse-grained scheme into high-order 3-D methods
including homogeneous averaging for lower Q values.
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A P P E N D I X A : A N E L A S T I C S T I F F N E S S
T E R M S I N T H E W E A K F O R M

The anelastic stiffness in the weak form for the dipole source (m = 1)
reads

1

π

∫ 2π

0
∇w : ζ dϕ = ∂sw+(ζ1 − ζ6) + ∂zw+(ζ5 − ζ4)

+ ∂sw−(ζ1 + ζ6) + ∂zw−(ζ5 + ζ4) + 2
w−
s

(ζ2 − ζ6)

+ ∂swzζ5 + ∂zwzζ3 − wz

s
ζ4, (A1)

and for the quadrupole source (m = 2):

1

2π

∫ 2π

0
∇w : ζ dϕ = ∂swsζ1 + ∂zwsζ5 + ws

s
(ζ2 − 2ζ6)

− ∂swϕζ6 − ∂zwϕζ4 + wϕ

s
(ζ6 − 2ζ2)

+ ∂swzζ5 + ∂zwzζ3 − 2
wz

s
ζ4. (A2)

A P P E N D I X B : S P E C T R A L E L E M E N T
D I S C R E T I Z AT I O N

In the spectral element discretization, the anelastic stiffness terms
for the dipole source are

z = z+ + z− + zz (B1)

with

z+ = Dξ ⊗ [
Vzη

� ( ζ 1 − ζ 6) + Vsη � ( ζ 5 − ζ 4)
]

+ [
Vzξ

� ( ζ 1 − ζ 6) + Vsξ � ( ζ 5 − ζ 4)
] ⊗ DT
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+ δeē

{
D0

ξ

[
V0

zη
� (

ζ 0
1 − ζ 0

6

) + V0
sη

� (
ζ 0

5 − ζ 0
4

)]

+
[
V0

zη
� (

ζ 0
1 − ζ 0

6

) + V0
sη

� (
ζ 0

5 − ζ 0
4

)] ⊗ DT
η

}
, (B2)

z− = Dξ ⊗ [
Vzη

� ( ζ 1 + ζ 6) + Vsη � ( ζ 5 + ζ 4)
]

+ [
Vzξ
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and for the quadrupole source

z = zs + zϕ + zz (B5)

with

zs = Dξ ⊗ (
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