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Abstract: Optimization models have often been useful in attempting to understand the adaptive significance of behavioral traits.
Originally such models were applied to isolated aspects of behavior, such as foraging, mating, or parental behavior. In reality,
organisms live in complex, ever-changing environments, and are simultaneously concerned with many behavioral choices and their
consequences. This target article describes a dynamic modeling technique that can be used to analyze behavior in a unified way. The
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1. Introduction

Behavioral ecology, a branch of evolutionary biology, is
concerned with understanding behavior in terms of natu-
ral selection. In searching for the ultimate causes of
observed behavioral traits, behavioral ecologists fre-
quently use optimization models (Krebs & Davies 1984).
An early example was David Lack’s (1954) model of
optimal clutch size. Manipulation experiments had
shown that most birds are capable of raising larger
clutches than they do. Lack hypothesized that, rather
than maximizing clutch size, natural selection would tend
to maximize the average number of surviving offspring.
In mathematical terms this amounts to maximizing the
expression np(n), where n denotes clutch size and p(n) is
the probability that an individual egg in a clutch of n eggs
will survive to independence. Since p(n) is likely to be a
decreasing function of n, this hypothesis implies a smaller
clutch size than the maximum possible.

Lack’s model has been extensively tested; it still ap-
pears to predict larger clutches than are usually observed
in nature (Klomp 1970). Ornithologists continue to study
the reasons this may be so (e.g., Boyce & Perrins 1987).

Lack’s is an excellent example of what I like to call a
“first generation” model: simple, and readily testable.
More often than not such models ultimately fail, but this
certainly does not mean that they are worthless. They
may still help us organize our thoughts more rigorously
and ask more incisive questions. They may then be
replaced by second-generation models, typically more
complex, which are then tested and perhaps further
modified, or replaced.

Biology is quite different from the physical sciences in
the way that it uses models (Mayr 1982). Because of the
great complexity present at every level in biological
systems, the final “correct” model virtually never exists.
Further refinements are always possible, and additional
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detail can always be taken into consideration. Some
biologists therefore seem to believe that mathematical
models are a complete waste of time (e.g., Pierce &
Ollason 1987), whereas others see them as essential
(Maynard Smith 1978). As a modeler, my own view is that
models can be tremendously helpful, provided that mod-
eling is treated as a process of successive approximation to
the complexity of nature.

Most of the first-generation models in behavioral ecolo-
gy treated single decisions, or sequences of similar deci-
sions — defending a territory, selecting a prey patch or
item, providing parental care, and so on. Behavior is an
essentially dynamic process, however: An individual’s
lifetime reproductive success is determined by its behav-
ior over an extended time span. Past behavior affects an
animal’s current state; present behavior is influenced by
this state, and affects future states and hence future
behavior. Many models either ignored these dynamic
implications, or finessed them by some form of time-
averaging. For example, in foraging theory it was often
the custom to use the average net rate of energy gain as a
fitness “currency,” on the assumption that while forag-
ing, animals should be expected to maximize this aver-
age. One obvious criticism of this assumption is that
variance in feeding rates might also be important. Experi-
mental evidence appears to indicate that forgers are
indeed often risk-sensitive, in the sense that both means
and variances are taken into consideration (Caraco 1983;
Real & Caraco 1986). Temporal variation in food intake is
important because of the existence of constraints on a
forager’s state: Stomach capacity is limited, and most
animals cannot store and preserve large quantities of
food.

State variables (both internal and external) and their
dynamics probably influence every behavioral act to
some extent. In the case of clutch-size, raising a large
clutch may have an effect on the parent’s state, resulting
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in decreased probability of survival. A dynamic mode! of
parental behavior could thus be developed; the
qualitative predictions of such a model can easily be
foretold; quantitative testing might be formidable, but
certainly not impossible.

The purpose of this target article is to outline a unified
approach to the modeling and testing of dynamic state-
variable models of behavior. This approach has recently
been developed and applied to behavioral phenomena,
by Houston & McNamara (1988a), Mangel & Clark
(1988), and others. The present article is in part a follow-
up to the previous BBS target article of Houston &
McNamara (1988a). 1 hope to show that the framework
described by Houston & McNamara has broader ap-
plicability than may have been apparent to some readers.
I also hope that appreciation of the breadth and flexibility
of dynamic modeling will dispel many of the misgivings
expressed by Houston & McNamara’s peer commen-
tators.

2. The behavioral landscape

Figure 1 is a schematic representation of the relationships
between an individual organism’s current environment
and its behavioral response to that environment. For
simplicity, the time dimension is discretized into periods
of convenient unit length. At the beginning of a particular
period, ¢, the individual has an internal physiological
state X(t), in general a highly multidimensional entity.
The individual is situated in an environment charac-
terized by the current environmental state Y(¢), likewise
multidimensional. Upon observing the environmental
state, the organism “decides” upon a behavioral act A(#),
which affects its own state and possibly also the environ-
mental state. The act A(¢) may also result in immediate
reproductive output R(f). As a result of this act, as well as
of other effects beyond the control of the individual, the
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Figure 1. The behavioral landscape: The individual’s state X(¢)

in period t is influenced by the current environmental state Y(¢)
and by the behavioral action A(¢) taken by the individual. The
states X() and Y(t) change to new states X(t + 1) and Y(¢ + 1) in
the next period ¢ + 1; these changes may involve stochastic
elements, i.e., they may be Markov processes. The behavioral
act A(f) may also affect the environmental state, and may result
in reproductive output R(¢). The process is repeated in subse-
quent periods t + 1, ¢t + 2, . . ..
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state variables change to new values X(¢ + 1), Y(t + 1) in
the next time period; these changes frequently involve
stochastic elements. The process is continued in subse-
quent time periods ¢t + 1, ¢t + 2, .. ..

Although it is in many respects a caricature of any real
behavioral landscape, Figure 1 illustrates the dynamic
complexity of the world in which all organisms live and
reproduce. Each of the state variables X(t) and Y(?) is itself
immensely complex: The individual’s state X(f) involves
morphological, physiological, psychological, and neural
components (including the organism’s current assess-
ment of its environment); the environmental state Y(f)
includes the physical environment, as well as the biolog-
ical environment, the latter consisting of food resources,
competitors, predators, parasites, potential mates, and
kin. All these components interact dynamically in com-
plex ways that may influence and be influenced by the
individual’s behavior.

No comprehensible model can hope to encompass
more than a small part of this vast complexity. Reduc-
tionism is essential for scientific progress. Restrictions
and simplifications are always made by the various disci-
plines that study the behavioral landscape. Mathematical
models are a natural, if not inescapable way to formulate
and test evolutionary hypotheses. One builds a behav-
ioral model, uses mathematical techniques to compute
the “optimal” behavior according to the model, and tests
the predictions against field or laboratory data.

3. Dynamic state-variable models

An animal’s current state may affect its behavior in many
ways. A hungry forager may accept food items that it
would reject when well fed; it may also tend to be less
vigilant towards predators. Animals that have territories
normally do not behave towards conspecifics in the same
way as those lacking territories, and so on. Conversely,
behavior usually affects states; often the direct purpose of
a behavioral act is to improve the individual's state in
some way. Behavior is therefore affected by past events
(which influence present states) and by the anticipation of
future events. Past, present, and anticipated future en-
vironmental states likewise influence behavioral deci-
sions. This is part of the behavioral landscape. Dynamic
state-variable models provide a way to analyze all of these
influences and relate them to reproductive fitness.

Any such model must still abstract and simplify consid-
erably. It must first be decided which state variables are
sufficiently important to be included in the model (Man-
gel & Clark 1988, Ch. 8). Let X(¢) and Y(#) denote these
model state variables. Next the modeler specifies the set
of behavioral acts A(f) to be considered. This is typically
determined by the observations in need of an evolution-
ary explanation: How does the observed behavior con-
tribute more to fitness than available alternatives do? An
example described in the next section illustrates these
and other modeling decisions.

Dynamic changes in the state variables must also be
specified. For the individual’s state, these changes de-
pend on the current states X(t) and Y(¢), and on the
current act A(f), and perhaps also on certain random
variables denoted by w(f):

Xt + 1) = GX(®), Y(2), A(t), w(t)). (1)
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The probability distributions of the random variables w(¥)
must also be specified. (In mathematical terminology,
Equation (1) defines X(¢) as a “Markov decision process;”
see e.g. Heyman & Sobel 1984; familiarity with this topic
is not assumed in what follows.) In practice, the state
dynamics will usually be specified in a fairly simple form
(see sect. 5); field or laboratory data may be used to
estimate the parameters in this equation (sect. 7).

For the sake of simplicity I will ignore the environmen-
tal state variable Y(f) in the rest of this discussion. Some of
the complications that may arise when Y(t) is explicitly
modeled are discussed in section 8.

The modeler must finally specify the effect of behav-
ioral decisions on fitness. If explicit reproductive activity
is under consideration, the model can equate fitness with
total reproduction. In many cases, however, one may be
interested in behavior that is not immediately associated
with reproduction. Nevertheless, ultimate reproductive
success must somehow be taken into account if a model is
to have any explicit evolutionary content.

To make this more precise, suppose we wish to model
behavior over a time interval not involving actual re-
production. Let t+ = 1, 2, ..., T represent the time
periods of interest. At the terminal time T the individual’s
state is X(T)). Future reproduction will inevitably depend
on this terminal state (terminal from the model’s stand-
point, not the individual’s). For example, if the individual
fails to survive to T, then future reproduction is clearly
zero. More generally, individuals that are in “good condi-
tion” at time T will generally have increased subsequent
reproductive success. In mathematical notation,

Expected future reproduction (at time T) = ®X(T)) (2)

where ® is some function relating future reproduction to
the individual’s state at time T. Specifying this rela-
tionship is part of the modeling process, requiring the
same sort of simplifying compromises and parameter
estimations as in the rest of the process (see section 7).

Having completed the construction of the model, the
modeler must next figure out the optimal behavioral
strategy, (A(t)) that results in maximum expected total
lifetime reproductive success. This may seem a formida-
ble task, even in the simplified model version of the
behavioral landscape. Indeed, without the aid of today’s
computers, the problem simply could not be solved in
most cases. The next section describes a computer-
oriented algorithm that can be used to solve such prob-
lems.

4. Dynamic programming

Dynamic programming is a method of solving dynamic
optimization problems, popularized by Richard Bellman
(1957) at the time when digital computers were first
becoming available to the scientific community. Its con-
ceptual basis is extremely simple: We wish to determine
the optimal behavior A(f) for each time period ¢t = 1,
2, . .., T. Wealso wish to allow A(¢) to depend upon the
individual’s current state x = X(t) (and in general also on
the environmental state Y(t), but I am suppressing this
dependence now, for simplicity).

Dynamic programming proceeds one step at a time,
starting with the terminal period T. According to the
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assumption of Equation (2), no behavioral decision is
involved in period T itself, since total expected future
reproduction is specified in terms of X(T), the individual’s
state at the beginning of period T. (This is simply a
notational convenience, facilitating exposition.)

Consider the penultimate time period t = T ~ 1. A
single behavioral decision is to be made during this
period. If the act A(t) = a is chosen, we then have,
according to Equation (1)

X(T) = Glx,aw), x = X(T— 1), w=wT — 1), 3)

i.e., X(T) is determined by the current period’s state,
X(T — 1) and the action taken, a; it is also affected by the
random variable w(T — 1). Fitness from T on is therefore,
by Equation (2)

P(X(T)) = P(Glx,a,w)). )

Assuming that no reproduction occurs during period T —
1, we conclude that the optimal action a is that which
maximizes the function on the right of Equation (4). More
precisely, since this is still a random function, ¢ must
maximize the expectation (i.e., average) of this random
function:

a maximizes E _{®(G(x,a,w))}. (5)

where E,, denotes the usual mathematical expectation
(average) with respect to the random variable w. To
repeat, the optimal behavior in period T — 1 maximizes
the individual’s expected future reproduction, as influ-
enced by that decision and as expressed by Equation (5).
The optimal behavioral decision in general depends upon
the current physiological state x = X(T' — 1) of the
individual. (The case of additional reproduction during
period T — 1 is discussed in section 6.)

If a* denotes this optimal behavioral act, we have
shown that the expression

E®GX(T — 1), a*, w)} ®)

represents the individual’s expected future lifetime re-
production, measured at the beginning of period T — 1.
In analogy with Equation (2) we now denote this by

(I)T71(X(T -1 @)

where the subscript T — 1 implies that the “future” now
includes period T — 1. Thus @, _ ,(X(T — 1)) plays exactly
the same role at time T — 1 as the function ®(X(T)) at
time T.

We have now achieved a position of the type preferred
by the mathematician: We have reduced the original
optimization problem over T steps (1, 2, . . ., T) to an
exactly equivalent problem over T — 1 steps (1, 2, . . . ,
T — 1). The same procedure can therefore be applied to
this problem, and then repeated step by step, going from
T—1toT—2,thenfromT —2toT — 3, and so on. This is
the dynamic programming algorithm.

Writing the algorithm out explicitly, we have from
Equations (53)—(7)

®,_(X(T — 1)) = maximum E_{$ (GX(T — 1), a, w)} (8)

where we have written ® = ®,.to emphasize that @ refers
to the final time period T. Eq. (8) also holds for T — 1
replaced by T — 2, and then for T — 2 replaced by T — 3,
and so on. In general we therefore have
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®,(r) = maximum E_{®,_ (G(x,a,w))}, x = X(1),
a fort =12,....,T—-1. (9

This is referred to as Bellman’s dynamic programming
equation. The function ®,(x) is called the “value function”
in the dynamic programming literature, but in the pres-
ent setting the term “lifetime fitness function” seems
more appropriate (see Mangel & Clark, 1988, who use the
notation F(x,£,T) in place of @ (x)).

The computer implementation of Equation (9) follows
the same course as the argument used to derive it,
namely, one begins with ¢t = T — 1, in which case the
expression on the right side of Equation (9) is completely
specified; the maximum is found by the computer. One
thus obtains both the values of ®_(x) for all x, and the
optimal behavioral strategy a = a*(x, T — 1) for period T —
1, also depending on x = X(T — 1). The computation is
then repeated for t = T — 2, and so on. A single program
subroutine is used iteratively to find a*(x,t) and ®,(x).
(The procedure is described further by Houston &
McNamara 1988a, and Mangel & Clark 1988; the latter go
into the details of computer programming.)

5. Applications

To illustrate dynamic modeling in a practical setting, 1
will now briefly describe 2 model due to Ydenberg (1989),
concerning the fledging behavior of common murre (Uria
aalge) chicks. Its purpose is to interpret observed fledg-
ing behavior, i.e., the murre’s age and weight at fledging,
in adaptational terms. This problem clearly calls for
dynamic modeling.

Let ¢t denote the age of the murre chick, measured in
days from hatching, and let W(t) denote its weight in
grams at the beginning of day ¢. Also let H(t) denote the
chick’s location at the beginning of day ¢, with H(z) = 0 if it
is still in the nest and H(#) = 1 if it has fledged. The
model’s state variable X(z) then has the two components
W(t) and H(t).

While in the nest the chick grows at the daily rate gq(x);
after fledging the growth rate is g,(x). These growth
functions are estimated from published data on common
murre weight profiles; for obvious reasons, the data on
nestling weight are more complete than those for birds at
sea. The explicit functions as estimated by Ydenberg
were

go(x) = 0.2x(1 — x/220) g/d,
g,(x) = 30(1L — (x/1000))2 g/d.

Thus growth at sea exceeds growth in the nest, at all
weight levels.

Next, let g, and p, denote daily mortality risk for
nestling and fledgling, respectively. The estimated val-
ues are

1o = 0.005 per day, p, = 0.01 per day.

A tradeoff therefore exists between safety in the nest and
increased growth at sea. Since growth in the nest de-
creases to zero over time, the balance eventually shifts
towards leaving the nest. This dynamic tradeoff between
growth and survival is the explanatory device assumed in
Ydenberg's model. A further possible tradeoff exists, if
the risk of being killed in the act of fledging depends on
fledging weight. Ydenberg does not treat this possibility,
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simply assuming a fixed probability p, = 80% of surviving
the act of fledging.

To complete the model, let T denote the end of the
breeding season; the chick must fledge by age T. The
value T = 90 d is used in the model. Let S(W(T))
represent the probability that the fledged chick of weight
W(T) survives from time T to reach adulthood. On the
basis that fledged murre chicks of weight less than 700 g
are seldom observed, Ydenberg postulates the functional
form

S(w) = k(w — 700)

where k is a positive constant (the value of which has no
influence on the model’s predictions). This is clearly an ad
hoc choice for S(w), forced by the lack of data pertaining to
the relationship between juvenile weight and ultimate
survival and breeding success for murres.

The dynamic programming equation for Ydenberg’s
model can now be derived. Let ®,(w,h) denote lifetime
fitness (cf. Equation 9) at the beginning of day ¢, with
W(t) = w, H(t) = h. For the final period T we have

D, (w,1) = S(w)

@ (w,0) = pSw)
i.e., if already fledged (h = 1) the chick of weight w
survives to adulthood with probability S(w); if not
fledged, the chick must fledge (probability of survival p;),
after which it faces the same situation as before.

For t < T we obtain:
Q,w,1) = (1 — p)®,,,(w + g(w),1)
®,(w,0) = maximum[(l — py)®, . (w + g,w),0),
PAL = w)®, (0 + g,(w),1)]

These equations are easily derived as follows. If the chick
has already fledged at time t(H(¢) = 1), then it survives to
time ¢ + 1 with probability 1 — p;, and grows by the
amount g,(w), so that its fitness at time ¢t + 1 equals
®, , ,(w + g,(w),1) with probability I — ., (and zero with
probability ;). To derive the second equation, we con-
sider the outcomes of the two decision alternatives on day
t, remain in the nest or fledge. The first term in square
brackets equals the chick’s fitness if it remains in the nest,
and the second corresponds to fledging. The optimal
strategy is the one that gives the greater fitness. These
two equations constitute the dynamic programming al-
gorithm for Ydenberg’s model.

The dynamic programming equations can now be
solved to determine the optimal fledging strategy; the
results are shown in Table 1. These predictions agree

Table 1. Optimal age and weight of fledging for murres.

Age, t (days) Fledge if and only if weight exceeds

5 205g
10 200g
15 195¢g
20 190g
25 150g
30 0g

[Source: from Ydenberg 1989, Figure 5.]
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Table 2. Some recently published dynamic programming models.

Empirical (E)
or

Reference Species Behavior Main Prediction Theoretical (T)
Mangel 1987 Parasitic wasps Oviposition Stochastic facultative E
(Nasonia vitripennis) variation in clutch size
Clark 1987 Lions Hunting Relations between group E
(Panther leo) size and prey type
Houston & Birds Singing Dawn and dusk chorus T
McNamara 1987
Clark & Levy 1988 Sockeye salmon Vertical Timing of daily migrations E
(Oncorhynchus nerka) migration
Ydenberg & Clark Western grebes Diving Patterns of aerobic and E
1989 (Aechmorphus anaerobic diving
occidentalis)
Clark & Ydenberg Dovekies Parent-offspring Weight recession prior to E
1990 (Alle alle) conflict fledging
Lucas & Walter 1988 Carolina chickadees Food caching Environmental influences E,T

(Parus carolinensis)

on caching behavior

reasonably well with the published data (fledging age
from 18-25 days, weight from 150—-220 gm). The model
also suggests a negative correlation between age and
weight at fledging, a prediction that is well supported by
the data. Ydenberg concludes that the model is successtul
and “provides a good general framework for understand-
ing the selective forces [affecting] fledging age and
weight . . . 7 The purpose of discussing this model here,
however, has simply been to indicate the practical ap-
plicability of dynamic behavioral modeling.

Table 2 lists several additional dynamic-programming
models of behavior. The reader may note the wide range
of species and behaviors encompassed by this list. In most
cases the observed behavior could not have been ana-
lyzed successfully without using a dynamic model; in
other cases the dynamic model provides insights and
predictions that differ from earlier studies. All of these
models, however, are what I refer to in section 7 as “first-
generation” models.

6. Some misconceptions

The peer commentaries on Houston & McNamara
(1988a) expressed a number of misgivings about the
dynamic programming approach to behavioral modeling.
Table 3 lists eight of these misgivings, each of which I feel
is the result of misconceptions. I shall discuss these
misconceptions in turn.

Terminal reward function. Houston & McNamara identi-
fied the specification of the terminal fitness function
®(X(T)) as a major difficulty of the dynamic programming
approach. For several reasons I believe the problem to be
much less severe than they suggest. First, ®X(T)) has
biological meaning, since it represents expected future
reproductive success, i.e., reproductive value (Fisher
1930). (Houston & McNamara's term “reward function”
fails to emphasize this important point.) The general form
of this function is often intuitively clear — it is usually
nondecreasing in the state variable x (within limits - e.g.,

Table 3. Some misconceptions about dynamic programming

models of behavior.

Assertion

Commentators*

. Terminal reward function is hard

to specify, but strongly
influences predictions.

. Dynamic programming models

are too general, capable of
predicting almost anything, and
untestable.

. Reproduction is not included, so

that the models have no direct
connection with Darwinian
fitness.

. Evolution does not necessarily

lead to optimal behavior; there is
experimental evidence of non-
optimal behavior (e.g. the
matching law).

. Terminal time may be hard to

specify, but strongly influences
predictions

. Dynamic programming models

are overly complex; animals use
simple decision rules

. Testing the model’s predictions

requires measurement of state
variables.

. Solving a dynamic model

backwards in time is artificial,
and ignores the organism’s past.

Barnard, Caraco,
Huntingford &
Metcalfe, Reid,
Sherry, Sih,
Stenseth,
Timberlake
Huntingford &
Metcalfe, King &
Logue, Partridge,
Reid, Timberlake
Calder, Huntingford
& Metcalfe, Morse,
Stenseth

Heyman, Fantino

Huntingford &
Metcalfe, Rachlin,
Timberlake
Heiner, Yoerg

Smith, Yoerg

Barnard, Morse

*All references are Behavioral and Brain Sciences 11 (1988),

and occurred as peer commentaries to Houston & McNamara
(1988a).
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an overweight bird might experience difficulty flying, or
be more subject to capture by a predator), and often
involves a threshold value of x, below which survival or
reproduction become unlikely. When a precise charac-
terization is necessary, the determination of ®(X(T)) by
actual measurement of the relationship between state
variables and future reproduction is certainly not un-
thinkable (see section 7).

Dynamic programming models exhibit an important
convergence property, in the sense that the optimal
strategy A¥(x,t) converges to a stationary strategy A*(x)
that is independent of ¢, as the “time to go” T — ¢
increases (Mangel & Clark 1988, p. 232; McNamara
1990; McNamara & Houston 1982). Moreover, A*(x) is
independent of the terminal fitness function. Conse-
quently, if one is interested in modeling behavior not
associated with the anticipation of future changes in
external conditions beyond the horizon T, then a precise
specification of ®(X(T)) may not be important. If the
modeler is specifically concerned with time constraints,
however, as might be the case for studies of migration,
diapause, the timing of breeding activities, and so on,
then careful estimation of ®(X(T)) may become im-
portant.

Ideally, T would be identified with the end of the
individual’s possible reproductive life span, in which case
®(X(T)) = 0 by definition. The model would then encom-
pass the entire life span and be correspondingly more
complex than a model of behavior over a limited time
period. The method of “sequential coupling” (Mangel &
Clark 1988, p. 69) allows one to break up the task of
modeling behavior over an entire life span into more
manageable submodels over briefer periods. For exam-
ple, models of alternating breeding and nonbreeding
seasons can be linked together.

To understand sequential coupling, suppose that a
model covering the time period from T, to T, has been
constructed and solved. Then ®,,(X(T))), obtained from
this model, represents the individual's expected future
reproduction from time T, on. This function is therefore
the “terminal” fitness function for a model covering a
period from T, to T;. The two models may have different
environmental parameters, consider different types of
behavior, and even use different units of time. In any
case, the two models are linked, or sequentially coupled,
by virtue of the fact that the initial fitness function ®;. of
the later model equals the terminal fitness function for
the earlier model. Any number of such models can be
linked sequentially; for example, this procedure is useful
for modeling alternating days and nights (McNamara et
al. 1987), or alternating seasons.

Backwards induction. The dynamic programming al-
gorithm operates backwards in time from some specified
terminal horizon T. This procedure may seem highly
artificial. The method becomes less mysterious if one
realizes that whenever behavior is considered as a dy-
namic phenomenon, the future becomes fully relevant.
Every behavioral act has inevitable implications for the
individual’s future, so that the full implications of behav-
jor cannot be understood by looking only at the immedi-
ate present. In spite of its uncertainty, the future must
always be anticipated; the dynamic programming al-
gorithm makes this mathematically explicit. Solving
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backwards in time is not artificial; on the contrary it is
absolutely unavoidable in any evolutionary theory of
behavior.

The assumption of a fixed, known terminal time T may
also appear unsatisfactory. But every individual has a
maximum possible lifespan, and in a full-life model T can
be equated to this maximum lifespan. The possibility that
the individual dies before time T is covered by allowing
for mortality risks. In a one-season model, T would
represent the end of the season. In this case T may be
uncertain, rather than a fixed constant. This eventuality is
easily dealt with, however: One simply defines T as the
last possible date in the season, and includes a probability
factor for the actual end of the season at any date ¢ prior to
T.

Another possible misconception is that dynamic pro-
gramming does not consider the influence of past events
on current behavior. But past events affect state variables
(which may include memory-related variables). The op-
timal behavior a* at time ¢ is a function of the current state
variable X(#), and is therefore fully responsive to past
events through their effects on the individual’'s current
state.

Reproduction. None of the models described by Houston
& McNamara included reproduction explicitly; several
commentators concluded that the method could not en-
compass reproduction. This is simply not the case, al-
though I too have until now ignored reproduction during
the modeling interval, for simplicity of presentation.
Suppose now that (as shown in Figure 1) behavior in
period t leads to immediate reproduction R =
R(X(t),A(t),w(t)). Thus reproductive output may in gener-
al be affected by the individual’s state and behavior, as
well as by external stochastic events w(t). By repeating
the discussion leading to Equation (9), it can be seen that
we now obtain

d,(X) = maximum E {R(x,aw) + ®,, (Glx,aw)} (10)

The interpretation of Equation (10) is straightforward:
The optimal behavior a in period t is that which max-
imizes the sum of current reproduction R(x,a,w) and
expected future reproduction ®, . (. . .). The dynamic
programming algorithm, and the logic underlying it, go
through unchanged.

Additional complications may arise if current behavior
affects future reproduction, but this possibility can be
encompassed by introducing additional state variables.
An example would involve the acquisition of territory or
mates prior to breeding, in which case state variables
representing territory size or number of mates would be
included in the model.

The state-variable dynamic modeling framework is
extremely flexible. Indeed, this very flexibility can itself
be problematic; it is easy to design a complex dynamic
model that goes far beyond available data. Also, computa-
tional difficulties in dynamic programming expand expo-
nentially with the dimension of the model. These ques-
tions are discussed further in sections 7 and 10.

Testability. The idea that dynamic programming models
are untestable is incorrect. When constructed using em-
pirical data, they provide quantitative predictions that
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can be tested directly against field or laboratory data.
Theoretical, data-free models can be developed to gener-
ate qualitative predictions, and these can also be tested
against known behavior. Empirical testability is one of
the most important features of the dynamic modeling
framework described here.

Dynamic behavioral models are more readily testable
than it may appear. Suppose that the optimal behavioral
strategy a*(x,t) has been obtained for a certain model by
solving the dynamic programming equations. Substitut-
ing this optimal behavior into the equation of system
dynamics

Xt + 1) = GX(@),a*(X(t),1),w(t)

results in a time-dependent Markov chain (or a time
independent chain if ¢* is stationary). By iterating this
chain forward in time one can generate probability dis-
tributions of the state variable X(¢) over time. From this
state distribution, one then immediately deduces the
distribution of behavior over a population of similar
organisms. The latter distribution is testable against be-
havioral data without requiring detailed knowledge of the
actual states of organisms in the population. Mangel
(1987) gives a very simple example concerning oviposi-
tion in parasitic insects, showing that wide variation in
clutch sizes should be expected. This prediction agrees
well with the data (Charnov & Skinner 1984).

Excessive generality. Dynamic programming models are
flexible, but to dismiss the method as too powerful -
“capable of proving anything” — would be to misunder-
stand of the role of theory in science, tantamount to
refusing to use the electron microscope because it reveals
too much detail. Mathematical, statistical, and experi-
mental techniques can be, and often are used incorrectly,
but banning them is hardly the remedy. The predictions
derived from any model depend on the assumptions used
in its formulation. If the predictions disagree with obser-
vation, the model must be rejected, and new models
must be sought. The model may be completely wrong-
headed, or perhaps only some of its components are
inaccurate, needing to be modified or replaced. Each
component should be examined for biological veri-
similitude; indeed separate testing of component hypoth-
eses may often be feasible. This sequence of model
formulation, testing, modification or replacement, and
testing again, is the cornerstone of scientific research.

Optimality hypothesis. Whereas it is certainly true that
evolution does not always maximize fitness, proponents
of the claim that fitness is seldom or never maximized
place themselves in the position of having to find some
novel explanation for the almost universal occurrence of
behavioral adaptations in nature. T prefer to accept adap-
tation as a hypothesis and would be surprised by any
incontrovertible evidence to the contrary.

Several of Houston & McNamara’s commentators cite
the matching law of operant psychology as evidence of
nonoptimal behavior, without explaining why it contra-
dicts optimality. It may seem obvious that an optimizing
subject should stick to a superior alternative, once it has
learned which this is, but how is the subject to know that
one alternative is destined (by experimental protocol) to
remain forever superior? If temporal variability of the
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environment is the rule in nature, adaptive behavior
would require the use of sampling strategies capable of
tracking a changing environment (Stephens 1987). Sam-
pling behavior described by the matching law has this
characteristic.

Simple decision rules. Another worry of Houston &
McNamara’s commentators was that animals may not be
able to solve dynamic optimization problems the way
computers do. They may be limited to using simple
decision rules. This argument is flawed in several re-
spects:

First, decision rules are exactly what a dynamic pro-
gramming model produces. No one imagines that animals
actually compute these decision rules by dynamic pro-
gramming — fitness maximizing behavior is selected by
the evolutionary process. The strategy derived from a
dynamic optimization model may conceivably be too
complex for organisms to use, but unless we have some
idea of the optimum optimorum we cannot assess the
degree of adaptation that observed behavior represents.

The feeding of parasitic nestlings might be quoted as
an obvious example of maladaptive behavior, but if the
nesting season is well advanced by the time that
the pseudoparent would be able to detect the fraud, the
selection pressure for learning to recognize and abandon
parasitic nestlings may be quite small. Similar arguments
apply in general to the interpretation of predictions
derived from optimization models (Houston & Mec-
Namara 1986). Unless the predicted behavior is signifi-
cantly superior to alternatives, selection pressure favor-
ing its evolution may be weak. Even though quantitative
testing of an optimization model may be feasible, the
qualitative predictions are often more interesting and
informative than the exact quantitative predictions (Fa-
gerstrom 1987).

The claim that animals use only “simple” decision rules
begs the question of characterizing simplicity. Ifit can be
shown that a certain simple rule performs almost as well
as the more complex rule obtained from an optimization
model then there is clearly no reason to expect the
complex behavior to evolve. The relative effectiveness of
the two rules can only be assessed on the basis of some
model, however; dynamic models are particularly well
suited for this comparison. At any rate, I am unable to
imagine how a theory of behavior with an evolutionary
basis could be constructed by restricting consideration to
some predetermined class of “simple” decision rules. It is
not the simplicity of behavior that usually astounds us but
its complexity.

7. Data requirements and model development

Every model is a deliberate simplification of the real
world. Where, then, does one draw the line in terms of
complexity in designing a given model? Simple models
help us organize our understanding of nature, but invari-
ably lack realistic detail.

The data available are an important consideration in
model development. Models that vastly outstrip the
available data may be popular with theoreticians, but
they contribute little to science.

Even a simple behavioral model will often include
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some parameters for which the necessary data are in-
complete, however. One of the main purposes of model-
ing is the quantitative testing of novel hypotheses, which
often means that the appropriate data have never been
collected since their relevance was unsuspected. With
reasonable guesses for unknown parameters one can
complete the model and see whether it gives interesting
and reasonable predictions. If so, the necessary data
should be sought.

Many models are probably best abandoned at this early
stage. If the model shows promise, however, it may be
tentatively accepted as a “first-generation” model. The
requisite experiments to estimate parameters and test its
predictions may be designed and performed. During this
process new information may come to light, and a second-
generation model may be developed.

The methodology for dynamic behavioral modeling in
biology is sufficiently novel that few if any such first- and
second-generation sequences have yet been published.
This kind of research is actively being pursued in several
laboratories; I predict that such activities will expand in
the future.

8. Environmental uncertainty

The dynamic modeling techniques discussed above can
be extended to deal with a variety of additional phe-
nomena, the main limitations being the availability of
data and computational complexity (see sect. 10). For
example, an external environmental state variable Y(¢), as
in Figure 1, can be included. This is relatively straightfor-
ward, provided one assumes that the individual always
has complete information about the environment before
making any behavioral decisions. A much more interest-
ing and difficult situation arises when the individual’s
knowledge of its environment is imperfect, which will
often be the case in fluctuating environments.

Under these circumstances, the individual’s state vari-
able X(t) can be expanded to include the current infor-
mational state about the environment. The current be-
havioral decision then depends on the individual’s
physiological and informational state variables but not on
the current environmental state directly. Here we enter
into the subject of dynamic decision theory under bona
fide uncertainty, involving imperfect information about
the present as well as the future state of the environ-
ment. Behavioral decisions must now include the pos-
sibility of deliberately sampling the environment so as to
reduce this uncertainty, facilitating more effective future
decisions. In spite of its obvious importance in behav-
ioral biology, hardly any work has been done in this area
(recent references include Stephens 1987; Mangel &
Clark 1988, Chapter 9; and Mangel 1990). It seems to
me that the biology of learning will not be well under-
stood until this theory has been much more fully
developed.

9. Dynamic game theory
Figure 1 overlooks an extremely important aspect of the

evolution of behavior, namely that the behavior of any
one individual inevitably affects and is affected by the
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behavior of many other individuals. Thus the behavioral
landscape really consists of a large collection of individual
landscapes, with numerous interconnections represent-
ing predator-prey, competition, kinship, and other rela-
tionships.

Behavioral interactions have been extensively model-
ed using game theory, particularly the concept of an
evolutionarily stable strategy (ESS) (Maynard Smith
1982); [See also Maynard Smith: “Game Theory and the
Evolution of Behavior”™ BBS 7(1) 1984.] An ESS is a
behavior strategy that makes the best of the circum-
stances, in the sense that, if adopted by the members of a
population, it is not subject to invasion by a rare mutant
alternative strategy. ESS models are usually somewhat
difficult to analyze and tend to become much more
difficult when made explicitly dynamic. The few pub-
lished dynamic game-theoretic models of animal behav-
ior have been based on strong simplifying assumptions
(Clark & Ydenberg 1990; Houston & McNamara 1987;
1988b).

For example, in a model of fledging behavior taking
account of parent-offspring conflict (the offspring wishes
to be pampered), Clark & Ydenberg (1990) assumed that
the decisions made by the parent and its offspring alter-
nate sequentially. This facilitated a fairly straightforward
dynamic programming computation of the ESS. The
model was applied to fledging data for dovekies (Alle alle),
a small Arctic-breeding seabird, and provided a behav-
ioral explanation for the phenomenon of prefledging
weight recession in this species. This is one of a very small
number of game-theoretic models attempting quan-
titative predictions and may indicate a potential for the
development of data-dependent ESS models.

10. Limitations

Critics and defenders of optimization modeling in biology
abound (e.g., Gould & Lewontin 1979; Grafen 1984;
Maynard Smith 1978; Mayr 1982; Oster & Wilson 1978;
Pierce & Ollason 1987; Stephen & Krebs 1986). One can
agree with the critics that the adaptationist paradigm has
often been carried to extremes, and that evolution is at
best an imperfect optimizer, while at the same time
accepting the fact that optimization models — and their
relatives, game-theoretic models — can be extremely
useful in organizing our understanding of observed phe-
nomena. Many recognized limitations of traditional op-
timization models of behavior succumb completely to the
dynamic modeling framework described in this target
article.

Indeed, the flexibility of dynamic state-variable models
may itself become a source of trouble. The temptation to
construct exceedingly complex dynamic behavioral mod-
els, naively thought to capture the “real complexities” of
nature, could lead to a plethora of incomprehensible
models, as has already happened in areas like systems
ecology. Tt is always hard to prevent people from mis-
using powerful scientific techniques that they don’t un-
derstand (think of statistics!).

The curse of dimensionality. Dynamic optimization theo-
ry has its roots in the calculus of variations, developed
in the 18th and 19th centuries by Euler, Lagrange,
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Weierstrass, and other mathematicians. The require-
ments of modern technology, particularly communica-
tions and space exploration, led to the reformulation and
extension of the classical calculus of variations in terms of
optimal control theory (Pontrjagin et al. 1962) and dy-
namic programming (Bellman 1957). These methods,
which are now routinely applied in many fields, including
engineering, operations research, and economics, have
been further enhanced by the spectacular increases in
computing power that have occurred simultaneously. It
was inevitable that these developments would eventually
affect behavioral biology.

In principle, dynamic programming and optimal con-
trol theory are capable of encompassing arbitrarily com-
plex dynamic decision problems. Practical limitations are
reached quite rapidly, however, as the dimensionality of
the state space increases. This so-called “curse of dimen-
sionality” (Bellman’s term) is not a feature of any particu-
lar modeling approach or algorithm but is an intrinsic
characteristic of dynamic optimization problems with
many state variables.

The difficulties are twofold. First, model identification
(choice of functional forms, estimation of parameters,
ete.) obviously becomes more difficult as the scope and
complexity of a model increases. There may be tradeoffs
between a model’s degree of realism and the ability to
identify the model from available data (Ludwig 1989).

Second, computational requirements in terms of mem-
ory and numerical calculations increase as n™, where m is
the number of state variables and n the number of
discretized values used to represent each state variable.
For m larger than 4 or 5 these requirements begin to
exceed the capacity of large computers. These limitations
are particularly relevant for models including environ-
mental uncertainty, since now the informational state
must also be included, significantly increasing the dimen-
sionality and complexity of the model. Similar problems
arise in ESS models of pairwise contests, since the state
variables of both contestants must be included.

The curse of dimensionality necessarily arises in any
attempt to solve dynamic optimization, or dynamic game
models. These problems are inherently complex (unless
they are of low dimension); no revolution in optimization
theory is likely to overcome this fact. An intriguing
possibility is to use the computer to emulate the evolu-
tionary process in searching for optimal or ESS strategies
via a process of natural selection, but to my knowledge
this has not yet been attempted.

The characterization of fithess. In this target article 1
have assumed that an organism’s fitness is adequately
described by its total expected lifetime reproductive
output. It is well known that this definition is not always
appropriate, particularly for growing or age-structured
populations, or for populations in stochastic environ-
ments (Cohen 1966; Levins 1968; Stearns 1976). One
adjustment, replacing the arithmetic mean with the geo-
metric mean, is easily accomplished (Mangel & Clark
1988, p. 240), but combining behavioral and population
genetic models in general would appear a daunting pro-
ject (see Yoshimura & Clark in press). Grafen’s (1984)
discussion of the “phenotypic gambit” in behavioral mod-
eling is relevant to dynamic as well as traditional static
optimization models.

Clark: Modeling behavioral adaptations

11. Conclusion

The functional analysis of behavior is by definitior based
on the Darwinian paradigm of natural selection according
to survival and reproduction. Since these processes trans-
pire over time, it follows that the time dimension must
somehow be taken into account in any such analysis.
Simplifications may sometimes be adopted so as to finesse
the time dimension, but timeless models have narrow
limitations which preclude the analysis of many impor-
tant aspects of behavior.

Dynamic optimization techniques are significantly
more difficult than static methods. Recent experience
with dynamic programming models of behavior, how-
ever, has indicated many advantages for this approach.
The restrictive assumptions (linearity, convexity, deter-
minism) underlying such alternative techniques of dy-
namic optimization as optimal control theory become
irrelevant when optimal strategies can be deduced via
numerical computation. Dynamic programming models
are extremely flexible and can be used to study an almost
unlimited variety of behavioral phenomena. State vari-
ables and model parameters have operational signifi-
cance, so that empirical testing of a model’s predictions is
feasible.

More important, the dynamic approach to behavioral
modeling provides a completely different outlock on
behavioral theory, compared, say, to the traditional mod-
els of foraging theory (see Fantino & Abarca 1985), or to
models based on economic concepts like utility or indif-
ference contours (see Rachlin et al. 1981). The entire
manifold of tradeoffs (“costs and benefits”) typically asso-
ciated with any behavioral decision can be conceptualized
and modeled in a consistent and unified way. Dynamic
programming models are a natural extension of the ac-
cepted approach to the modeling of life-history traits
(Horn & Rubenstein 1984).

It is only to be expected that a modeling framework so
capable of encompassing realistic complexities will have
practical limitations. The art of modeling consists in
finding a happy compromise between simplicity and
complexity which will enhance our understanding of
nature.

When should dynamic as opposed to static or averaging
models be considered in behavioral theory? Quantitative
models are by nature less general than qualitative ones;
this should be taken into account in choosing the model-
ing framework. My experience in behavioral modeling
suggests that the possibility of designing a dynamic model
should be thought about whenever quantitative predic-
tions and testability are desired, or whenever the trade-
offs between different behavioral options are of interest.
None of the standard simple models of behavioral ecology
have stood up particularly well to quantitative tests (Ste-
phens & Krebs 1986, Chapter 9), although their success
in providing qualitative insights should not be under-
rated.
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Dynamic models of behavior: Promising
but risky
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In his target article, Clark presents both the strengths and the
weaknesses of a promising dynamic state-variable model of
behavioral adaptations. Although he is careful to point out that
such models are inherently limited by the complexity of ecologi-
cal systems, we are left wondering just how useful dynamic
optimalization models can be. Moreover, such models pose a
greater risk of misguiding theory and research than Clark’s
paper suggests.

Mathematical models of complex phenomena typically pro-
duce predictions and conclusions that err, to some degree, in a
quantitative fashion. Quantitative errors are certainly to be
expected for dynamic models of behavior, particularly because
the functional contribution of any behavior can be evaluated
only within an immensely complicated ecological context. Hav-
ing forewarned us of the difficulties of producing models that
make satisfactory quantitative predictions, Clark ends his article
with the admonition not to underrate the ability of models in
behavioral ecology to provide qualitative insights. I encourage
behavioral ecologists not to overrate the ability of dynamic
models to provide qualitative insights. Faulty assumptions,
poor parameter estimation, and over-simplification can all prove
fatal. Some earlier mathematical models in ecology show that
(simplified) models of ecological processes can lead to serious
qualitative errors. As a prominent biologist said, mathemati-
cians need to avoid “developing biological nonsense with math-
ematical certainty” (Slobodkin 1975).

The mathematical treatments of competition provide a good
example of such pitfalls in mathematical models. One potential
pitfall consists of starting from false assumptions. Until recently,
“virtually all mathematical treatments of competition” assumed
competitive equilibrium (Wiens 1977), yet true competitive
equilibrium occurs rarely, if at all, in nature (Alley 1982; Pianka
1976). The simplifications required to construct tractable mod-
els introduce additional perils. Classical competition models
adopted such simplifications as stability in environmental condi-
tions and limited genetic variation. The resultant models pre-
dicted the eventual extinction of one of two competing but
coexisting populations, thereby supporting the influential prin-
ciple of competitive exclusion. Moreover, lab experiments with
simple homogeneous environments have demonstrated com-
petitive exclusion (Hardin 1960). Modest changes in the mod-
els, however, indicate that coexistence of competitors may be
possible (Vandermeer 1975), as field biologists believe (e.g.,
den Boer 1980). In retrospect, it is clear that neither the
artificially simple laboratory studies nor the corresponding com-
petition models actually generalize to natural communities (nor
should they be expected to).

The newer, more sophisticated dynamic models advocated by
Clark (target article) and Houston and McNamara (1988) are
much less likely to make fatal assumptions about stability in
environmental, genetic, or behavioral conditions because the
interrelated changes in these state variables are directly incor-
porated in the models. Furthermore, it appears (cf. Clark’s
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Equation 1) that dynamic models will follow the rule that
adaptedness must always be assessed in the context of an explicit
environment (Slobodkin & Rapoport 1974). Dynamic models
also allow the environment to be defined in terms of the
functional characteristics of organisms, as must be done to
capture the fundamental ecological characteristic of mutual
compatibility between organisms and their natural environ-
ments (Alley 1985). Nonetheless, serious qualitative errors may
arise from the processes of simplification, variable selection, and
parameter estimation required by dynamic modeling.

Viable models of behavior require careful attention to ecologi-
cal details (Houston & McNamara 1988) and even then may fail
completely. The act of consuming a resource can be used to
illustrate this difficulty.

Itis reasonable, and often correct, to assume that consuming a
nutritious food resource will usually make a positive contribu-
tion to an organism’s fitness. Hence a modeler of behavior may
estimate some positive value of this behavioral act, and laborato-
ry experiments may support the model. Nonetheless, the resul-
tant model may provide a highly distorted picture of the contri-
bution to fitness made by a tendency to seek and consume this
resource. For instance, if consuming this resource will result in
potentially lethal exposure to a predator or harmful interactions
with a superior competitor, the act of consuming this item may
have a negative value. Energy costs, resource scarcity, water
reserves, and many other factors influence the value of this
behavior (Houston & McNamara 1988). In short, the value of
this act, like almost any other behavior, may easily be mis-
judged.

In conclusion, dynamic behavioral models have (potentially)
sufficient breadth of applicability and power to be useful in
behavioral ecology. Their development forces modelers to spec-
ify precisely the most important state variables and the dynamic
changes in state across time; this may prove to be a helpful guide
to research. These models may provide a good way to test our
understanding of behavioral ecology, but they are not to be
trusted without substantial empirical support from field investi-
gations. They may provide insight into optimal behavioral strat-
egies, the nature of differences between taxonomic units, and
ecological relationships, but are likely to yield only an approx-
imation of true optimal behavior. I wholeheartedly agree with
Clark that the modeling needs to be treated “as a process of
successive approximation to . . . nature,” with the models
themselves continually tested against data from laboratory and
field studies.

Learning and incremental dynamic
programming

Andrew G. Barlo

Department of Computer and Information Science, University of
Massachusetts, Amherst, MA 01003

Electronic mail: barfo@cs.umass.edu

It would be surprising if a computer scientist interested in the
adaptive behavior of both natural and synthetic systems were to
find significant grounds for criticizing the approach to behavior
modeling described in Clark’s target article. Optimization theo-
ry has unquestioned utility in the design of synthetic adaptive
systems (with fruitful debate centering on what to optimize and
how best to do it), and the concept of a dynamic system’s state
has proven to be one of the most powerful in modern engineer-
ing. Indeed, it is surprising to me that the theoretical framework
described by Clark has not been more widely adopted by
behavioral scientists. The complexity of animal behavior de-
mands the application of powerful theoretical frameworks. The
point of my commentary is to suggest that beyond its role in
evolutionary biology, the dynamic modeling technique de-
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scribed by Clark can also provide an approach to modeling
animal learning at the mechanistic level.

Clark indicates that the dynamic modeling techniques he
discusses are highly relevant to the biology of learning. If an
animal’s internal state includes information about the animal’s
current knowledge of its environment, then dynamic program-
ming methods can be used to generate decision rules that take
into account the utility of gathering information in the same way
that they take into account the utility of gathering food. 1 agree
that this is an important area of research that has not yet been
developed (although the statistics literature contains relevant
work; see, for example, Berry & Fristedt 1985). Dynamic
modeling techniques and dynamic programming, however, can
contribute to our understanding of learning in ways not sug-
gested in the target article.

Clark says “no one imagines that animals actually com-
pute . .~ decision rules by dynamic programming — fitness
maximizing behavior is selected by the evolutionary process.”
But some of us do imagine that animals actually use methods
that incorporate principles of dynamic programming to adjust
behavioral strategies while they are behaving. I wish to bring to
readers’ attention a growing body of research in which learning
tasks are modeled as dynamic optimization problems and the
learning system itself is engaged in a kind of dynamic program-
ming. Instead of computing behavioral strategies that maximize
evolutionary fitness, however, the learning system uses dynam-
ic programming principles to adjust behavioral strategies to
improve the total amount of “payoff” that can be accumulated
over time. Payoff can be thought of as a measure reflecting the
learning system’s preference ordering over combinations of
environmental states, internal states, and behavioral acts, to use
Clark’s terminology. The means by which circumstances gener-
ate levels of payoff are “hard-wired” by an evolutionary process,
but a behaving system can adjust the details of its behavioral
strategy to improve payoff yield over time.

From an engineering perspective, the learning problems
treated according to this view are adaptive optimal control
problems in which the complexity of the system to be controlled
and a lack of complete prior knowledge about its dynamics
prevent the prespecification of an optimal, or even useful,
control rule. Unlike most mathematical formulations of learning
tasks (such as those widely adopted in the field of artificial neural
networks), this formulation encompasses tasks in which the
consequences of an action can emerge at a multitude of times
after the action is taken, and both short-term and long-term
consequences must be considered in generating control actions.

On the surface, however, because it proceeds backward in
time, dynamic programming would appear to be a very poor
candidate for modeling learning mechanisms that operate in real
time. How can dynamic programming be accomplished by a
learning system unless it uses large data structures and exten-
sive off-line processing, that is, unless it is “able to solve
dynamic optimization problems the way computers do’? In
addition, dynamic programming seems irrelevant as a learning
procedure because it requires a detailed knowledge of the
system’s dynamics, knowledge not directly available to the
learning system.

These properties do rule out a literal form of dynamic pro-
gramming as a model of real-time learning, but there are simple
rules for updating memory structures during behavior that can
approximate incrementally what would be computed by a literal
form of dynamic programming. In addition, such rules can do
this without complete knowledge of the underlying dynamic
system. These rules are based on the same recursive rela-
tionships exploited by dynamic programming, but these rela-
tionships are applied during behavior. If a learning system can
experience varied and repetitive interaction with a dynamic
environment, it can incrementally approximate the results of
dynamic programming while always going forward in time.
Moreover, the learning rules allowing this are not much more
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complicated than other incremental learning rules that have
been put forward as models of animal learning, for example, the
Rescorla-Wagner model of classical conditioning (Rescorla &
Wagner 1972), or rules used in synthetic systems, such as the
Widrow-Hoff rule (Widrow & Hoff 1960).

The study of on-line learning methods for approximating the
results of dynamic programming has been directed both toward
designing synthetic systems and toward modeling animal learn-
ing. The use of these methods has been called “heuristic dynam-
ic programming” (Werbos 1977; 1987) and “incremental dynam-
ic programming” (Watkins 1989). The “temporal difference”
(TD) methods analyzed by Sutton (Sutton 1984; 1988) and used
in some adaptive control experiments by Barto et al. (1983) are
examples of this class of method. Models of animal learning
which use principles of dynamic programming include the TD
model of classical conditioning of Sutton & Barto (1987) and
the model of Klopf (1988) and Klopf & Morgan (in press). The
TD model provides an account of a range of classical condition-
ing phenomena with a simple learning rule based on incremen-
tal dynamic programming. Further discussion of these ideas,
their history and relation to dynamic programming, as well as
references to other relevant research, are provided by Sutton &
Barto (in press) and Barto et al. (in press).

As this approach to animal learning develops, its appeal to
optimization theory is likely to become even more controversial
than is the appeal to optimization theory in behavioral ecology.
If anything, justifying a specific definition of “payoff” for a
learning task is more problematic than defining evolutionary
fitness, and the canonical example of nonoptimal behavior —
matching behavior in operant conditioning — more directly
concerns learning than evolution. I would suggest, however,
that, to paraphrase Pope, a little optimization theory is a dan-
gerous thing. In engineering design, performance criteria must
either reflect what the designer really wants, or their optimiza-
tion can yield totally unsatisfactory results (a point emphasized
by Norbert Wiener (1964) by reference to Goethe’s poem The
sorcerer’s apprentice). In a theory of behavior, explanations in
terms of optimization criteria that do not reflect the true com-
plexity of a task are inadequate and misleading. Significant
progress in understanding learning can be made by adopting
optimization criteria that take into account internal and external
states, system dynamics, and the temporally extended nature of
behavior.
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behavior
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Although the target article is a clear and succinct exposition of
dynamic modeling, the applicability of this approach is not as
general as Clark maintains. The purported comprehensiveness
of such modeling is symptomatic of the narrowness which would
make ethology a one-legged monster (Dawkins 1989). These
failings can be seen by focusing on the methodological basis of
the approach, the rule of phylogenetic and developmental
constraints, and the issue of mechanisms.

Contrary to Clark’s assertions (sect. 1), the optimization
approach may serve more to canalize, rather than organize, our
explanations of animal behavior. Clark adopts the hypothesis of
optimal adaptation as axiomatic based on many undisputed
supporting examples. This stance is quite different from that
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taken by Lande and Arnold (1983) in their evolutionary models.
They note that the population mean may differ substantially
from the optimum, even if an optimal phenotype exists, because
of selection acting on correlated traits and hence resulting in
maladaptation of the mean phenotype. Lande and Arnold con-
clude that only when models take such correlated effects into
account will we know how frequently maladaptation of the mean
phenotype occurs in the population. For his part, Clark setsup a
false dichotomy by implying that critics of the optimality ap-
proach with its assumption of adaptation are forced to accept
some novel process of evolution other than natural selection.

The dynamic modeling described by Clark is most useful
when the traits in question are directly under selection pres-
sure. It is not clear how Clark can make this a universal
assumption rather than an open question in need of empirical
verification. For example, he gives an optimality-type argument
to explain the lack of a selective response to the feeding of
parasitic nestlings by pseudoparents (sect. 6, Simple decision
rules) even though such arguments have already been shown to
be incorrect (Rothstein 1982; 1986). Rothstein (1982) sees the
heuristic value of optimization models but urges that less cer-
tainty be attached to the notion that animals always behave in an
adaptive fashion. The lack of an adaptive response to brood
parasitism by some species illustrates that heritable variation in
specific traits cannot be taken for granted. This is especially true
for traits associated closely with fitness, which can go quickly to
fixation (Falconer 1981). Brood parasites have presumably cap-
italized on just such a strong selection response for parents to
feed offspring in their nest (Jamieson 1989a).

Phylogenetic and developmental constraints of this type illus-
trate the second major limitation of optimization models. Con-
straints are implicit in optimization and history is implicit in
adaptation. However, Stearns (in press) has argued that history
enters optimization models only in a superficial way. When
theorists build optimization models, they assume certain trade-
offs. Trade-offs differ significantly among lineages, but optimiza-
tion models applied to different lineages simply assume the
relevant constraints without asking why they have changed:
“one just notes that they have, incorporates them into the
analysis and having used them, perhaps to make a successful
prediction, forgets about them.” What is missing in an op-
timality approach is an understanding of why important con-
straints differ from lineage to lineage. The study of function and
of evolution of behavior are interactive, not separate, problems
(Jamieson 1989b).

Clark’s approach alse cannot specify, or even suggest, mecha-
nisms in specific behavioral situations, whether the anticipation
of the future (sect. 6, Backwards induction), matching behavior
(sect. 6, Optimality hypothesis), the structure of decision rules
(sect. 6), the biology of learning (sect. 8), or the general problem
of behavioral patterning. As Ollason (1980a) has pointed out,
mechanisms can be interpreted in terms of function, but the
reverse is not true. For these problems, such other approaches
as that of Fantino and Abarca 1985 (sect. 11), are not only
possible but essential.

Under an optimization approach, when modellers need to
make assumptions about how animals assess things such as each
others’ size, territory quality, and parasite loads, they generally
cannot support them. Dawkins (1989) has argued how much
more impressive optimal foraging models would be if we knew
which assumptions (about memory and perception) were real-
istic, which were unlikely, and which were contrary to every-
thing that was known about animal vision and memory. What
Clark fails to note is that evolutionary models of behavior need a
mechanism just as much as the study of mechanisms needs an
evolutionary perspective.

One serious problem that arises from the lack of emphasis on
behavioral mechanisms is that predictions from mathematical
models can be supported when the actual mechanism assumed
to be operating in a model is wrong. Bell (in press) illustrates this
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point with an example from optimal foraging. Using an optimal
foraging model, Pyke (1978) predicted that bees should stay in a
patch of highly rewarding flowers, pass quickly through a patch
of low-reward flowers, and not forage at all in a patch of empty
flowers. In testing this hypothesis, Pyke found that his predic-
tions about the mean angular deviation between arrival and
departure was supported. To explain the results, Pyke devel-
oped a rather complex set of departure rules for bees in a
rewarding patch. As summarized by Heinrich (1983), to accom-
plish this feat a bee must remember, before computing a new
departure angle, not only the direction it came from each time it
visits a flower but also the rewards of previously visited flowers
and previous departure directions. In fact, what happens is that
the bees simply turn several times around on a rewarding
flower, contributing to the predicted randomness in their take-
off direction.

Optimal foraging theory may have generated a useful func-
tional model of behavior, but it led to a totally inappropriate
hypothesis of the proximate mechanism involved. Dynamic
models could be subject to the same problem. It is relatively
clear what must be done when the predictions of a particular
model are not supported, but Clark does not recognize that
Type II errors may be relatively common in a mathematical
approach that pays little attention to biological details.

Dynamic programming, limited information
and behavioral modeling

Bradley W. Dickinson

Department of Electrical Engineering, Princeton University, Princeton, NJ
08544-5263

Electronic mail: bradley@princeton.edu

Clark’s target article provides some persuasive arguments about
the importance of using dynamic models in a variety of quan-
titative studies of behavioral processes that have presumably
been shaped by natural selection. From the perspective of
“traditional” applications in which dynamic programming mod-
els have been successfully used, it is a familiar approach to start
by specifying a difference equation to describe a family of state-
space paths parametrized by a sequence of admissible control or
decision variables, and by formulating a reward criterion whose
maximization produces a sequence of optimum decisions and
the corresponding optimum performance. For a comprehensive
treatment of dynamic programming, see Bertsekas 1987.

The problem of obtaining suitable mathematical formulations
of the difference equations and reward criteria describing com-
plex biological systems is a challenging one, but it is hardly
unique to this application; for example, the same problem is
faced in many applications to economic systems. Indeed, for
both kinds of applications there is little reason to assume the
existence of an underlying “true system” described exactly by a
model of the form used in behavioral studies. Mathematical
models that involve plausible relationships between variables
and that accurately approximate behavioral characteristics pro-
vide a way to expose structure and to help explain it. When
plausibility is sacrificed for the sake of simplicity or tractability,
the resulting model takes on a greater level of empiricism, and
its explanatory power can be expected to decrease.

These general comments set the stage for my critique of
Clark’s article. It is my contention that the issue of limited
information must be incorporated in the description of dynamic
programining in order to maintain the plausibility of the basic
model. When a dynamic programming model includes a re-
striction on the functional form of control inputs arising from an
explicit specification of the available state information, the
fundamental nature of an optimum behavior is strongly affected.
In the case of full information, the entire state vector is available
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at each stage and optimum control inputs depend only on

instantaneous state values. In the case of partial information,’

however, optimum control inputs depend on the entire past
history of observations. Only in rare cases will there exist a finite
dimensional realization of the optimum controller; in other
words, any controller with “fixed memory size” is necessarily
suboptimal. See Bertsekas 1987, Chapter 3.

There is also some evidence that the difficulties caused by
limited information in dynamic optimization problems extend
beyond the framework introduced in Clark’s paper. In the case
of behaviors that can be modeled by discrete-event systems
rather than by difference equations, it is has been shown that
some dynamic optimization problems involving partial informa-
tion are intractable in the sense of computational complexity
theory (Tsitsiklis 1989).

The issue of limited information is not completely ignored by
Clark, who briefly mentions it in section 8 in connection with
modeling environmental uncertainty. The importance of deal-
ing explicitly with limited information is much more basic,
however, and hence more important. The model for fledging
behavior used as an example in section 5 can also be used to
illustrate how limited information relates to the modeling pro-
cess. The model’s state vector X(¢) includes W(#), the chick’s
weight, as its first component. There is a two-parameter nestling
growth function gy(w), and there is a similar growth function
g,(w) valid after fledging. A weight-dependent reward function
is also introduced. The resulting optimal fledging behavior is
given in Table 1. Let me pose two basic questions. First how
does a chick know its weight? Second, what is the effect of
parametric uncertainty in the descriptions of the growth func-
tions? These questions are posed not to challenge the usefulness
of the model, but to raise flags about two basic issues concerning
dynamic programming with limited information.

As suggested by the first question, it is often not plausible that
the quantities comprising the state vector of a dynamic model
are all available for measurement. State estimates based on the
limited information available may need to be incorporated as
part of the optimum behavior. Of course, in models where a
state variable plays a surrogate role (as above, where weight is an
external manifestation of some internal metabolic variable), this
need not be a case of limited information.

The second question concerns a generic issue. If we assume
that the form of the difference equation used to describe the
state dynamics (or some alternate form for specifying allowable
behavioral data) is genetically programmed in each individual,
then to achieve optimum behavior while allowing for parametric
uncertainty requires a dynamic programming formulation in-
volving limited information. Unknown parameters must be
included as components of the state vector; even though the
dynamics of these quantities are trivial (constant over time), the
fact that the parameters are not directly observed is a crucial
difference because the resulting model involves partial state
information.

What is the point of emphasizing limited information in the
context of dynamic programming models of behavior? My an-
swer is that it adds plausibility in at least two different ways.
First, partial state information becomes more and more realistic
as the complexity (and accuracy) of dynamic behavioral models
increases. Second, partial state information allows for param-
etric uncertainty in dynamic models, thus making it more
realistic for natural selection to express optimum behavior.

The occurrence of adaptivity in Nature's implementations of
biological behavioral control processes supports indirectly our
view of the importance of limited information. Standard ap-
proaches in conventional applications of dynamic programming
include certainty equivalence, where the models obtained by
assuming full information are modified to incorporate estimates
of unobserved quantities, open loop feedback control, where
the effects of future measurements are ignored in determining
control inputs, and various other forms of parametric adaptive
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control. Chapter 4 of Bertsekas 1987 provides more details.
Adaptive systems presumably also cope with “unstructured
uncertainty” (e.g., unmodeled dynamies) in the system models.
Various manifestations of adaptive behavioral control could
conceivably be examined through experiments suggested by
mathematical models with partial cbservations.

In conclusion, the prospects for modeling behavioral evolu-
tionary processes using tools of dynamic optimization seem
bright. Clark’s target article points out some of the future
challenges. I have used the issue of limited information to
suggest that suboptimal individual behavior arises, at least in
part, from basic mathematical considerations, and that adaptive
features of individual behavior are likely to be related to neces-
sarily suboptimal implementations. Model-based sensitivity
studies might also indicate situations where there are no signifi-
cant performance improvements to be gained through adaptive
control and so a fixed, genetically programmed “nominal con-
troller” would be sufficient for generating the desired behavior.

Rules of choice

Edmund Fantino

Department of Psychology, University of California, San Diego, La Jolla, CA
92093

Electronic mail: ps28%sdcc12@ucsd.edu

Behaviorists should be indebted to Clark for his lucid and
informative review of dynamic modeling. I certainly applaud his
functional analysis and the potential usefulness of the modeling
approach. I am particularly partial to his claims that: (1) models
can be “tremendously helpful” when treated as a “successive
approximation to the complexity of nature”; (2) solving back-
wards in time is the natural and necessary way to develop a
model for an evolutionary theory of behavior; (3) optimal behav-
ior is entirely responsive to past events.

Clark takes some of Houston & McNamara’s (1988a) commen-
tators to task for citing “the matching law of operant psychology
as evidence of nonoptimal behavior, without explaining why it
contradicts optimality” (sect. 6, Optimality hypothesis). I have
mixed reactions to this section, in part because it too is some-
what sketchy in explaining the author’s position. Perhaps he will
address these concerns in his Response. First of all, the fact that
matching often occurs when it is nonoptimal cannot be dis-
missed so readily by an appeal to the benefits of sampling in
tracking a varying environment. As Heyman and Herrnstein
(1986) have shown, pigeons may evince matching rather than
optimal behavior after many many hours (in daily sessions taking
place over several weeks). Their tendency to match does not
diminish over extensive exposure to the nonchanging environ-
ment. More important, the pigeons do not follow a maximizing
strategy with occasional deviations to sample (a pattern con-
sistent with the interpretation presented); instead, they follow a
matching strategy which precludes maximizing.

It is true, however, that matching and maximizing are usually
equivalent. Thus, matching may be one solution pigeons have
developed for generating choice behavior that is generally
optimal. As a second example, consider delay-reduction theory
(DRT), developed in the operant choice laboratory and applied
to foraging decisions (e.g., Fantino 1969; 1987, Fantino &
Abarca 1985; Fantino & Preston 1988; 1989). As shown by
Fantino and Abarca, DRT is equivalent to the optimal diet
model of classic optimal foraging theory. However, situations
may be constructed so that the predictions of DRT differ from a
model maximizing food availability over time. Specifically, ac-
cording to DRT, hungry subjects should choose the outcome
correlated with the greater reduction in time till the next
opportunity to eat over an alternative correlated with slightly
less delay reduction but with a greater overall rate of food
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availability. Wendy A. Williams and I are demonstrating that in
such cases pigeons strongly prefer the outcome with greater
delay reduction. Again, as I suggested with respect to the
matching law results, it may be that rules such as delay reduc-
tion lead to sufficiently optimal outcomes so that they become
the rules of choice. Such cases of nonoptimal “satisficing” rules
may also help explain otherwise anomalous phenomena in
human behavior (e.g., illogical behavior, see Nisbett & Ross
1980).

What remains unclear to me is how these types of adaptation -
including sensitivity to matching and to delay-reduction — are
accounted for by the dynamic modeling framework described in
the target article. Clark is perhaps suggesting an answer when
he writes: “Unless the predicted behavior is significantly superi-
or to alternatives, selection pressure favoring its evolution may
be weak” (sect. 6, second last para.). However, a more complete
account is needed if the dynamic modeling framework is to
encompass choice behavior comfortably.
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Can dynamic optimization cope with
ecological complexity?
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Introduction. Ethological and ecological studies use the ex-
pression “causal explanation” in two different senses. The ex-
pression may mean the longterm processes of natural selection
of traits which confer a certain “fitness” on their carriers. This is
the “evolutionary” or “teleonomic” explanation. On the other
hand, ethologists use the term “cause” to refer to short-term
determinants of a behavioural act. The latter factors are termed
behavioural “mechanisms,” and the complex set of interactions
that link the individual to its environment are termed “be-
havioural mechanics.” In this commentary, to avoid confusion
with dynamic programming, I will not use the term “dynamics”
(sensu dynamics in physics) for these processes.

Despite the evident logical affinities between the two kinds of
causes, they are studied with methodologies that differ so much
that the reciprocal links remain undetermined in most studies.
In general, behavioural “mechanistic” studies refer quali-
tatively (and often uncritically) to the adaptive value of the
behaviours studied.

Optimal foraging theory (OFT) has introduced a new ap-
proach in behavioural studies, explaining long-term phenomena
in terms of short-term processes. In fact, its main assumption is
that short-term behavioural optimisation produces “fitness max-
imization.” In other words, OFT explains evolutionary patterns
in terms of behavioural adaptations (cf. Clark’s discussion about
the computation of lifetime reproductive outputs). The long-
term determinants remain important even when nonadaptive
processes of evolution (e.g., drift, dispersal, etc.) are taken into
consideration. Accordingly, OFT models” predictions can be
tested directly against experimental or field evidence.

“Classical” deterministic models of OFT (Stephens & Krebs
1986) predict average individual behaviour. By contrast, dy-
namic optimisation can inform us about the time evolution of
behavioural patterns, with a temporal definition that depends
only on the power of the computer used. If Popperian re-
futability is the chosen scientific standard, these fine-grained
predictions of animal behaviour confer a more elevated epis-
temological status on stochastic optimisation compared to “clas-
sical” OFT deterministic models.

Clark states (sect. 6, Excessive generality) that a “sequence of
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model formulation, testing, modification or replacement, and
testing again, is the cornerstone of scientific research.” This is
undoubtedly true, but it is necessary to be aware that this
sequence depends critically on the efficiency of the testing
procedure. The quality of the testing procedure is of the utmost
importance especially when field data are used. Most OFT
reviewers (e.g., Stearns & Schmid-Hempel 1987) are worried
that a wrong model may be accepted as a consequence of the
smallness of the sample sizes (implying high standard errors of
the estimates) that are used in many tests (type Il statistical
errors). The aim of this commentary is to call attention to the
other possible error (type [risk), that of rejecting a good model.
Following the “sequence” described above the rejection of a
good “simple” model may lead “to a plethora of incomprehensi-
ble models.”

Behavioural mechanics and optimization modeis. An animal
that would want to adopt an optimal strategy may not be able to
follow it, and may be obliged to shift to the best nonoptimal
strategy available.

Under natural conditions a certain number of factors may
influence the performance of an animal that is following an
optimal policy:

1. The optimal action is physically impossible. Suppose we
are studying the group size selection process, and let m* denote
the optimal group size for an animal characterized by a certain
value X(¢) of its individual state. A group of size m* — 1 may not
be present in the environment so that the optimal action cannot
be performed. In this situation, the animal’s optimal choice is to
select among available groups the one which yields the largest
fitness. In addition, a large herd may split if there is a fitness
advantage. Accordingly, one may expect to find under natural
conditions herd sizes that exceed optimal values, an upper
bound being the lowest size m for which the individual “ex-
pected fitness” in a herd of size m/2 exceeds that in a herd of size
m (an overflocking situation; cf. Clark & Mangel 1986).

2. The optimal action may be performed with delay. For
example, when the animal has to select a habitat from a set of
possible ones, it may happen that some time is lost before it
reaches the right one (see the example in Houston et al. 1988).

Similar arguments may be developed for numerous other
“disturbing” factors.

Discussion. With respect to predictions of dynamic optimiza-
tion, the test of “static” models — when large data sets are used —
may be significantly affected by the disturbing factors discussed
above because the effect (i) simply increases the variance of the
estimate, while the mean value may asymptotically converge to
m*, whereas the effect (ii) is ignored. In any case, the amount of
unexplained variance would be large.

The argument presented here is not meant to support the
claim that optimisation is impossible or that when it exists it is
unmeasurable. The aim is only to show that a simple direct
statistical comparison between the field observations and the
models’ predictions may yield significant differences even when
the modeling assumptions are correct.

I have stressed here that this kind of problem arises when
field data are used. In a laboratory approach, a clever experi-
mental design may strongly reduce or even eliminate these
difficulties. In the case of the detailed predictions allowed by
dynamic optimization, ignorance of the underlying behavioural
mechanics may be quite critical. Models and simulations of an
animal’s movements in relation to habitat structure (including
interactions with conspecifics, predators, etc.) represent the
logical interface between optimisation models and the real
world. If mechanistic models are not introduced in the testing
procedure, there is a concrete risk of developing optimization
models that are too complex and are subject to an excessive
number of constraints. In the face of computational difficulties,
complex models lose their heuristic value by diluting the key
elements among a large number of ad hoc hypotheses.

The approach suggested here recovers many of the the-
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oretical results about the behavioural bases of foraging and social
behaviour that have been in part neglected by the most recent
developments of the sociobiological debate, strongly concen-
trated on the “why” question. In particular, I refer to the
analysis of foraging paths and the formation of social groups
(reviews may be found in Deneubourg & Goss 1989 and in Alt &
Hoffmann 1990). A useful discussion of the relationship between
mechanistic and optimality models is also presented in Ollason
(1980b).

Such a unified foraging theory as the one proposed by Mangel
and Clark (1986) must incorporate the two kinds of causal
explanations. In my view, OFT and dynamic programming have
significantly contributed to such a unified view of foraging
ecology.
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Dynamic models, fitness functions and food
storing
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Colin Clark has provided a clear introduction to the elements of
dynamic programing, along with some eminently sensible com-
ments on the purpose, power, and limitations of modeling in
behavioral ecology. Of particular value is his emphasis on the
idea that modeling is itself a dynamic activity. In the right
hands, first generation models clear away the brush, stimulate a
search for better empirical data, and point to gaps in our
understanding of why animals behave as they do. Further
models build on the information provided by earlier efforts and
if nature is in the mood to yield up a few secrets, they advance
our understanding. This view of modeling exposes the fallacy in
Gould & Lewontin’s (1979) argument that the study of adapta-
tion is flawed because it substitutes new adaptive explanations
when old ones fail. All scientific activity proceeds by substitut-
ing new explanations when old ones fail. Modeling in behavioral
ecology simply introduces some rigour into the process that
should be welcomed by both adaptationists and skeptics.

A few critical comments can be made about the target article.
It is by no means clear that the matching of responses to reward
distributions is an optimal sampling technique (sect. 6. Op-
timality hypotheses). Nor is it clear that understanding sampling
is the key to the biology of learning (sect. 8. Environmental
uncertainty). Some learning does resemble the sampling of
values from a known distribution (Stephens & Krebs 1986), but
much learning does not. Learning to recognize and discriminate
places, objects, and events, learning contingencies between
events, and the learning of motor patterns have little to do with
sampling the state of the environment in the sense intended by
Clark. Even if we ignore the problem of how the environment is
represented and concentrate on the functions of learning, the
importance of sampling is as a point of contact between op-
timality modeling and learning theory, not as the essence of
learning. These issues are not the main thrust of Clark’s target
article, however.

More central to Clark’s presentation, and to Houston &
McNamara’s (1988) earlier target article, are questions about the
nature of the terminal fitness function in dynamic modeling.
The existence of a stationary behavioral policy that is indepen-
dent of the terminal fitness function and of the time to run until
the final time T is reached is an intriguing property of dynamic
models. Clark acknowledges that this independence holds only
under certain conditions, but for the most part he argues that
the problem of specifying the terminal fitness function is not
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severe. When is the relative ranking of final states truly unim-
portant in determining the optimal policy, however? In general,
how much time between ¢t and T is required before the behav-
ioral policy becomes stationary? Stationary policies only exist
when the state and environmental dynamics remain constant for
some period of time. The degree to which this property is useful
depends critically on how biologically realistic a period of
constant conditions is. One of the strengths of the dynamic
approach to modeling behavior is the facility with which it can
accommodate changes in conditions over time. When this is
desired, or when we are interested in modeling behavior for ¢
close to T, the difficulty of determining the terminal fitness
function remains.

There is no question that dynamic models can contribute a
great deal to the progress of research in behavioral ecology. Two
recent dynamic models of food storing by birds illustrate this
(Lucas & Walter, in press; McNamara et al. 1990). Storing food
appears at first to be a losing proposition, because the expected
energetic return on stored food can only decrease from its
current value, through pilfering losses, deterioration of stored
food, and failure to relocate caches. The energetic value of the
food is just part of the picture, however. Indeed, stored food
really has no fixed value at all to the animal because its value
depends on changes in the state of the hoarder and the environ-
ment between the time of storing the food and recovering it.
Food may become less available, increasing the fitness gain from
having previously stored a supply of food. Food may become
more available, reducing the cost of collecting food compared to
usual foraging conditions, and thereby promoting storing. Ener-
gy requirements may increase because of a drop in temperature
or because of breeding activity. Risk of starvation may increase
or decrease depending on the animal’s recent foraging history.
Dynamic models seem to be the only reasonable way to capture
the state dependencies that govern food storing decisions.

The dynamics of food storing can become particularly com-
plex for a further reason. Food storing by many species, includ-
ing chickadees, tits, Clark’s nutcracker (no relation), other
corvids, and woodpeckers takes place in social groups. Black-
capped chickadees do most of their food storing in fall and winter
in small conspecific flocks that are joined during foraging by
nuthatches, kinglets, and woodpeckers. Food storing decisions
are likely to be affected by the probability of losing stored food to
other birds that see it being cached, and by the opportunity to
observe and rob the caches of others. Food storing thus becomes
a dynamic game in which decisions are influenced not only by
the animal’s state and the state of the environment but also by
the behavior of others. Adequate models of dynamic games
would clearly be welcomed by many behavioral ecologists.

Clark makes a number of important points about testing
dynamic models. One of these, illustrated by Mangel (1987), is
that a dynamic model can generate the distribution of the state
variable X(t) over time, and hence the distribution of behavior in
the population. This predicted behavioral distribution can be
compared to an observed distribution of behavior in situations
where the measurement of the state variable in individual
animals is impractical. The predicted distribution of food storing
and cache recovery behavior, for example, can be compared to
field observations without requiring a knowledge of state vari-
ables, such as body weight, for individual birds. Finally, the
“curse of dimensionality” may be less of a curse than Clark
supposes. A modeling technique that produces reasonable
qualitative or quantitative predictions while keeping the
number of variables that must be measured to a manageable
number bestows the blessing of dimensionality on laboratory
and field workers.
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The next state of the art

Alasdair |. Houstona and John M. McNamaraP

2NERC Unit of Behavioural Ecology, Department of Zoology, South Park
Road, Oxford, OX1 3PS, England, and ©School of Mathematics, University
Walk, Bristol, BS8 1TW, England.

Electronic mail: houston@vax.oxford.ac.uk

Not surprisingly, we are in agreement with the general ap-
proach based on stochastic dynamic programming (SDP) advo-
cated by Clark. We also agree with most of the specific points
that he makes. The peer commentary on Houston & McNamara
(1988a) contained many misconceptions. We hope that our
Response to the peer commentary and now Clark’s target
article will eliminate these. Rather than going over this ground
again, we will concentrate on how this research field may
develop.

Like any other theoretical approach, SDP can be misapplied.
This is especially likely when an approach becomes fashionable.
An approach should be used because it is appropriate, not
because it is the flavour of the month. We are worried that the
power of SDP may encourage people to analyze problems by
using brute-force numerical techniques when more insight
might be gained from a simpler analytic argument. As with all
modeling-building, one must use judgment in deciding how to
proceed. It is almost always worth exploring a simple schematic
model of a system in an attempt to understand what features are
important (see also Houston 1990; Smith 1988). In using a
schematic model one must be aware of its assumptions and
limitations. The model may capture some aspects of the prob-
lem, but because of its limitations it will be unable to capture
other aspects. One may then want to make a more realistic
model that requires numerical solutions. Just because SDP can
solve almost any problem, it does not mean that it has to be
applied to almost every problem.

Matching cannot be understood in terms of the maximization
of the rate of energetic gain. Houston & McNamara (1988a)
outlined some broader contexts in which matching could be
favored by natural selection. Clark suggests sampling as a
possible explanation. We are not convinced that the regularities
in behavior that are accounted for by the matching law can be
explained in this way. The topic deserves further investigation.

Because SDP works directly with survival and reproduction,
it can be used to link behavior to population dynamics. Along
the way one can investigate ecologically relevant issues like the
relative magnitudes of starvation and predation (McNamara
1900; McNamara & Houston 1990a) and the distribution of
animals between habitats (McNamara & Houston 1990b).

Dynamic games are biologically important and present many
interesting theoretical challenges. We have continued our ap-
proach based on considering a large population of animals
(McNamara & Houston 1990b). Clark and Ydenberg (in press)
and Kelly (1989) consider interactions between a small number
of animals that are able to recognise each other.

Adaptive explanations of behavior must (either directly or
indirectly) relate the consequences of an animal’s behavior to its
life-time reproductive success. SDP provides a natural frame-
work for doing this, but it is not the only feasible approach. An
alternative is to follow the evolution of a population under
natural selection, as suggested by Clark. This approach has been
used by Poethke and Kaiser (1985). Sumida et al. (in press)
review the use of a pseudogenetic search mechanism called the
genetic algorithm (GA) in a biological context. The GA is a
powerful search procedure that can find optima in very large
search spaces. We see GA’s as being useful in the study of
problems where there are many dimensions or there are in-
teractions between animals, as in dynamic games.
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Modeling adaptation in the next generation:
A developmental perspective

Mark L. Howe,* William A. Montevecchi,
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Like Houston and McNamara (1988a), Clark describes a model-
ing technique that advances our understanding of behavioral
ecology. Dynamic modeling links developmental change with
an evolutionary framework; however, such modeling is not
restricted to evolutionary outcomes. For example, one can
model weight gain, language learning, or any number of other
significant developmental adaptations in place of fitness. Thus,
functional analysis can be considered a special area of develop-
mental biopsychology.

We have argued, as Clark has, that the complexity of natural
systems requires the modeling of phenomena in continuous
time (Howe & Rabinowitz, in press). This dynamic perspective
contrasts with more traditional state or stage conceptions of
development. Although not intended by Clark, even within a
dynamic framework, states can be seductive. That is, a descrip-
tion of an organism at a particular point in time can be misin-
terpreted as a semipermanent characterization. When one
breaks time into discrete units, the end of each unit may be
conceived as a theoretical convenience or a state of the orga-
nism. The latter idea is congruent with the recommendation
that we should describe states and look for transition mecha-
nisms between them (Simon 1962). This contrasts with the
perspective that development is transition or that biopsycholog-
ical models must be dynamic.

Within this broader context, as well as in Clark’s discussion, it
is an oversimplification to exclude environmental variables or
merely relegate them to organismic states. Clearly, behavior
occurs in a context, and it would seem that the virtue of dynamic
modeling in the study of adaptation lies in its ability to capture
this organism/environment interaction. Critical environmental
contingencies (e.g., protein deficiency during infancy) marked-
ly constrain future organismic states. Although we appreciate
the difficulty in modeling the complexity of natural systems, we
find it hard to imagine modeling behavioral adaptation without
an environment. The curse of dimensionality may be a tempo-
rary technological impediment, but it is not a sufficient justifica-
tion for ignoring a major component of the adaptive process.

Next-generation models must also confront the multifaceted
problem of parameter estimation. First, the model must be
identifiable. In particular, we must be able to generate unique
estimates for each parameter. Second, when we have deter-
mined that the model is identifiable, quantitative predictions
about empirical phenomena can be generated. In order to
evaluate the accuracy of such predictions, goodness-of-fit ma-
chinery is needed. At the very least, one must be assured that
the model is both necessary (parsimonious) and sufficient (ade-
quate), that it has the fewest number of parameters needed to
account for the data. Although backward propagation has been
criticized as a goodness-of-fit technique, it is a commonly used
regression procedure that permits (forward) prediction. In our
view, backward propagation represents a useful addition to the
usual collection of goodness-of-fit techniques. Developmen-
tally, both forward and backward propagation methods will be
necessary to evaluate the utility of the stage concept. Finally,
having established the relevant parameters through goodness-
of-fit tests, the validity of the parameters’ theoretical interpreta-
tions must be assessed. Such questions are formally addressed
statistically, and require operationalization and manipulation of
independent variables. It is only through rigorous experimenta-
tion and statistical evaluation of changes in parameter estimates,
that such validity can be established.
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We close by noting that the purposes of scientific theory are to
organize knowledge, generate falsifiable hypotheses, and pre-
dict new phenomena. Although such ideas as optimality have
played a critical role in theory construction, they confuse the
process of theory evaluation. What matters in evaluation is how
well quantitative models generate an understanding of pro-
cesses and outcomes. Within this perspective, mathematical
equations can potentially predict behavior such as probability
matching (e.g., Heyman 1988) and environmental sampling
(e.g., Stephens 1987), not whether errors determine optimality.
Questions about the optimality of such behavior are not falsifia-
ble, are outside the model’s domain, and only promote loose
speculation and circular argument. We hope that next-genera-
tion models will be sufficiently productive/predictive that re-
searchers will focus on developmental issues to the exclusion of
definitional controversies.

NOTE
*Correspondence should be sent to M. L. Howe.

Limits to stochastic dynamic programming

Ruth H. Macea and William J. Sutherlandb

2School of Development Studies, University of East Anglia, Norwich NR4
7TJ, England and ®School of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, England

Clark provides a useful description of the technique of dynamic
programming and outlines its main advantages. His major worry
concerns the complexity of models. He warns (sect. 10) of the
temptation to include excessive detail and how this can lead to
the sort of pointless heavyweight exercises that capsized and
sank systems ecology. We think it is important to understand
the real problem of producing complex models.

In his conclusion, Clark points out that the standard simple
optimisation models of behavioral ecology have failed to stand
up to quantitative tests, although they have provided qualitative
insights. The real success of such simple models as the optimal
diet model, the marginal value theorem and the ideal free
distribution was that they changed the perspective of a cohort of
ecologists so that they studied animals in a different way. This
led directly to the recognition of the importance of components
such as misidentification (Hughes 1979), kleptoparasitism
(Thompson 1983), variation in prey quality (Durrell & Goss-
Custard 1984), and individual differences in predator quality
(Sutherland & Parker 1985).

Dynamic models will probably fail to stand up to quantitative
tests also (albeit in different ways), but for the same reason it will
not matter. If the technique can contribute to interest in new
sorts of problems then it will have made a real contribution. It
has already started to do so, as the lack of a quantitative
framework in which to incorporate stochasticity, the time di-
mension and competing demands for an animal’s attention
definitely contributed to behavioural ecologists ignoring the
importance of these factors in the past. Now, the importance of
tradeoffs, central to all sorts of decision-making, is being widely
examined both through modelling (e.g., Mace & Houston-1989)
and purely empirical work (e.g., Cuthill & Guilford 1989).

Dynamic programming involves an interaction between
nature, computers, and human brains. Nature is complex and
computers are becoming increasingly capable of deseribing such
complexity. The “curse of dimensionality” is as much a problem
for human understanding as it is for the power of the computer.
Computers have no problem handling four or five dimensions —
the weak link is the human brain. It is possible to create models
with more than one state variable and several behavioural
options (and solve them numerically). But, in our experience, as
the complexity of the model exceeds one state variable or two
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behavioural options it can become increasingly hard to make
sense of the output.

Clark’s abstract states that “limitations arise because nature’s
complexity always exceeds our modelling capacity,” but this is
not the real problem. The major challenge is to abstract the
complexities of nature in a way that will capture the imagination
of its students.

Models are just prostheses for our brains
Manfred Milinski

Zoologisches Institut, Abteilung Verhaltensbkologie, University of Bern,
Wohlenstrasse 50 a, CH-3032 Hinterkappelen, Switzerland

Without using algebra we can only make qualitative hypotheses
in our heads and express them in words. A mathematical model
is (only) a hypothesis formulated quantitatively and expressed in
numbers. There is nothing more to a model that deserves either
condemnation or glorification. The model is a tool to formulate
hypotheses for research when the natural phenomenon under
study is too complex to be handled by the limited channel
capacity of our brain. In this respect, the dynamic modeling
technique is no different from other well accepted models. It
allows us to put more realistic complexity into our hypotheses,
but at the same time it often robs us of the excuse that it is
impossible to predict a behavior quantitatively because of its
complex conditions.

As an empiricist I am as happy to have this new and more
powerful instrument as I am to have a new and more powerful
word processing program. However, in both cases the value of
the results produced with the new tool depends very much on
what I am using it for. The laborious part of the job is concealed
in sentences like the following (Clark’s abstract, emphasis
mine): “The models use biologically meaningful parameters and
variables, and lead to testable predictions.” I hope that editors
keep this in mind when they soon receive vast numbers of
manuscripts starting with “using dynamic programming tech-
niques we have demonstrated that . . .”

Let evoiution take care of its own

Geoffrey F. Millera and Peter M. Toddb

Psychology Department, Jordan Hall, Building 420, Stanford University,
Stanford, CA 94305

Electronic mail: 2geoffrey @psych.stanford.edu and
btodd@psych.stanford.edu

Clark’s title is somewhat misleading. Rather than modelling
behavioral adaptations per se — specific psychological mecha-
nisms capable of generating adaptive behavior — Clark’s dynam-
ic programming method computes specific behavioral se-
quences designed to optimize fitness given precalculated
adaptive pressures. Indeed, adaptive pressures are precisely
what Equation 9, the central expression of Clark’s method,
represents.

Yet Clark’s title does point in the right direction: Behavioral
adaptations are what we want to model. Characterizing evolved
psychological mechanisms themselves is crucial to understand-
ing behavioral responses to the adaptive pressures that emerge
in complex environments, for it is at the level of mechanisms,
notindividual behaviors, that analyzable regularities most clear-
ly appear. As Cosmides & Tooby (1987) argue, psychological
adaptations must serve as the intermediary between adaptive
pressures and behavioral strategies; one cannot take the short-
cut of finding behavioral strategies directly given adaptive
pressures.

The phenomenon of protean (adaptively unpredictable) be-
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havior illustrates this levels-of-analysis problem. Simple pro-
teanism occurs when a rabbit flees a fox by “randomly” darting
back and forth (Driver & Humphries 1988). If the rabbit had
internalized the sort of look-up table for escape behavior sug-
gested by the dynamic programming method, always choosing
the “optimal” escape route in its attempts to maximize Equation
9, the very predictability of this behavior would render it unfit.
Foxes would evolve predictive counterstrategies. Suppose in-
stead that rabbits have not simply evolved a set of behavioral
strategies per se (as suggested by the dynamic programming
method), but a more abstract, flexible behavior-generating
mental mechanism that allows them to behave unpredictably in
certain circumstances. Although this mechanism may violate
dynamic programming optimization, perhaps causing some rab-
bits to perform suboptimally in the short term (e.g., zigging
when they “should have” zagged), this mechanism may none-
theless increase the average fitness across the subpopulation of
those rabbits possessing it. Although Houston & McNamara
(1988) allude to the possibility of dynamic programming select-
ing probability distributions across behaviors (which would
yield a kind of proteanism), the proper level of analysis here is
that of the complex protean psychological mechanisms them-
selves. These mechanisms are the true behavioral adaptations,
but ones that dynamic programming seems incapable of re-
vealing.

More seriously, dynamic programming seems unable to ade-
quately model the optimization of inclusive fitness (Hamilton
1964), rather than just individual fitness. With inclusive fitness,
there is no specifiable final time T beyond which a behavior’s
effects will not propagate; because the effects of an organism’s
behaviors may continue long after its death, affecting its kin and
offspring for many generations, there is no reasonable endpoint
for assessing ultimate fitness. Thus our models of behavioral
adaptations must consider fitness effects of interactions between
individuals, both within and across generations, not just within
an individual’s own life-time. Dynamic programming may be
sufficiently powerful in principle to represent the interaction
contingencies of social behavior by breaking them down into
adaptive pressures impinging on organisms considered indi-
vidually. But if one tries to imagine exactly how this would work
with collaborative or competitive behaviors as complex as coali-
tional aggression or social exchange, dynamic programming
seems less than entirely efficient.

Modeling interactions with other individuals in the environ-
ment leads naturally to modeling interactions with the environ-
ment itself. This step would free us from specifying quantitative
adaptive pressures impinging on the individuals. Rather, the
adaptive pressures molding the evolution of behavioral mecha-
nisms could emerge from the dynamics of the modeled environ-
ment and the fitness function defined over it.

Finally, modeling actual reproduction and inheritance di-
rectly seems simpler than representing adaptive pressures in
terms of expected future reproduction or some other abstract
fitness construct. The reason creatures operate in accordance
with inclusive fitness is that by aiding their relatives they are
aiding the spread of their own genes — their relatives are likely to
have copies of their own genotypic specifications of phenotypic
mechanisms. Modeling inclusive fitness without actually mod-
eling the spread and recombination of genes just misses the
point. These considerations lead us to wish for a method of
modeling the evolutionary spread of successful psychological
mechanisms from one generation to the next, in response to
adaptive pressures emerging from a specified environment with
which, and within which, individuals interact.

Clark himself suggests that “An intriguing possibility is to use
the computer to emulate the evolutionary process in searching
for optimal or ESS strategies via a process of natural selection,
but to my knowledge this has not yet been attempted.” (sect. 10,
para. 7) In fact, the entire field of genetic algorithms (Goldberg
1989; Holland 1975; Schaffer 1989) and much of artificial life
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research (Langton 1989) rely on computer instantiations of
evolutionary dynamics to produce adaptive solutions to spec-
ified problems — often solutions in the form of neural or psycho-
logical mechanisms underlying behavioral strategies.

Our research, for example, uses genetic algorithms to simu-
late the evolution of neural networks that control the behavior of
simple organisms in simple virtual environments (Miller &
Todd 1990; Miller et al. 1989; Todd & Miller, in press). Ackley
(1990) has produced a more complex and suggestive model of
the evolution of adaptively behaving creatures using a similar
approach. In these models, adaptive pressures are not explicitly
represented, but emerge from the dynamics of the environment
and the interactive behavior of the simulated organisms. In all
such methods, the evolutionary process itself is the search for
optimal behavioral strategies. Although no global optimum is
guaranteed to exist or to be findable in finite time, genetic
algorithms have generally proven superior to any other search
method for very large, complex search spaces with many local
optima (Goldberg 1989).

We sympathize with the desires of Houston & McNamara
(1988a) and Clark to develop computational tools for analyzing
the adaptive functions of behaviors, but we are pessimistic about
the ability of any simulation method to represent directly the
manifold adaptive pressures that emerge from even moderately
complex ecosystems. Rather, we believe that adaptive pres-
sures can be best understood indirectly, by setting up environ-
ments, simulating an evolutionary process to produce psycho-
logical and behavioral adaptations to those environments, and
comparing the resulting adaptations and behaviors to those
observed in real organisms. Dynamic programming represents
an attempt to understand the results of evolution without
simulating evolution. But we believe that evolution can take
care of its own. Simulating evolution via genetic algorithms can
automatically register the differential selection of genes and
gene complexes through the phenomenon Holland (1975) calls
intrinsic parallelism, and can include the effects of kin selection
and inclusive fitness.

Furthermore, through the application of our genetic al-
gorithm to the evolution of behavioral-producing neural net-
works our models of adaptive psychological mechanisms can
incorporate the two main advantages of the dynamic program-
ming approach: first, the use of evolved, not prespecified,
internal state variables in the generation of behavior (via recur-
rent patterns of network activation — see Elman 1988), and
second, the production of ongoing dynamic behavioral se-
quences (Jordan 1986). Moreover, our method includes the
further biologically relevant characteristics of a powerful set of
learning mechanisms (Rumelhart & McClelland 1986) and the
ability of networks to generalize adaptively to novel environ-
mental situations (a crucial adaptive capability — see Shepard
1987), obviating the need for an exhaustive dynamic program-
ming search of state-space.

Ifyou want to model what comes out of the process of evolution
(behavioral adaptations) in terms of what goes in (adaptive
pressures) then why not model the process itself? The
growing number of researchers using genetic algorithms answer
“why not, indeed?” Genetic algorithms are transparently analo-
gous to natural selection, applying concrete environmental and
social effects to genotypically coded populations of organisms
which evolve forward in time, thus performing computationally
efficient searches for adaptive responses to emergent adaptive
pressures. As such, they are an intuitively appealing, under-
standable, and tractable approach to modeling behavioral adap-
tations. Respect for the complexity of natural behavior demands
respect for the adaptive process, natural selection, which pro-
duced that complexity. And instantiating that process in our
models is the highest respect we can offer.
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The “crooked bookie” cycle

F. J. Odling-Smee
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Dynamic programming is one of the more promising new
approaches to the modelling of behavior and life histories.
Clark’s advocacy is clear, simple, and compelling. The strong
points of his model — for example, the intertemporal trade-offs,
the single currency, and the technique of backwards induction —
are well advertised without the dodging of difficulties. I found
Clark’s careful treatment of the criticisms and misgivings ex-
pressed by commentators on the earlier Houston & McNamara
(1988a) piece particularly helpful. My only reservation is that
perhaps Clark would do better to turn the “excessive gener-
ality” of his approach from an apparent vice into a proclaimed
virtue. At the moment, the application of the model to any
particular behavioral subproblem, fledging for instance, is apt to
recall butterflies being broken on wheels. Too much theory and
too much computer power is needed to cope with rather modest
problems. The best defence against this criticism is surely to
stress the generality of the model rather than to apologise for it.

One issue I would have liked to see taken further is the
involvement of local environmental states in the behavioral
decisions of organisms and the reciprocal involvement of the
behavior of organisms in local environmental states. I think this
two-way linkage between organisms and their environments,
which Clark acknowledges in both Figure 1 and section 2, is an
intimate one, and it may be more important than Clark’s tenta-
tive treatment of its implies.

The major point is that the current state of an organism’s local
environment, which it “observes” before it “decides” its next
act A(f), may itself have been previously changed by a previous
act from that same organism (or possibly a genetic relative or a
reciprocal altruistic partner). There is theréfore a cycle connect-
ing organism states to local environmental states via organism
acts. One effect of this cycle is its influence on the informational
states of organisms (subsumed by X(#)). For example, if an
organism selects or perturbs its own habitat by moving some-
where else, or by consuming a resource, or by dumping de-
tritus, it is bound to induce some change in the state of its own
local environment (or the environment of other organisms,
including its own offspring). In this case, the next time around,
when the organism “observes” the state of its local environment
again, the information it now receives from its environment will
be different as a result of its own prior acts. Different informa-
tion gained from a changed environment, however, will pro-
mote different “expectations,” different decisions, and different
behavioral acts.

The logic here is intriguing, and has been partly explored by
John Campbell (1985) in terms of what he calls “future self
reference,” or more simply, the “corrupt bookie” problem. As
Campbell says: “A future self-referent system that also has the
mechanical ability to operate on the physical world around it, is
capable of extraordinary causal behavior” (p. 162). For example,
it can set up self fulfilling prophecies. Thus, a “corrupt bookie”
not only predicts which horse is going to win the race, but he
also fixes the race to ensure that his prediction turns out to be
correct. The opposite can also happen. The bookie may fix the
race first, and only then realise, via a change in his informational
state, that he’s now set himself a new problem. He now has to
change his predictions and his next behavioral act if he wants to
stay in business.

In principle, the same logic works at the population level too,
where it is likely to affect the life histories of populations and the
rates and directions of their evolution. One relevant suggestion
from Wilson (1985) and his colleagues (e.g., Wyles et al. 1983) is
that rates of evolution may be affected by a “behavioral drive”
(one that corresponds quite closely to the feedback arrow from

Commentary/Clark: Modeling behavioral adaptations

A(t) to Y(t) in Clark’s Figure 1). Both Wyles et al. and Wilson
treat behavioral drive primarily as an evolutionary accelerator.
It could equally well serve as a brake, however, because orga-
nisms can behave “conservatively” as well as “opportunis-
tically.” For example, a conservative strategy might involve a
population of organisms consistently selecting for habitats for
which the organisms™ genetically based adaptations were al-
ready suitable, and consistently withdrawing from or avoiding
other habitats for which they were genetically unsuited. This
“future self reference” logic is only partly captured by conven-
tional models of intraspecific competition in population genet-
ics, for example, by those models concerned with habitat selec-
tion or frequency dependent or density dependent selection
(Hartl & Clark 1989), or by other related ideas in evolutionary
theory such as Dawkins’s (1982) extended phenotype. There is
still plenty of scope for improvement. Clark’s dynamic program-
ming might help.

One possible way forward might be to let the X(t) variable
subsume not only the organism’s morphological, physiological,
and psychological states at time (), but also the states of those
components of its local environment for which the organism
itself (or, at the population level, its genetic relatives) was
responsible via its own prior niche perturbing and niche select-
ing acts. The rationale here is that the self-induced components
of any organism’s local environment should be derivable by
“backwards induction” from the organism’s terminal fitness
function ®(X(T)), because the changes caused by goal-seeking
organisms in their local environments are typically not random;
they are directed by ®(X(T)).

The effect of this adjustment would be to shift the boundary
between the X(f) and Y(#) variables to the point where X()
subsumes not only the organism’s assessment of its own local
environment, but also the physical location and the physical
state of its environment insofar as the organism itself is respon-
sible for determining that location, and for causing that phys-
ical state. The Y(t) variable would then represent all the re-
maining components of the organism’s environment for which
the organism itself was not responsible, but which instead
originated from genuinely independent events in the rest of
the environment.

Elsewhere (Odling-Smee 1988) I've described this stretched
version of the X(t) variable in terms of an organism-environment
interactive relationship called the (OE). I've also suggested that,
contrary to common sense, a succession of (OE) states might be a
better basis for understanding the activities and life histories of
organisms, than a mere succession of organism states. The
potential advantage of this idea is that the (OE) variable
(= the stretched X(¢) variable just described) can cope with the
“crooked bookie’s” future self referent cycle, whereas the pre-
sent X(f) variable cannot. In practice it may be harder to
measure successive (OE) states than successive organism states,
but probably not much harder. All contemporary measures of
organism states are already quasirelativistic (i.e., the concept of
a niche is already relativistic, even though the concept of a
habitat is not), and as such they refer implicitly to the states of
organisms’ local environments as well as to the states of orga-
nisms. By contrast, measuring organism states in vacuo makes
no biological sense at all.

Regardless of what Clark thinks of this idea, I welcome his
model. I hope it proves possible to develop it. I think it will.
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State variable models are powerful, not
perfect

Lloyd D. Partridge

Department of Physiology and Biophysics, University of Tennessee,
Memphis, Memphis, TN 38163

The fact that Clark lists me as someone who seriously faulted the
state variable approach of Houston & McNamara (1988a) indi-
cates that my commentary was not clear. I have long agreed
(Partridge 1976) with Clark that the state variable method of
modeling and its reverse in Bellman’s (1961) optimization meth-
od are powerful, perhaps even necessary, tools for understand-
ing complex biological function. Avoiding the slipperiness of
verbal models, these models can deal with the multidimen-
sional, nonlinear, and dynamic systems that living systems are;
most other models cannot. The state variable approach is a great
but imperfect tool; its acceptance will grow if its limitations are
well respected.

State sensitivity. Some systems are so sensitive to initial
conditions that starting from indistinguishable but different
conditions, two identical systems will soon develop widely
divergent states (Devaney 1989; Holden 1986). A state variable
model of such systems will also reveal this unpredictability. On
the other hand, if a real system converges on an “optimal” state,
a model of this system in reverse time will diverge unpredicta-
bly. Likewise, the necessity of discrete time representation in
the models for digital computation introduces complex and
often misleading deviations from the ideal trajectory of the
modeled function. Thus, a real system may behave well, where-
as its model does not give stable results.

Model selection. Beyond these technical problems lies the
question of what is optimal. In an entertaining short videotape,
Ackley and Littman (1990) show a state variable model of
evolution of simple learning. Although many “species” died out,
“Adam’s descendants” evolved a “good enough” solution (Par-
tridge 1982) that was better than a handcrafted “perfect” solu-
tion because the imperfect solution had less impact on the
environment, an issue overlooked in the “perfect” case. Al-
though these investigators recognized the omission of a critical
point, we are not all as alert to our own oversights. When using
state variable models, we should heed what Pavlov has been
quoted as saying: “I do not judge students by how much they
know but by how much they question their ideas.” It is too easy to
believe our own models.

A mathematically sound optimization method gives us no
guarantee that we have chosen the problem that was discovered
by the evolution of that better solution we study. The trail of
evolution is marked by a series of bifurcations beyond which
further optimization may go in different directions. Thus, we are
unlikely to expect a primitive turtle to benefit as much by
developing escape speed as by developing a tighter shell
closure. Yet optimization for a thin-skinned salamander might
lead to long, thin leg bones. All dichotomies in optimization
criteria may not be so obvious, but can be just as critical to
meaningful modeling.

Beyond reproduction. One criterion for evolutionary selec-
tion that is easy to accept is survival to reproduce and the
accomplishment of reproduction. Evolution is sometimes
claimed to make no contribution to function after reproduction.
Is this valid? Does not the primate colony with related genetics
have some advantage if the postfertile and well informed
females relate to and teach the young males? One might suspect
that the educational advantage of cross-age association may have
had a role in the primitive development of sexual pairing even in
humans. At the moment, I am impressed by the possibility that
evolution may even contribute to traits after the death of the
individual. The hardened thorns of dead blackberry bushes
seem to provide an effective protection to maturing first year
bushes, yet they still allow seed dispersion from mature plants
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by birds. That patch of closely related plants seems to have an
advantage in surviving to disperse its fruit if the dead canes have
large hardened thorns.

A powerful modeling tool need be no threat to any of the good
field biologists who are needed to keep our models realistic. A
lack of either insight or skepticism should eliminate modelers as
well as describers. On the other hand, as simple questions are
answered, the more complex remainder becomes too involved
for unaided intuition to be a reliable guide.

Model limits. In this time of first and even second generation
models, we study major eflects and tend to extrapolate from the
current effectiveness of state variable models to more complete
models. We recognize the “curse of dimensionality” but hope
the continuing growth of computer speeds and storage can push
back the limits this imposes. There may still be a theoretical
limit on the optimization process in state variable models.
Today, modeled variables deliver effects much larger than the
residual differences between the model and the real system.
Later, as we study more detail, the contribution of individual
features can be small and perhaps much smaller than the still
unidentified residua. In addition, small deviations in major
factors may obscure the total effect of the small detail, especially
if the factors are not independent of each other. Is it possible
that in more detailed models isolating the individual effects of
secondary factors will become as difficult as separating summed
exponential decays?

Keep on modeling. 1 will look forward to seeing more state
variable models and their optimization in behavioral evolution,
but would warn potential authors that, at least in the bio-
engineering journals, referees are no longer impressed by good
math alone; they also expect it to be accompanied by sound
intuitive self-criticism. Still, it is hard to believe that observa-
tion and intuition can carry understanding much deeper into
complex biology without the aid of formal tests of the internal
consistency of ideas such as the use of state variable models and
optimization.

Rule of thumb

Jonathan Roughgarden

Department of Biological Sciences and Department of Geophysics,
Stanford University, Stanford, CA 94305

Clark has offered a thoughtful and unpretentious account of how
dynamic optimization theory can be applied in behavioral ecolo-
gy. It seems obvious that this approach is needed, and, from my
perspective, it is difficult to understand what all the fuss is
about. In the simplest form of optimization problems, one
simply solves for a number, such as the optimal distance for
chasing prey of a given size. In many circumstances, however,
the optimal behavior of interest cannot be represented by a
single number; it must be represented by a function of time.
That is, the optimal behavior changes as the animal grows and
ages. Dynamic optimization theory is simply a mathematical
tool to predict an optimal function, instead of an optimal point.
As Clark has mentioned, dynamic optimization theory has
developed from the classic calculus of variations. The method
Clark describes, using the so-called Bellman equation, is one
technique. Another, involving the so-called Pontrjagin max-
imum principle, has also been popular.

Whether an organism actually conducts a sophisticated cal-
culation to determine what behavior is optimal for it is not a
serious question. Obviously, when a flycatcher grabs a moth
from the air, it has not explicitly integrated Newton’s equations
of motion. Yet, somehow its behavior amounts to the same
thing. There is a need to explore how simple behavioral decision
rules (“rules of thumb”) predict behavior that converges on an
optimal solution that we mere humans can only deduce with an
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expensive computer. This need for understanding how zoo-
logically plausible rules of thumb work is logically independent
of the techniques needed to compute what an optimal solution
is. Clark’s target article, and the book by Mangel & Clark (1988),
help to make these relatively new mathematical techniques
more readily accessible, and offer some stimulating examples.

Short-term behavior and long-term
consequences

Paul Schmid-Hempel

Zoologisches Institut der Universitdt, Rheinsprung 9, CH-4051 Basel,
Switzerland

Electronic mail: schmid5@urz.unibas.ch

Because natural phenomena are for the most part rather com-
plex, models of the real world are formulated to extract only the
aspects under scrutiny and to compare the properties so derived
with empirical observation. Given the extensive discussion in
the literature on the validity of modelling, and in particular of
models that describe the value of behavior for the survival and
reproduction of the organism (e.g., Pierce & Ollason 1987,
Stearns & Schmid-Hempel 1987), one can only hope that by
now the proper role of “optimization” is understood in all
quarters. It is accordingly time to concentrate on the more
immediate problems and promises of such powerful modeling
techniques presented in Clark’s target article.

Behavior is a process that unfolds over time and its effects are
actually to change, restore or maintain an individual’s state
(McFarland & Sibly 1972). This temporal dimension is not
always welcome, however. For many questions in animal be-
havior, great care is taken to balance time effects by experimen-
tal designs to expose the one process of interest, for example,
controlling for time of food deprivation when studying the
relative intensity of response to a food stimulus. Such questions
arise more often when one is studying the mechanics of behav-
ior, whereas the question of how behavior affects fitness natu-
rally puts more emphasis on change over time and eventual
outcome. It is in the latter domain that dynamic programming
models are obviously more useful.

This having been said, it would be too much to expect that
dynamic models can resolve some of the intrinsic difficulties and
weaknesses of modeling, for they only add the dynamic compo-
nents without basically altering the logic of static models.
Models are still evaluated through their power to explain ob-
served phenomena; assumptions about constraints, strategy sets
and implemented goal functions are thereby tested. Contrary to
Clark’s contention, I think that static models have done quite
well in this respect. For example, the assumption of random
encounters with prey items was found to be incorrect and the
models were amended accordingly (Rechten et al. 1983); simi-
larly, different fitness tokens could be critically compared in
nectar-collecting honeybees (Schmid-Hempel et al. 1985), thus
providing some insight into either perceptual constraints or
long-term consequences. Furthermore, as in the case of static
models, assumptions about constraints and implemented goal
functions in dynamic models are likewise interdependent.
Clark’s (and Houston & McNamara’s 1988b) presentation em-
phasizes terminal reward function as a fitness token. The prob-
lem could also be formulated in terms of an intermediate
function, however, one that is constantly updated in the course
of the process instead of just after a terminal reward (Intriligator
1971). Terminal rewards are of course more appealing in many
biological contexts, such as the small-bird-in-winter paradigm
where body weight at the end of the day is a reasonable indicator
of future survival probability.

Clark also discusses qualitative testing of dynamic models.
Indeed, there are cases where the qualitative predictions are
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interesting, for example, the prediction that plants (e.g., with
linearized dynamic equations) should allocate resources into
growth versus reproduction in an all or nothing manner (the
bang-bang policy). Although such a strict bang-bang pattern is
hardly ever observed, the insight provided by this analysis is
helpful. On the other hand, qualitative predictions are often in
danger of being rather trivial. In Ydenberg's (1989) example,
chicks face a trade-off between growing safely but slowly in the
nest versus growing fast but at higher risk out at sea. It is
therefore to be expected that some intermediate best fledging
time exists if the terminal weight of the young is to be max-
imized. Apart from the fact that this scenario alone hardly
warrants a dynamic model (as opposed to a static one), this
prediction alone is not very surprising. The story is different,
however, if quantitative predictions are derived (as in Yden-
berg’s case). Quantitative predictions are never trivial, since
there is no a priori way to see why fledging time should be 35
rather than 27 days. Dynamic programming by numerical com-
putation is not terribly well suited for qualitative predictions, as
usually only a limited domain in parameter space can be
analyzed.

Despite such shortcomings, I feel that the formulation of the
dynamic problem in terms of maximizing (or minimizing) a
terminal reward function offers some intriguing perspectives. In
particular, it naturally lends itself to analyzing the relationship
between a minute-to-minute behavior and the longer term
consequences following from adopting a particular behavior. It
is this link of which we know almost nothing. Yet this connection
is crucial if we want to understand how variation in in-
stantaneous behaviors, motivational states, risk assessment, and
so forth are related to selective forces that are thought to be
responsible for the evolution or eventual maintenance of these
traits. In life history theory this relationship is at the very heart
of the problem. Dynamic solutions have thus been used in this
area for some time (e.g., Schaffer 1983). In fact, Equation 10 is
basically analogous to Fisher’s reproductive value, although the
latter concentrates more explicitly on age-dependent fecundity
versus survival schedules of competing genotypes in a popu-
lation.

Static models have been used with success both in life history
theory (e.g., Stearns & Crandall 1984) and behavioral ecology
(Stephens & Krebs 1986). Given the importance of change in an
individual’s state and available opportunities, one is left won-
dering why such models have done so well. Actually, as Clark
points out, dynamic models show such an interesting con-
vergence property that the best strategy becomes independent
of time when terminal time is still a long way ahead (or, if
negative, exponentially distributed). Moreover, it is often found
that the best strategy may be insensitive to current state under a
broad range of conditions (e.g., foragers should almost always
generalize their diet choice with long travel times between
depleting patches: Lucas & Schmid-Hempel 1988). Although
this does not necessarily imply that the situation becomes static,
static models may become a reasonable approximation over
large regions in state and time space. As the same decisions
would have to be made under many conditions, it seems reason-
able to expect that this selects for simple decision rules. It would
therefore be interesting to learn more about the proportion of an
animal’s life that is within such “quasistatic” domains and hence
perhaps to deduce the relative selection pressures on simple
versus complex decision rules, or to understand in which way
the overall complexity of state and time faced by the organism
could be broken down to simpler compartments.

It is not always clear, however, what a simple rule is: Suppose
that a best strategy requires a foraging animal to move along a
straight line through a food patch. Although this seems like a
very simple rule, it may be difficult to achieve in living beings.
In fact, most animals meander while moving along, which
reflects the constraints and imperfections of the locomotory
apparatus. Thus, contrary to the apparent simplicity of a
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straight-path rule, rules that require tortuous paths may actually
be much simpler to embody. A slightly disturbing message that
dynamic models seem to convey, however, is that such (con-
vergent) best strategies may often not depend on the precise
formulation of the fitness (terminal) function. This is of course
very helpful in some contexts, but it is uncomfortable for
evaluating the predictive power of alternative formulations of
“fitness.” Because there is no universal definition of fitness, one
use of models is to help to identify the most likely candidate.

Finally, Clark makes a number of recommendations about
when to use dynamic models. Some of his suggestions may give
a wrong impression of the logic of static models. For example,
the traditional models of optimal foraging also differ in the same
way as dynamic ones do from models that imply utility or
indifference contours to study behavior. In fact, what dis-
tinguishes them is not the dynamic versus static dimension, but
that a strategy is derived from a normative prescription based on
a priori reasoning about how natural selection acts rather than in
adescriptive way, that is, by observing the animal’s indifference
to combinations of factors (Krebs & McCleery 1984). Similarly,
testability, quantitative predictions, and trade-offs too are es-
sential ingredients of static models. Plainly, dynamic models are
appropriate when the dynamic changes over time actually be-
come important. This should most often be of interest when one
wants to link the short-term behavioral strategies, as investigat-
ed by ethologists and behavioral ecologists, to life history con-
siderations, the domain of population biologists and ecologists.
Still, behavior can be analyzed from many different and quite
heterogeneous points of view that neither can nor should be
unified. Hence, it is basically with respect to the integration of
different time scales that dynamic programming models can
contribute most toward a much needed step of unification in
biological thought.

A not so backward way of thinking

Peter D. Sozoua and Joanna W. Byrdb

aDepartment of Computer Science, Birkbeck College, London, England
and PNERC Unit of Behavioural Ecology, Department of Zoology, Oxford
OX1 3PS England.

Clark’s example of a dynamic programming application (Yden-
berg 1989) is unfortunate. This work has been examined in detail
(Byrd et al. in press): the main observation is that the Ydenberg
model is a straightforward optimization problem for which
dynamic programming is not needed.

The probability of a chick surviving from hatching to the
beginning of the breeding season is the product of four terms:
(i) the probability of avoiding predation whilst in the nest (i.e.,
before fledging), (ii) the probability of surviving the journey
from the nest to the ocean, (iii) the probability of avoiding
predation whilst in the ocean (i.e., after fledging) and (iv) a mass
dependent “terminal survival” function for the probability of
surviving from the end of the period modelled (the first 90 days
of the chick’s life) to the beginning of the next breeding season.

In Ydenberg’s model, (ii) is constant; (i) and (iii) can easily be
calculated as a function of the fledging day, as can (iv) as growth
is deterministic. Hence one can calculate a chick’s overall
survival probability as a function of the day on which it fledges.
Then by running through all possible values of fledging day
(from 1 to 90), the day which maximizes overall survival proba-
bility can be found. This is the optimal day for fledging.

Dynamic programming is not required because the Ydenberg
model involves the chick making a single behavioural decision:
when to fledge. Where dynamic programming is useful is in the
study of a sequence of decisions. Szekely et al. (in press) provide
a more appropriate example of dynamic programming: The
behaviour of a small passerine bird is modelled over a five day
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period at the end of winter. Each day is divided into 200 time
units. An unpaired bird normally has three behavioural options:
foraging alone, foraging in a flock, or singing to attract a mate.
The number of possible behavioural sequences for an unpaired
bird over the five day period is 357200 = 10477. The most
efficient way (perhaps the only way) to find the optimal policy in
this case is by backward dynamic programming.

For a model involving a single behavioural decision, how-
ever, such as Ydenberg's model, simple optimization promotes
a greater understanding of the results. Fledging mass, mass at
the end of the season and the overall fitness of the chick can
easily be obtained for suboptimal as well as optimal policies. The
position of the optimum can be better understood by observing
how the components change in relation to each other as the
optimum is approached.

Another drawback to dynamic programming is that it is
harder to check than a simple analytical or numerical solution.
We have tried to duplicate Ydenberg's dynamic programming
method but have been unable to produce the same results.
When a dynamic programming model is presented, the com-
putational methods used should be described; the interpolation
technique is one item that Ydenberg does not describe.

Finally, there is the need for sensitivity analysis. One should
be wary of sweeping generalizations concerning the sensitivity
of dynamic programming models or other mathematical models
in biology. We have found that the predictions of Ydenberg's
model are insensitive to some parameters which would be
considered biologically important (such as mass at hatching) but
highly sensitive to the arbitrarily chosen form of the terminal
survival function: a nonlinear function (1 — e —0-01(x ~700)) gjves
an optimal fledging time of more than 20 days later than the
linear function. On the basis of these results, we feel that the
predictions of this model should be treated with caution.

Pitfalls and promises of behavioral modeling

Judy Stamps

Department of Zoology, University of California, Davis, Davis, CA 95616
Electronic mail: zoology@ucdavis.bitnet

Clark has provided us with a spirited defense of optimality
models in general, and dynamic programming models in partic-
ular. In the main, his points are well taken, although cccasion-
ally his enthusiasm for the topic leads to an over sanguine view of
dynamic programming’s potential for solving the world’s ills.
For example, nonlinear relationships are common in nature, but
they may be difficult to integrate into dynamic programming
models. In addition, these models are often so complex as to
discourage workers from the recommended, but necessary
course of examining and testing each component for biological
verisimilitude (sect. 6, Excessive generality).

Indeed, although Clark correctly emphasizes the need to
examine carefully and to validate the assumptions underlying
any type of theoretical model, this step is absent even in some of
his own recent work. There seems to be an unfortunate tenden-
cy for empiricists and theoreticians alike to consider some
assumptions so basic as not to require testing, with unfortunate
results (e.g., Davies 1989; Stamps, in press). Dynamic program-
mers often share the tendency to “inherit” basic assumptions
from previous papers in the empirical or theoretical literature,
and then to incorporate them into their own models.

A case in point is the series of models on optimal group sizes in
lions. Initially, workers assumed that lions associated in groups
in order to optimize foraging success (e.g., Caraco & Wolf 1975;
Schaller 1972). These early models, however, generally pre-
dicted group sizes smaller than observed in nature. Subsequent
modelers did not stop to reexamine the basic assumption that
group sizes were driven by foraging considerations, but instead
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added new parameters, greater complexity, more realistic bio-
logical processes, and fancier analytical techniques, including
dynamic programming (e.g., Mangel & Clark 1988; review in
Packer et al. 1990). These complex models, however, continued
to predict group sizes different from those in which lions are
actually found. Rather late in the game, field workers began to
reconsider the premise that lion groups are “for” foraging. For
example, Packer et al. (in press) have argued cogently and
persuasively that relatively large group sizes in lions may be
required for effective territory defense.

The hypothesis that group sizes are relevant to defense in
group-territorial animals is hardly new (e.g., Brown 1982). Yet
modelers have for 15 years clung tightly to their original as-
sumption that lion groups are related to foraging, even in the
face of predictions that did not fit the observations, and even
though alternate, biologically reasonable assumptions were
available and ready to be incorporated into new models. Clark
seems to think that future modelers can be convinced to validate
all of their assumptions and to create new models if there are
discrepancies between observations and predictions; given past
history, I am not so sure.

Curiously, Clark seems to have neglected one of the more
promising applications of dynamic programming in behavioral
ecology. He notes that animals may not optimize, and that they
particularly do not optimize using the complex equations and
mathematical gymnastics typical of dynamic programming.
Conversely, he emphasizes that it may be useful to know what
the optimal behavior would be, assuming that all of the assump-
tions and parameters in one’s model were correct (sect. 6,
Simple decision rules, para. 2). Unfortunately, this leaves a lot
of middle ground between the “ideal” behavioral strategy pre-
dicted by a particular model and the intuitive feeling of many
empiricists that animals would be hard-pressed to achieve
optimal behavioral strategies to handle all of their problems.

Dynamic programming can also be used in another way,
however, to identify “zones of indifference” around an optimal
behavior. In some situations, any of an array of alternative
behaviors may yield payoffs nearly as high as those produced by
an optimal behavior. For example, we can envision a hypo-
thetical situation in which one individual makes a perfectly
optimal series of decisions and achieves a fitness equal to X,
whereas other individual make errors of one sort or another, but
achieve fitness values ranging from .95 to .99X. In other words,
while there may be only one optimal behavioral strategy in a
given situation, there may be a large number of only slightly
suboptimal strategies. Given the lack of precision of even the
best theoretical models (sect. 2, para. 3), and given the many
reasons why animals may be unable to evolve perfect adapta-
tions to solve particular problems (e.g., Arnold 1987; Kirpatrick
& Lande 1989; Maynard-Smith et al. 1985), it may be unreason-
able to expect an exact fit between a predicted optimal behav-
ioral strategy and actual behavior. On the other hand, if the
optimal behavior is surrounded by a large zone of indifference, it
wouldn’t be unreasonable to expect real behavior to map some-
where within this zone. In particular, rules of thumb may work
because they produce results not terribly different from those
expected of an optimal behavior (e.g., Janetos & Cole 1981;
Real, in press).

Ordinarily, the mapping of a behavioral zone of indifference is
a tedious process, requiring the identification and computation
of a fitness payoff not only for the optimal behavior, but also for
each of a wide range of possible alternate behaviors. Dynamic
programming can handle this task with relative ease, however;
recent examples include studies by Roitberg (1990) on host
selection by fruit flies, Mangel (in press) on patch selection by
foraging animals, and Bouskila & Blumstein (submitted) on
strategies for assessing predation risk. These studies yield sim-
ilar results, namely, a wide range of possible behaviors that yield
payoffs nearly as high as that produced by the “optimal” behav-
ior. If these studies are any indication, dynamic programming
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may prove very useful for bridging the gap between what
animals actually do and what optimality models predict that they
should do.

Variational principles, behavioural
adaptations and selection hierarchies

Edrs Szathmary

Ecological Research Group, E6tvés University, Kun Béla tér 2, H-1083
Budapest, Hungary.

As Clark aptly remarks, dynamic programming has its roots in
the calculus of variations, a celebrated mathematical method in
theoretical physics since its development. For example, a stone
thrown upward and falling free follows a trajectory that mini-
mizes the variational effect of the time integral of kinetic minus
potential energy. Somewhat surprisingly, the local equation of
motion (Newton’s second law) can be deduced from such a
global rule (Feynman et al. 1964). [See also Schoemaker: “The
Quest for Optimality: A Positive Heuristic of Science?” BBS
14(2) 1991.]

Variational principles and related approaches seem to perco-
Jate into biology. Although the equations of motion behind the
variational principles in morphogenetic studies (c¢f. Goodwin &
Trainor 1980; Molnar & Verhds 1990) are far from clear, dynamic
programming provides us with (often simple) decision rules. As
the decision rules are processed in animal brains, they can be
regarded as local rules for behaviour emerging from brain
dynamics. But how can such rules emerge and be stabilized?

In physics, quantum mechanical interactions using the associ-
ated wave-likeness of particles ensure that a particle “gets”
some information about all possible paths from which the ex-
tremal one is finally chosen (Feynman et al. 1964). In biology,
the loosely analogous choice of optimal behavioural rules is
made through selection. Genetic evolution always underlies
this process, but in the case of learnt rather than innate be-
haviour Darwinian selection within the brain itself may be
important. Let me explain.

First assume that the behavioural trait in question is innate.
Although evolution in dynamic games has not yet been mod-
elled, analogous developments in “static” game theory do exist.
If we model the selection process {or different strategies, it turns
out that ESSs (evolutionarily stable strategies) must be
asymptotically stable rest points of the associated equations
(Maynard Smith 1982; Taylor & Jonker 1978). According to the
distinction of Vincent & Brown (1984), there is an inner game
and an outer game; the former refers to the resolution of
behavioural encounters, whereas the latter refers to the evolu-
tion of such resolutions. Conforming to this terminology, the
outer games for dynamic games have not been modelled so far.
(Caveat: there is a disturbing ambiguity of terminology involved
here; the selection equations of the outer games of static inner
games are often referred to as game dynamics, because they can
be put into the general framework of dynamical systems (Hof-
bauer & Sigmund 1988), but this usage is not to be confused with
that of dynamic programming). During natural selection, sever-
al different strategies are sampled, but only those with the
highest relative fitness are kept. Evolution through natural
selection can thus lead to optimal life histories sensu stricto (cf.
Schaffer 1974) as well as sensu lato (Mangel & Clark 1986).

Now let us assume that the ESS of a dynamic game must be
learnt. Interestingly, it has been shown for static games that,
under certain restrictions, alearning rule that takes a population
to an ESS is an ESS learning rule among the possible learning
rules (Harley 1981). How would such a learning rule look for a
dynamic game? In Harley’s (1981) example, could the fact that
recent payoffs should have a stronger effect on behaviour than
earlier ones indicate some connection with the procedure of
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backwards induction? ESS learning rules for dynamic games
await elaboration.

Learnt dynamic ESSs take us to the problem of optimality in
the following way. Although we still lack a satisfactory model of
the working brain (cf. Anderson & Palca 1988), a promising
approach is neuronal Darwinism (Dehaene et al. 1987; Edelman
1987). According to these models, a kind of natural selection is
going on in the brain itself, among neuronal groups. Selection of
functional repertoires from primary ones is taking place in a
manner compatible with the survival needs of the organism as a
whole. As Michod (1989) emphasizes, a selection hierarchy is
involved: Genetic evolution should lead to innate rules of the
brain that ensure that most of the time adaptive behavioural
patterns are allowed to emerge through neuronal Darwinism.
As in the analogous cases of hierarchical selection ranging from
earliest evolutionary units (Szathmary 1989) to recent genetic
ones (Dawkins 1982), the higher level system must be able to
constrain the evolution successfully at the lower level; otherwise
the higher unit is disrupted. Whereas selfish genes (including
those affecting behaviour) have received wide attention, selfish
neuronal groups leading to nongenetic and organismically mal-
adaptive behaviour remain largely unnoticed. Inasmuch as
these are of importance in the behaviour of (presumably) the
most intelligent animals, deviations from optimal strategies as
implied by the dynamic programming approach are to be ex-
pected. Although it is relatively easy to calculate the frequency
of selfish genetic elements in spread-selection balance (Charles-
worth & Charlesworth 1983), analogous calculations will, 1 fear,
be very difficult to make in the case of behaviour.

Finally, it should be realized that selection hierarchies imply
the simultaneous application of different time scales (Szathméry
1989). A dynamic inner game and the outer game describing its
evolution proceed at two time scales: characteristic times for the
former are shorter than the organisms’ generation time, where-
as those for the latter are markedly longer. Learning through
brain dynamics intreduces yet another time scale.

Modeling change in biology and psychology

James T. Townsend

Department of Psychology, Indiana University, Bloomington, IN 47405
Efectronic mail: jtownsen@iubacs.bitnet

As Heraclitus observed about 25 centuries ago, all things change
in nature (i.e., change is the highest form of invariance).
Whether change should be the emphasis of natural theory
depends on the speed of alteration relative to the events and
structure under study. Clark makes a strong case for dynamics in
the instance of behavioral adaptation. Because I am a psychol-
ogist, I will parallel remarks that are specific to the present topic
with comments on dynamics in psychology. It seems to me that
many of the concerns and problems are the same in psychology
and biology.

William James observed that consciousness is like a stream,
ever changing and continucus. Many great psychologists have
neglected that notion. Dynamics have primarily been seen in
learning theory (now again on the ascent, particularly in connec-
tionism) and certain sensory and information processing ori-
ented approaches. By and large, however, most areas of psy-
chology (including cognitive, clinical, psychobiological, and
developmental) have tended to view their phenomena as sepa-
rate states with little concern for how one gets from one state to
the other. Formal decision theory was an example of this neglect
of change and process, with an overemphasis on static utilities
and subjective probabilities. (Recently Jerome Busemeyer and I
have been attempting to develop a more dynamic yet still
quantitative theory of decision making: Busemeyer 1982;
Townsend & Busemeyer 1989). (Because of the ubiquity of
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change and process in psychology and biology, 1 would go so far
as to suggest a course in dynamic systems theory and process
modeling for all Ph.D. candidates in these disciplines).

There was some slight confusion in the target article between
qualitative versus quantitative and dynamic versus static. These
are not the same and it is important not to confuse them.

One parallel between behavioral adaptation and psychology is
the use of optimal modeling. Optimal modeling can serve not
only as a substantive theory as suggested by Clark, but also as a
useful base point against which to compare real behavior (e.g.,
as in signal detection theory, cf. Green & Swets 1966). This may
be even more important in natural biological settings, where
laboratory research is often precluded, than in psychology,
where many phenomena can be explored in laboratory settings.

Now for more specific comments and questions:

1. Even though BBS is not the place for a detailed theory
presentation, it is important not to gloss over critical facets.
Consider the claims about convergence and the independence of
A*(x) in Section 6, paragraph 3. There are always important
conditions on which convergence depends. In what sense is
A*(x) independent of the terminal fitness function? The reader
may imagine circumstances where it should not be, or where the
theory would be trivial if it were.

2. On the capturing of the past through the present state:
There may exist systems where the present state is not sufficient
to specify the conditional probability distribution on the next
state. In this case, one may expand the notation to include past
states and their even their associated times, thus generating a
higher order Markov process.

3. Iagree with the remarks about too much complexity vis-a-
vis the amount of, and information in, the data. For instance,
causal modeling in psychology and in other behavioral science
areas suffers from a combination of sophisticated models with a
paucity of data. This can also be a problem with an over-reliance
on multidimensional scaling in the absence of substantive theo-
ry. The result is an unfortunate lag in scientific progress using
those procedures.

4. The matching phenomenon may be a good example of a
different variety of optimality, but then it is incumbent on the
dynamic theorists to develop a new model in which matching is
optimal (does the cited work by Stephens (1987) accomplish this
goal?).

5. The argument concerning the size of the advantage of
optimal versus nonoptimal behavior is a slippery one. Unless
there is a solid theory/methodology of measurement bridging
data and theory, such reasoning can and will often be used for
theory rescue rather than theory testing.

6. Finally, the particular avenue taken by Clark and his
colleagues appears to be more immediately fruitful than those
placing too much emphasis on the modish but risky chaos-
dynamic approach (see, e.g., Townsend, in press).

Using models of behavior in optimal fashion

Joseph Travis

Department of Biological Science, Florida State University, Tallahassee, FL
32306-2043

Electronic mail: jtravis@fsu.bitnet

1. Introduction. Clark argues persuasively for the usefulness
of the dynamic approach to the modeling of behaviors. Dynamic
models represent a more sophisticated mathematical treatment
of behavior but the level of sophistication of a model is not
necessarily the criterion by which its usefulness should be
judged. The usefulness of this class of models for understanding
patterns of animal behavior arises from two attributes. First,
dynamic models can be used to examine situations that cannot
be adequately addressed by static models. Second, for many

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 10:55:05, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/50140525X00065547


https://doi.org/10.1017/S0140525X00065547
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

problems dynamic models are more reflective of what evolution
through natural selection is likely to have wrought than static
models. The philosophical difficulties that many workers appear
to have with dynamic models arise with static models as well. In
this commentary I discuss first the usefulness of dynamic models
and then the problems that arise in the testing of any model that
investigates an “optimal” behavior.

2. The applications of dynamic models. Many behavioral pat-
terns cannot be addressed adequately by static optimization
models. The model of fledging behavior presented by Clark
epitomizes a variety of behavioral problems in which the “deci-
sion” at any time is a function of two or more dynamic state
variables that may themselves be interrelated. Other examples
include ontogenetic habitat shifts (Werner & Gilliam 1984) and
feeding rates and habitat use as a function of reward levels and
predation risk (Gilliam & Fraser 1987). There are a host of
nonbehavioral problems that are completely analogous such as
the timing of amphibian metamorphosis (Alford & Harris 1988)
or the apportionment of physiological reproductive effort among
clutches as a function of female age, reproductive history, and
environment (Travis et al. 1987). Static models simply do not
adequately capture the nature of the problem that the animal
must solve.

Dynamic models, especially those of behavior, are more
accurate reflections of what natural selection is likely to have
produced, that is, not so much an optimal behavior but an
optimal pattern of response to a set of changing environmental
conditions. Evolutionary biologists have been turning their
attention away from a search for a single adaptive trait to a search
for an adaptive pattern of phenotypic expression in response to
environmental cues. This change in outlook is reflected in
models that examine patterns of phenotypic flexibility (Stearns
& Koella 1986) and in experimental investigations of how pat-
terns of variable trait expression may reflect adaptations to
variable environments (Trexler et al. 1990). Behavior has long
been thought of as the most flexible of traits and the use of
dynamic models of behavior represents an evolutionary realism
that is on a par with advances in modeling other phenomena.

3. The use of optimization models in general. Clark cites many
of the papers that debate the use of either static or dynamic
optimization models. The criticisms of optimization models rest
primarily on two points, that evolution may not produce optimal
behavior (or optimal anything) and that the testing of optimiza-
tion models represents an exercise in circular reasoning.

It will always be hard to demonstrate that evolution has
produced the optimal level of any variable. In a varying real
world the mean phenotype in any given generation will often
not match the optimum phenotype for that generation because
of the lag time in the evolutionary process (Taylor in press). This
result does not mean that selection does not work toward an
optimum, only the genetic constraints hinder the realization of
the optimum. The simultaneous study of genetics of phenotypic
variants can help diagnose such a situation. A number of demon-
strations of optimizing selection among phenotypes might not
withstand close critical scrutiny (Travis 1989). Nonetheless,
there is ample evidence that in many cases evolution has
optimized something (Travis 1989); the question is whether
what has been optimized is the value of a particular trait or the
functioning of the whole organism. It would seem extreme to
assert that evolution does not optimize; the conceptual problem
is finding out just what has been optimized. It seems 6bvious
that dynamic as well as static models of optimization can play a
useful role in resolving this problem.

Citing circularity in the use of any sort of optimization model
is an accurate criticism of the ways in which many such models
have been used. This situation is unfortunate. Mathematical
models are useful in two ways. First, they illustrate the logical
consequences of certain assumptions or relationships among key
variables, consequences that are ambiguous in verbal formula-
tion (Iwasa & Teramoto 1980). Second, they serve as irreplace-
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able guides as to which variables are critically influential and
which are relatively unimportant in determining the quan-
titative range of the phenomenon one is investigating (Travis
1982). When used this way, optimization models can reveal the
posited net behavior of the system and can guide the empirical
investigator toward the most appropriate measurements. The
“match” or “mismatch” of prediction and observation is not
meaningful without thorough empirical investigations of the
basic tenets of the model. Most of the exercises in circularity
that have appeared in this context originate in the uncritical
acceptance of functional forms of relationships among variables
or unconfirmed assumptions about constraints. The modeling
process and the models themselves cannot shoulder the blame
for their nonoptimal use by empiricists.
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Testing predictions and gaining insights
from dynamic state-variable models

R. C. Ydenberg
Behavioral Ecology Research Group, Department of Biological Sciences,

Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
Electronic mail: Rony@cc.sfu.ca

Not long ago the difficulty of analyzing the behavior of animals in
many trade-off situations seemed daunting indeed. The main
problem lay in expressing the costs and benefits of different
behaviors — feeding versus hiding from a predator, or feeding
versus territorial defense, for example — in the same way. The
idea of “fitness units” provided a conceptual aid, but was of little
value for practical measurement of experimentation in the field,
though sometimes general predictions could be made and test-
ed (see Martindale 1982). In 1982, it seemed that dynamic
models offered the best hope for analyzing and understanding
trade-offs, in spite of the awkwardness and restrictiveness of the
techniques then available (Ydenberg 1982). Only a few years
later, however, a simple and general dynamic modelling tech-
nique was developed that appeared to resolve many of the
difficulties. This technique — stochastic state-variable dynamic
programming — is detailed in the target article by Clark, and in
an earlier target article by Houston & McNamara (1988).
Though I was very familiar with the early works in behavioral
dynamic programming by Katz (1974), Craig et al. (1979), and
with the work of McFarland and his students (McFarland 1977),
and had used dynamic programming myself (Ydenberg &
Houston 1986), I became convinced of the power of this new
technique in May 1986. During an afternoon meeting at Simon
Fraser University, Alasdair Houston and Colin Clark jointly
worked out, on a blackboard in front of a small audience and in a
few minutes, a simple state-variable model for a problem a
colleague and T had been interested in: calculating the fitness-
maximizing life history of anadromous salmon species. 1 re-
member clearly how surprised we all were (including Houston
& Clark) at the model’s simplicity and elegance, and our plea-
sure with its depth and ability to give us insights into the
problem.

With this briefbackground I would like to use some of my own
experience with the technique to expand on Clark’s claim (sect.
6, para. 12) that dynamic models are readily testable. I believe
that a more precise assertion would be that state-variable dy-
namic models can readily be used to generate testable predic-
tions of several sorts. One method is called “forward iteration”
and is discussed briefly by both Clark (1990) and Houston &
McNamara (1988). It involves using the decision rules provided
by the dynamic model’s solution to compute the frequency
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distribution of the state variable that would be observed if
animals in a population used those rules. Houston & McNamara
(1987) have used this approach in their study of daily routines.

A second source of predictions comes from examining the
model for changes in the predicted behavior over time. For
example, in a study of red squirrels (Tamiascurius hudsonicus)
in the Yukon, Price (1989) found that some mothers gave their
territories to one of their offspring. An analysis using dynamic
programming showed that mothers in poor condition near the
end of the short boreal summer should bequeath their territory.
This is in fact what Price observed. The model also predicted
that mothers in good bodily condition early in the summer
should bequeath, while those in poor condition should not (i.e.,
the reverse). Mothers are generally unable to gain good body
condition early (they are recovering from breeding), but the
model suggested the experiment of food-supplementing some
mothers to help improve their condition more rapidly. The
prediction that these supplemented mothers should bequeath is
a strong one that could not have been made without a dynamic
model.

Another example is provided in Clark’s Table 1. Here a
dynamic model (Ydenberg 1989) of common murre (Uria aalge)
fledging behavior predicts that nestlings hatched later should
fledge lighter. The quantitative prediction fits the field data very
well.

A third source of predictions of dynamic models comes from
looking for changes in behavior when some of the model’s
parameters are changed. The murre fledging model predicts
that slower-growing nestlings should fledge at an older age, and
at a lighter weight. An experimental test that manipulated
feeding rates in a related species, the rhinoceros auklet
(Cerorhinca monocerata), confirms this prediction (Harfenist,
personal communication).

More general predictions can also be derived. The fledging
model and others like it (Ludwig & Rowe 1990) show that the
“transition boundary” between successive life history phases
should be negative (at the optimal transition, the state-variable
is smaller later in the season) under some trade-offs, but positive
under others. Seasonal declines in fledging weight are well-
known in many seabird species, but positive metamorphosis
boundaries are known in some marine fish (Chambers & Legget
1987). The prediction of the dynamic models is that the trade-
offs between growth and mortality in the different habitats
occupied by the successive life-stages in these groups is re-
versed. This suggests several lines of comparative research.

The predictions in each of the above examples are fundamen-
tally dynamic, and could not have been made without some way
to incorporate the time dimension into the models. The predic-
tions are of several different types, some quantitative, and some
qualitative. All are testable.

I can also cite a few difficulties from my own experience.
Dynamic models are often complicated, and once encoded for
computation it may be hard to understand why certain patterns
are predicted. It often requires much work to trace just how a
particular region in the output is arrived at, and why it changes
shape when certain parameter values are altered. When a
second investigator arrives at different answers for the same
problem, it is often more than just a matter of checking the
math. Recently, Byrd et al. (in press) arrived at somewhat
different answers for the murre fledging model, as did Roff
(personal communication). It took some checking to find that
they were in fact right, and to locate my errors. More investiga-
tors are bound to experience this, and the differences may not
always involve clearcut mistakes. Climate modellers will be
familiar with these problems.

A second difficulty is that the data required for testing some-
times cannot possibly be obtained. There is some irony in the
fact that the salmon model alluded to above is such a case. In
spite of all the data available for these species, the type and
detail of data we require for empirical testing of the model are
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simply not available. Hence this is probably a good example of a
first-generation model “best abandoned at this early stage”
(sect. 7, para. 4). Yet we felt the model was exciting and valuable
for the insight it gave us.

Author’s Response

Dynamic optimization: Let’s get on with the
job
Colin W. Clark

Institute of Applied Mathematics, University of British Columbia, Vancouver,
BC, Canada V6T 1Y4
Electronic mail: userbiec@ubcmtsg.bitnet; Colin-Clark@mtsg.ubc.ca

I wrote the target article with the aim of showing that the
use of dynamic optimization models in behavioral ecology
should not be controversial. By and large, I think the
commentaries support this claim. My sympathies are
with those commentators (Barto, Focardi, Hitcheock &
Sherry, Houston & McNamara, Mace & Sutherland,
Milinski, Roughgarden, Travis, Ydenberg) who say, in
effect: What's the problem? Dynamic optimization tech-
niques have been well understood for more than 30 years
(more than 200 years if one goes back to the calculus of
variations), and theyre obviously relevant in biology.
Let's get on with the job of developing and testing
dynamic optimization models. If you're going to use
optimization theory, you may as well be aware of the most
powerful techniques available. This doesn’t mean that
you have to eschew simpler models (Houston &
McNamara, Schmid-Hempel, Travis) — the art of model-
ing consists of using the best model for the problem at
hand, where “best” certainly implies the “simplest ade-
quate” one. I was surprised how few commentators men-
tioned this basic point. Indeed, many insisted that further
complications should always be included.

Several different techniques of dynamic optimization
now exist (Roughgarden); Ydenberg's comment on the
ease with which stochastic dynamic programming (SDP)
models can be applied in behavioral ecology is most
significant. My collaborator, Marc Mangel, and I, both
familiar with most optimization techniques, have often
been astounded by the simplicity and flexibility of the
SDP approach. Table 2 in the target article gives some
idea of its scope, and many more diverse applications are
now in progress. (I do worry, along with Alley, Houston &
McNamara, Milinski, and Partridge, that SDP models
may become faddish and used to excess, but, as Travis

says, you can’t blame the modeling framework itself for
that.)

1. Some routine extensions

Several commentators have suggested extensions of SDP
models that seem to be straightforward. Partridge ob-
serves that in some cases postreproductive activities may
increase parental fitness by enhancing the fitness of
offspring. This can readily be modeled by including
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additional state variables for offspring. One obvious pre-
diction is that parents will be more risk averse if their own
survival will enhance offspring fitness.

Fantino discusses delayed-reduction theory, according
to which hungry pigeons prefer to reduce the delay to
their next reward at the cost of also reducing average food
intake. This is exactly what a dynamic state-variable
model predicts (Mangel & Clark 1988, Chapter 2); the
possibility of a quantitative functional analysis may be
worth pursuing.

Townsend points out that higher-order Markov deci-
sion processes may sometimes be needed; as he notes,
these can easily be transformed to first-order models (by
increasing the dimension of the state space), at least for
finite-order processes. (I doubt that Dickinsen’s concern
about infinite-order processes needs to be taken
seriously.)

Alley faults foraging modelers for assuming thought-
lessly that food intake always implies positive net benefits
when in fact predation risk, competition, need for water,
and other factors may negate these benefits. SDP models,
as described in the target article, are in fact ideal for
dealing with such tradeoffs as these; many examples occur
in the references of Table 2. Schmid-Hempel is still
worried about including intermediate rewards as well as
terminal rewards, but the target article clearly states how
intermediate rewards (i.e., repeated reproduction) are
easily included in the models. Intermediate rewards
other than actual reproduction are accounted for by
including appropriate state variables. Schmid-Hempel
admits that dynamic models are appropriate whenever
dynamic changes in behavior (or in the environment) are
important. T would add that they are also appropriate
whenever an organism’s state may influence its behavior,
and whenever tradeoffs are important (since tradeoffs
invariably involve temporal opportunity costs). The state-
variable dynamic programming framework allows for the
unified treatment of these and many other aspects of
behavior, including for example, inventory-related be-
havior (food caching: Hitchcock & Sherry).

2. More substantial generalizations

The application of SDP models to behavior is still in its
infancy; many new directions await development. Howe
et al. and Odling-Smee call for the inclusion of environ-
mental variables and the effects of behavior on local
environments. Nothing in principle prevents this from
being done (as I point out in the target article) — it’s again
simply a matter of expanding the state space. The curse of
dimensionality (also model identification) awaits those
who would do so willy-nilly.

The important question of mechanisms is raised by
Barto, Colgan & Jamieson, Focardi, Roughgarden, and
Miller & Todd. Some of the more mindless exercises in
optimization modeling have come up with so-called op-
timal behaviors that were patently unrealizable — Colgan
& Jamieson quote an extreme example. Although dynam-
ic models could certainly make the same mistake, it
should be noted that they are quite capable of restricting
actions to those that are known or thought to be realistic.
The specification of the set of feasible acts or decisions is
entirely up to the modeler.

Response/Clark: Modeling behavioral adaptations

It strikes me that this might well be a rewarding area for
future research. A whole sequence of models (for a given
behavioral phenomenon) could be developed, differing
only in the set of feasible actions. Then the fitness
consequences of simple versus complex decision rules
(including “rules of thumb” — see Roughgarden and
Stamps), and of different mechanisms, could be assessed.
Cases in which fitness could apparently be substantially
increased by more sophisticated behavioral patterns
would raise the question of what may have hindered the
evolution of such behavior.

This leads me to a common misuse of the term “op-
timal.” Statements to the effect that “so-and-so has shown
that such-and-such an observed behavioral pattern is
nonoptimal” are often encountered. By itself such a
statement is nonsense. What has usually transpired is that
someone has constructed a model predicting certain
optimal behavior, and someone (not necessarily someone
else) has observed that certain organisms regularly fail to
behave as predicted. All this proves is that the observed
behavior is not optimal relative to the particular model. Tt
is very, very difficult to prove conclusively that (inclusive)
fitness would be significantly enhanced by some alter-
native, feasible behavior. As Maynard Smith (1978) has
explained, it is not the hypothesis of optimality that is
being tested, but simply the assumptions and structure of
the model itself (see also Mitchell & Valone 1990). If a
model’s predictions are not upheld, it is the model that is
rejected, not the paradigm of optimality. If optimization
models fail repeatedly to explain observed phenomena,
the optimality paradigm would have to be abandoned
(provided a superior paradigm became available). The
progression from individual, static optimization models
to game-theoretic and dynamic models has been ex-
tremely successful in broadening the scope of optimality-
based explanations.

One example in which nonoptimality appears to have
been thoroughly demonstrated is nest parasitism; I thank
Colgan & Jamieson for bringing the work of Rothstein
(1982; 1986) to my attention. Whenever nonoptimal be-
havior seems so clearly established, the natural question
concerns why more nearly optimal behavior has failed to
evolve. I can think of only two possibilities: Either the
apparently “optimal” behavior is not physiologically fea-
sible (which is not the case for rejection of nest parasites,
because some species of birds regularly reject), or the
optimal behavior has simply failed to evolve. Rothstein
(1986, p. 1117) asserts that “the lack of rejection behavior
is a problem of evolutionary lag.” He points out (ibid.)
that “brood parasitism is a more recent selective pres-
sure than PCR [partial clutch reduction]. Birds or avian
prototypes have, presumably, always been subject to
PCR, whereas brood parasitism appeared only after the
evolution of birds that switched from parental care to
parasitism.”

This seems weak: Surely the switch to parasitism oc-
curred in the distant past. It is not the total time, but the
time integral of selection pressure that affects evolution-
ary changes. Terborgh (1989) points out that cowbird
parasitism on North American passerines has vastly in-
creased with the spread of agriculture, which provided
feeding habitat for cowbirds. Before this recent develop-
ment, selective pressure for defense against cowbird
parasitism may have been minimal for forest-dwelling
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species. To me this seems a more likely mechanism for
evolutionary lag than that suggested by Rothstein (1986).

In any event, it is worth noting that even where
optimality demonstrably fails, the optimality paradigm
remains central to the discussion: if not optimal, why not?

Stamps points out that a whole sequence of models may
be based on the same faulty, unrecognized underlying
assumption. (She herself seems to make an unstated tacit
assumption, namely, that lion “groups” are all of the same
kind. In fact, hunting groups are not the same as social
groups [prides]. There is no question that hunting group
sizes are adjusted to available prey species and density.)
This points up the necessity for modelers to criticize their
assumptions and always to remain sensitive to the ways in
which their predictions rely on the assumptions. Unfortu-
nately, this is easier said than done — we all tend to be
impressed by the brilliance of our arguments and to forget
the importance of the underlying assumptions.

The assumption of complete information is a case in
point; as Barto and Dickinson point out, this is frequently
unrealistic. In principle, incomplete information and
learning can be incorporated into dynamic programming
models (which are then called adaptive control models),
but the curse of dimensionality strictly limits the
usefulness of this approach. The development of alter-
native modeling and computational techniques, such as
incremental dynamic programming (Barto) and genetic
algorithms (Miller & Todd, Houston & McNamara) is
commendable. I don’t know how fruitful these new tech-
niques have been in expanding our understanding of
observations of learning behavior. Hitchcock & Sherry
correctly point out that learning involves much more than
merely sampling the environment, which was the only
sense in which I used the term in the target article.

Houston & McNamara indicate the possibility of link-
ing behavioral models to the study of population dy-
namics. Most existing models of population dynamics
completely ignore individual behavior, which may well
have important consequences at the population level
(McNamara & Houston 1987; Ydenberg 1987). This field
of investigation has hardly been scratched.

3. Modeling for ‘ahal’

I like simple models. I don’t care if a simple, elegant
model fails some statistical test (in this regard, contrast
the commentary of Mace & Sutheriand with that of Howe
et al.), provided that it has given me some new ideas and
insights into nature. It’s always an exciting moment when
anew model — especially one of my own — tells me, “Ahal
So that’s how it works.” Calm reassessment in the light of
data may later cause me to regret my naive enthusiasm,
but not always — otherwise science would be an insuffera-
ble drudge.

I cannot resist the temptation here to describe a de-
lightfully simple model, from Marc Mangel (1987), of
oviposition strategy in parasitic wasps (see also Mangel &
Clark 1988, Chapter 4). These wasps lay eggs in host
pupae, and tend to lay larger clutches in larger hosts. A
static model of Charnov & Skinner (1984), based on
experimental measurements of the fitness of different
sized clutches laid on hosts of different sizes, predicted a
linear relationship between host volume v and optimal
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clutch size c¢*(v). The data, however, consisted of a
triangular cloud of points bounded sharply above by
¢*(v). Charnov & Skinner then proposed an alternative
model, which predicted another line passing through the
middle of the data.

Mangel developed a simple dynamic model, which on
the first computer run reproduced the triangular cloud of
points as its prediction. Mangel told me he was so
surprised at this result that he spent the next three days
looking for a bug in his program. But the program was
correct, and the explanation (obvious by hindsight) soon
emerged. The fitness curves measured by Charnov &
Skinner were concave, with a maximum at ¢* = ¢*(v).
Clearly, if host pupae were available in unlimited num-
bers, it would be optimal for the parasite to lay one egg
per host. (The clutch-size model used by Charnov &
Skinner was carried over from avian studies, in which
only one clutch at a time is laid and tended by the female
parent. This tacit assumption is simply not valid for
insects: Godfray 1987.) If host pupae are rare, the parasite
may not be able to lay all its eggs in separate clutches, so
larger clutches become optimal — but never larger than
c*(v).

The variance in optimal clutch size was a consequence
of Mangel’s assumption that hosts were located by ran-
dom search. Wasps that have been unlucky in locating
hosts will lay larger clutches than those that have been
more fortunate.

I am still charmed by the elegance and simplicity of
Mangel’s model. Not only does it predict what actually
happens, while providing a convincing, simple explana-
tion, but it also suggests all kinds of new experiments.
(Not surprisingly, Mangel’s paper was rejected by the
first journal to which it was submitted.) For example, the
manipulation of host density and spatial distribution have
predictable, testable consequences. The same applies to
manipulations affecting the parasites, for example, tem-
perature changes affecting survival probabilities. Mangel
and B. Roitberg are currently performing these
experiments.

Was a dynamic programming model really necessary
for understanding the triangular cloud? Maybe not, but it
worked! My coworkers and I have repeatedly found that
the process of developing a dynamic programming model
has profoundly affected our thinking about the underly-
ing biology (Ydenberg). This can only be appreciated by
actually trying it. The fact that learning SDP modeling is
easy also helps (other techniques, such as optimal control
theory, are much more difficult to learn and to use).

4. The kitchen sink syndrome

The art of modeling always involves a compromise be-
tween simplicity and realism. Simple models are better,
but so are more realistic ones. It is the easiest thing in the
world to criticize a given model, or modeling approach,
for being simplistic; I plead guilty to doing this relative to
static models (Schmid-Hempel), and I likewise accuse
many of the commentators of the same crime.

One school of modeling, to which Hitchcock & Sherry,
Partridge, Milinski, and I do not belong, demands that
models always encompass everything that might be
important. This leads rapidly to “modeljunk™ - useless
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garbage piling up on office shelves (but fortunately un-
publishable nowadays: Partridge). Unless we are careful,
SDP models could also generate modeljunk.

As Mace & Sutherland point out, the limitations of
SDP modeling may be more in the human brain than in
computer capacity. How can anyone hope to comprehend
multidimensional strategy matrices, depending on multi-
dimensional state variables? I am happy to report some
progress in this area. To understand the output of a model
of induced defense strategies, we have recently devel-
oped 6-dimensional computer graphics (Clark & Harvell,
unpublished).

Graphics is obviously the way to go in understanding
data, whether empirical or model-generated. Six-dimen-
sional graphs are not so arcane as might be supposed: One
simply prints a folio of 3-dimensional graphs on a single
page, organized across and down the page (5 dimensions),
and iterated in perspective (the sixth dimension). Some
thought is needed to achieve the most readable and
informative output, but the method seems to be very
efficient in terms of data comprehension. A Postscript
laser printer is essential for high-resolution cutput (our
graphs would cost a fortune to have drawn by an artist!).

A major shortcoming of SDP models is that the optimal
strategies usually have to be obtained by computer.
Studying the sensitivity of the predictions of such models
to parameter values can be extremely tedious. Simpler
models that can be solved analytically have great advan-
tages, when they are possible. (I am much less sanguine
about analytic models that can be solved only by profes-
sional mathematicians. It’s essential for scientists to be
able to work hands-on with their own models.)

In this regard, Sozou & Byrd have pointed out that
Ydenberg’s (1989) fledging model, which I used as my
expository example, can be solved without using dynamic
programming (Odling-Smee also hints at this). They're
quite right (although the forward simulation is only
slightly simpler than backward iteration, in this case).
Any stochastic model in which stochasticity is restricted
to mortality risk is essentially equivalent to a determin-
istic model, which can often be solved analytically or by
simulation (see also Ludwig & Rowe 1990). Ydenberg
admits this, and also points out that his paper contains
some ambiguities. I apologize to readers for uncritically
using this example as my pedagogical device, but it does
have the advantage of being easy to understand. (The
referees of the first draft were horrified at the complicated
example I used there.) The references in Table 2 contain
many SDP models that cannot be solved without using
dynamic programming —~ Mangel’s oviposition model is
one such.

By the way, Sozou & Byrd's statement that changing
Ydenberg’s (1989) terminal function to an exponential
form completely changes the prediction of fledging date
might seem surprising without a little thought. But the
reason for the difference is obvious: Ydenberg’s function
implies a linear advantage to weight gain above 700 g,
whereas Sozou & Byrd’s implies an asymptotic relation.
Adult murres weigh about 950 gm. Ydenberg’s assump-
tion is that a 950 gm murre has a survival probability 2.5
times that of an 800 gm bird. Sozou and Byrd’s function
reduces this advantage to 1.5. Not surprisingly, then,
Sozou & Byrd’s chicks remain longer in the safety of the
nest. How important is weight gain for murre chicks?

Response/Clark: Modeling behavioral adaptations

Ydenberg’s model reveals that this could be an important
question in studying the evolution of alcid fledging
behavior.

5. Miscellany

Adaptive variations. It is noted by Focardi that static
models can predict averages but not variances. In a
dynamic stochastic model, optimal behavioral strategies
are state-dependent; the distribution of behaviors can be
deduced from the distribution of the state variables.
Mangel’s oviposition model is a simple example of this.
In the case of fluctuating environments, it has long
been recognized that the geometric mean of annual
reproduction may be a better measure of fitness than the
arithmetic mean. This has led to such concepts as bet
hedging (Philippi & Seger 1989; Slatkin 1974) and adap-
tive coin flipping (Cooper & Kaplan 1982), in which
phenotypic variation may be an adaptive strategy.
Yoshimura & Clark (in press) show how to apply these
ideas to dynamic programming models.
Nonadaptive variations. It is pointed out by Stamps that
the optimum may be surrounded by a “zone of indif-
ference” such that any behavior within the zone will lead
to fitness that is close to the maximum. The selection
pressure for reducing phenotypic variation (Colgan &
Jamieson) within this zone of indifference will obviously
be small. For this and other reasons one cannot expect too
close quantitative agreement between predictions and
observations. Although Townsend remarks that this may
sometimes be used to rescue an unsuccessful theory, I
feel it does have to be kept in mind.
The evolution of behavior. The question of how behav-
ioral strategies evolve via the genetic system is not dis-
cussed in the target article. Travis points out that behav-
ior is usually thought to be highly flexible (I presume he
means genetically), in which case a blanket assumption of
fitness maximization may be less problematic for behav-
ioral than for, say, morphological traits. But as Szathmary
remarks, in the case of learned as opposed to inbred
behavior, neuronal selection in the brain may be impor-
tant. His suggestion that selfish neurons might compete
with selfish genes to the detriment of fitness optimization
is intriguing, but I have no idea how examples might be
identified or tested. Maybe this should be added to the
long list of “theory-rescue” devices to be invoked when-
ever a Darwinian explanation fails. My own preference is
for model critique: If your model fails, try to figure out
what’s wrong with it. Only when all reasonable optimiza-
tion models have failed do you have strong evidence for
nonoptimal behavior (Rothstein 1982).
Matching. My facile remarks about matching are crit-
icized by Fantino, Hitchcock & Sherry, and Houston &
McNamara. I agree that matching would make a worth-
while dynamic modeling project. Regarding the observa-
tion that pigeons continue to match even after long
experience with a nonchanging environment, I have two
comments. First, given that reinforcements are ran-
domized, how do the pigeons ever learn that the environ-
ment is constant? Humans regularly believe that luck
comes in runs, why not pigeons? What are the statistical
tests for the hypothesis of constancy, and how sophisti-
cated would the pigeons have to be to use them? Second,
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given that natural environments are never constant, how
would pigeons ever evolve mechanisms for learning that
their laboratory environment was in fact constant (Clark
& Mangel 1986)?
Inclusive fitness. As noted in the target article, the
assumption of individual optimization is quite unrealistic,
given that the behavior of any organism is intimately
linked with the behavior of predators and competitors.
Behavior also often affects the fitness of offspring and
other kin. Houston & McNamara point out the scope for
dynamic ESS models. Miller & Todd think that dynamic
programming cannot encompass inclusive fitness because
of the assumption of a finite time horizon T. Ironically,
the vast literature on ESS’s and inclusive fitness is static,
i.e., itassumes that T = 1! It must be a bit of an advance to
allow for arbitrary finite T; dynamic programming with an
infinite horizon is treated in the literature (e.g., by
Bertsekas 1987), but I'm not convinced that this would
lead to much in the way of new insights in ecology.
(By the way, BBS authors are asked to rate the com-
mentaries in terms of their favorability toward the target
article, on a basis of 1 (high) to 7 (low). My average rating
for the 22 commentaries was 2.4, which broke down as
follows: psychologists 3.6 (N = 6), others 2.0 (N = 16). I
also observed a similar bias among the commentaries on
Houston & McNamara 1988. Do I infer that psychologists
view the adaptationist paradigm with suspicion?)
Chaos. It is a concern of Partridge’s that SDP models may
exhibit extreme (chaotic) sensitivity to initial conditions,
but his references concern only noncontrolled dynamical
systems. I know of no theory of chaos for optimally
controlled systems; my computer outputs have never
suggested chaos. I also appreciate Townsend’s comment
on the current fad for chaos — it is an important paradigm
shift, but it does not destroy all existing science.
Supporting theory. One of the advantages of the comput-
er-oriented approach is that a minimum of theory is
necessary (optimal control theory, a leading competitor,
involves extremely complex and difficult theory pertain-
ing to necessary and sufficient conditions for optimality).
You just formulate your model and then program it for
numerical solution. Townsend is worried about various
technical problems involved in the numerical computa-
tions, but I have never encountered any serious difficul-
ties. Discretization (in time and state) sometimes leads to
jagged output, but this can be reduced by refining the
mesh size, using interpolation, or adding additional
stochastic noise. Stationary strategies almost always
emerge for time-invariant models; 1 just watch the com-
puter output as the number of iterations increases; see
McNamara (1990) for theory.

6. Conclusion

Although dynamic optimization techniques have been
around for quite a while, it is only recently that their
usefulness in behavioral biology has been recognized.
Experience with discrete-time, stochastic dynamic pro-
gramming models of behavior has convinced me, as well
as several colleagues, that such models are powerful,
flexible, easy to learn and to use, and can yield rapid
returns on investment. They seem particularly successful
in helping us understand field and laboratory observa-
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tions, and they often suggest new hypotheses and experi-
ments. They can usually be implemented on desktop
computers, further enhancing their attractiveness.
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