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SYNOPSIS

Two eigenvalue problems associated with steady rotations of a chain are considered. To compare
the spectra of these two problems, let aK{ri) denote the set of all angular velocities with which a chain
of unit length with one end fixed and the other free can rotate in a vertical plane so as to have exactly
n nodes on the vertical axis (including the fixed end). In a linearised theory aK{n) is a single point,
i.e.

<7K(H) — {<"«} (linearised theory).

In the full non-linear theory oK(n) is an infinite interval lying to the right of o>n. Indeed,

oK(ri) = (ojn, co) (non-linear theory).
This is established in [1].

Next, let <jM(jS, ri) denote the set of all angular velocities with which a chain, having ends fixed
at unit distance apart on the vertical axis, can rotate in a vertical plane so as to have exactly n+l
nodes on the vertical axis (including the ends) and so that the tension takes the value /S at the lower
end. This problem, in which the length of the chain is not prescribed is a model for a spinning process
in which the 'chain' is continuously created in a rotating configuration. For j3>0, we again have in
the linearised theory that aM(fi, ri) is a singleton, i.e.

CTM(/3, ri) = {An(jS)} (linearised theory).

In the full non-linear theory aM(fi, ri) lies to the left of An(j3). Although unable to determine exactly
crM(j3, ri) for p > 0, we have

( W , K(fi)) c <JM{§, ri) c (A;C8), K(fi)) (non-linear theory),

where cun, An(jS), AJ(/3) and A,',̂ ) are all characterised as the nth zeros of known combinations of
Bessel functions.

1. I N T R O D U C T I O N

In his definitive article [1], Kolodner discussed the non-linear theory of a chain
rotating steadily about the vertical axis through a fixed end whilst the other end is
free and where at any instant the chain lies in a plane. According to the linear theory
for such a chain of given length, there are only certain angular velocities {con},f = t

with which the chain can rotate steadily in a position displaced from the vertical
axis of rotation. For all other angular velocities the chain must lie along this vertical
axis. The eigenvelocities {con} °̂= x form an increasing sequence which is characterised
as the discrete spectrum of a linear boundary value problem. Kolodner showed that
according to the more accurate non-linear theory such a chain can rotate steadily
in a position displaced from the vertical axis of rotation at any angular velocity
greater than cou the lowest eigenvelocity of the linearised theory. Indeed, for
ctin<co g= &>« + i> there are exactly n distinct displaced nodes of rotation together
with the vertical configuration.

Here we return to the non-linear theory of a rotating chain under different boundary
conditions. Both ends of the chain are considered to be fixed a given distance apart
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200 C. A. Stuart

on the vertical axis and the tension is supposed to assume a given value at the lower
end. In this case, however, the length of the chain is not prescribed and is to be
determined as a function of the solution.

This problem has been posed by Dr F. J. Milford, Battelle Memorial Institute,
Columbus, Ohio, as a possible model for a spinning process. The freedom of the
length arises because the rotating thread between two fixed points is formed by the
convergence of diffuse fibres. The twist in the thread is induced by the forced rotation
of the end at which the spun thread is then drawn off.

It is shown below that, for each fixed value a > 0 of the tension, there exists a
sequence {(v'n(a), vB(a))} of open intervals such that, for a velocity of rotation between
v'n{a) and vn(a), there exists a displaced mode of rotation about the axis of rotation
satisfying the above boundary conditions and having exactly («— 1) interior nodes.
The upper limits, vn(a), form an increasing sequence which is again characterised
as the discrete spectrum of a linear Sturm-Liouville problem. Indeed the vn(a)
are the zeros of a known combination of Bessel functions of the first and second
kind of order zero. However, the problem is not asymptotically linear and so the
lower limits, v'n(a), are not characterised as the spectrum of a linear problem. None
the less, we do give explicit upper and lower bounds for v'n(a), again in terms of
the zeros of appropriate combinations of Bessel functions of order zero. For small
a > 0 , there do not exist two displaced modes with the same angular velocity but
having different numbers of interior nodes. As the velocity of rotation approaches
vn(a) from below the corresponding displaced modes converge to the vertical
configuration.

These results are obtained in section 3 by taking as starting point the Banach space
theorem of Rabinowitz [4]. Then a priori bounds on the length of the chain and
its maximum displacement from the vertical configuration are derived and sub-
sequently used in conjunction with comparison arguments to yield the above results.
Section 3 ends with some general remarks about the properties of displaced modes.
In particular, we note that the bifurcation for the chain with a free end leads to modes
with angular velocities greater than the bifurcation value whereas in the case of
two fixed ends it leads to modes with angular velocities lower than the bifurcation
value. To this extent, the two boundary value problems for the rotating chain
described above exhibit complimentary situations for non-linear Sturm-Liouville
problems.

A more precise description of the two boundary value problems for a chain is
given in section 2 together with some notation. It is then shown that these problems
are equivalent to eigenvalue problems associated with non-linear second-order
ordinary differential equations on the unit interval.

2. STEADILY R O T A T I N G C H A I N S

Before proceeding with the analysis of the problems outlined in the introduction,
it is convenient to fix some standard notation to be used throughout.

The real line is denoted by 31 and ^ + = {X >. 0}. The real Banach space of all
continuous real-valued functions, u, on a compact interval [a, b~\ with

|| M || =max{ |u (x) | : a ^ x ^ b}
is denoted by C [a, b~\.
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Spectral Theory of Rotating Chains 201

We denote by C1 [a, b] the real Banach space of all continuously differentiable
functions u on a bounded open interval {a, b) such that u and u' can be considered
to lie in C[a, b]. (Prime denotes differentiation.) The norm in C1 [a, b~] is taken
to be

II u Hi = II u II +11 « ' II for M £ C ' f a , &].

We use J-1" to denote the set of positive integers and, for n e Jf, we set
SB = { « 6 C ' [ 0 , 1]:« has exactly n— 1 zeros in (0, 1) and all the zeros of u in [0, 1]
are simple}.

Let us now describe the mathematical model we shall use for the problems
described in the introduction.

By a chain we mean a perfectly flexible inextensible material which at any given
time occupies a simple curve. The mass is assumed to be uniformly distributed along
such a curve, and we denote the mass per unit length by a constant p > 0 which is
independent of time as well as position. We consider a chain with ends labelled A
and B respectively. The end A is attached to a fixed point and we introduce a
rectangular coordinate system (xy, x2, x3) with origin at A and such that the force
on a body due to gravity acts along the positive x3-axis.

Since the chain is assumed inextensible we may choose the arc-length, s, measured
along the chain as an independent variable in terms of which to describe the con-
figuration of the chain at any time t. Let 5 = 0 at A and let (u^s, t), u2(s, t), u3(s, t))
denote the position at time t of the point s along the chain. Since the end A is fixed
at the origin of coordinates we have

u,(0, 0 = 0 for i = 1,2, 3 a n d / ^ 0 (2.1)

whilst s being arc-length implies that

V (dUi V
i = i \ 3 s 7 ~ * ° f < s < 5 f i a n *- '

provided that u is differentiable, where sB is used to denote the length of the chain.
Since the chain is perfectly flexible, the only force which the chain can exert at s

is a tension which acts parallel to the tangent to the chain at s. LetT (s, t) denote
the tension at the point s at time t.

Assuming u and T are sufficiently smooth, the equations of motion are then

(s, 0 —-'(s, Or f ° r 0<s<ss, t>0 and i = 1, 2, 3,
as j

(2.3)
where 6^ is the Kronecker delta and g is the acceleration due to gravity.

We seek only motions in which the chain lies in vertical plane which rotates with
constant angular velocity co about the x3-axis, the chain being stationary relative
to this rotating plane. That is, we assume that T is independent of t and that there
exist functions v and w of s such that

u(s, 0 = (v(s) cos (ot, v(s) sin cot, w(s)).
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202 C. A. Stuart

The equations (2.1)-(2.3) then yield,

v(0) = w(0) = 0 (2.4)

v'(s)2 +w'(s)2 = 1 (2.5)

-pw2v(s) = (T(s)vXs))' (2.6)

-pg = (T(s)w'(s))' (2.7)

for 0 < 5 < J B , where prime denotes differentiation with respect to s.
We now define a steady rotation of a chain of density p > 0 to be a quintuple

(sB, v, w, T, co) where sB>0, co 2: 0; r, w, J e C1 [0, sB~\; v and w are twice con-
tinuously differentiable on (0, sB), and the equations (2.4)-(2.7) are satisfied. A
steady rotation is called vertical if v = 0 and non-vertical motions are said to be
displaced.

PROBLEM K. Given p>0 and H>0, find those co for which there exist displaced steady
rotations (H, v, w, T, co) of a chain of density p satisfying the additional boundary
condition

T(H) = 0. (2.8)

The Problem K has the interpretation that the chain has a given length H and that
the end-point B is free. Note that, for each p>0, H>0 and co ̂  0, there is a vertical
steady rotation satisfying (2.8) which is obtained by setting v = 0, vv(̂ ) = s and
7X0 = PQ{H-s) for 0 ^ 5 ^ H.

PROBLEM M. Given p>0,L>0 and a ^ 0, find those cofor which there exist displaced
steady rotations (sB, v, w, T, a>) of a chain of density p satisfying the additional boundary
conditions

v(sB) = 0, (2.9)

w(sB) = L, (2.10)

w'(5j,) > 0, (2.11)
and

T(sB) = a. (2.12)

The boundary conditions (2.9) and (2.10) may be interpreted as fixing the end B
at a distance L vertically below A. The condition (2.12) amounts to prescribing the
tension at the lower point B, whilst, as we shall see, (2.11) implies that B is the lowest
point of the chain. Note, however, that the length of the chain sB is not prescribed;
but, clearly, (2.10) implies that sB ^ L. For any p>0, L>0, co ̂  0 and a ^ 0 there
is again a vertical steady rotation satisfying (2.9)-(2.12) given by sB = L, v = 0,
w(s) = 51 and 7X0 = oc + pg (L — s) for 0 :§ s ^ L. As will be shown in section 3,
T(0) = ct + pgL for any steady rotation satisfying (2.9)-(2.12) and consequently
the results of section 3 also apply to the problem in which (2.12) is replaced by
7\0) = a + pgL. That is, a tension larger than that required to support a chain of
density p and length L is prescribed at the upper fixed end A whilst the tension at the
lower fixed end B is left free.

In terms of the variable s, the Problem M constitutes a free boundary value
problem for the equations (2.5)-(2.7) since the value of ^ at which the boundary
conditions (2.9)-(2.12) are applied is not prescribed. This complication is resolved
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Spectral Theory of Rotating Chains 203

if we choose x3 as the independent variable. To verify that this is possible is the
first step in the following result.

LEMMA. Suppose that (sB, v, w, T, co) is a steady rotation of a chain of density p>0
such that

T(sB)^0 andw'(sB)>0.
Then

T(s)>0 forO<,s<sB (2.13)
and

w'(s)>0 for0^s^sB. (2.14)

In particular, w(sB)>0 and w is a homeomorphism o/[0, jB] on to [0, w(sBy]. Let
w(sB) = L and, for 0 ^ z ^ 1, set

s(z) = L-1w-\Lz) (2.15)

x(z) = L-1v(Ls(z)) (2.16)

T(z) = (pgL)-1T(Ls(z)). (2.17)

Then s, x, f eC^O, 1],
x(0) = 0

s(z) = p (1 +x'(t)2)idt, (2.18)
Jo

-{(1 + x'(z)T*f(z)x'(z)}' = Ax(z){l +x'(z)2}*, (2.19)

- {(1 +x'(z)2r*T (z)}' = (1 +x'(z)2)* (2.20)
/or 0<z< 1, where X = g~1co2L and prime denotes differentiation with respect to z.

Proof. By hypothesis we have r(.sB) w' (sB) ^ 0, whilst

-(T(s)w'(s))' = pg>0 for 0<s<sB by (2.7).

Thus T(s)w'(s)>0 for 0 ^ ^<^B. However, W'(^B)>0 and so this immediately
yields (2.13) and (2.14). The remainder of the proof is an exercise in the change of
variables.

PROBLEM M'. Given P ^ 0,find (x, X) e C\Q, 1] x ^ + such that x ^ 0,

A*(z)(l+x'(z)2)* for0<z<l ,

(2.21)

x(0) = x(l) = 0 (2.22)
and

x'(l)<oo. (2.23)
Problems M and M' are equivalent.
If (sB, v, w, T, co) is a solution of Problem M for L>0 and a ^ 0, then, defining

x, T and A as in Lemma 2.1, it follows that (x, X) is a solution of Problem M' for
/? = (pgLy1 a. Note that

(1 +x'(z)2)V(Lz) = 1 for all z e (0, 1)
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204 C. A. Stuart

and so (2.23) follows from (2.11). Integrating (2.20) from z to 1 yields

P (1 +x'(t)2)idt\ forO^zgl (2.24)

and thus we see that (2.19) gives (2.21). Conversely, if (x, X) is a solution of Problem
M' for /? ^ 0, let s and f be denned by (2.18) and (2.24) respectively. Choose L>0
and set

v(Ls{z)) = Lx(z)

w(Ls(z)) = Lz

T(Ls(z)) = pgLT(z)

for 0 ^ z ^ 1. It is again easily checked that (Ls(l), v, w, T, co) is a solution of
Problem M for L and a = pgLfi where w2 = L~1X,g.

As is shown in [1], it is also convenient to replace Problem K by an equivalent
problem, although this time we retain s as the independent variable.

PROBLEM K'. Find (u, X) e C^O, 1] x ^ + such that w # 0,

+y2}-i forO<y<l (2.25)
and

u(0) = u'(l) = 0. (2.26)

Solutions of Problems K and K' are related by

T{ry\H-r)dr

for 0 ̂  y ̂  1 and 0 ̂  s ̂  H.

Note that u'(y) = g~1co2v (s(y)) for 0<y< 1, and so zeros of v correspond to zeros
of u'. However, it is easily seen that u has exactly one zero between any two successive
zeros of «'. Consequently v has the same number of nodes as u.

Thus both problems can be regarded as particular cases of the recently developed
theory of non-linear Sturm-Liouville problems [2-9]. To describe the spectrum of
Problem K', let

aK{n) = {X: there exists a solution (w, X) of (2.25)-(2.26) such that u e Sn}.

THEOREM (Kolodner). For each neJf, aK(n) = (ico2, oo) where con is the nth
zero ofJ0.

The corresponding, but incomplete, result for Problem M' is given in section 3.
The general approach adopted there also yields very easily the above result of
Kolodner, as is shown in [13].
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Spectral Theory of Rotating Chains 205

3. RESULTS FOR PROBLEM M'

We begin by establishing some properties of solutions of Problem M'. Apart
from giving a qualitative description of solutions of Problem M', these results are
also useful in the analysis of the spectral theory of Problem M' given below.

Motivated by (2.18) and (2.24), throughout this section we use the notation

s(x)(z)= \\l+x'(i)2fdt (3.1)
Jo

and

f(x, P)(z) = (1 +x'(z)2)* 1)5(1 +x'( l)2r*+ | 1 (1 +x'(t)2)*dt\ (3.2)

for x e C^O, 1], 0 ^ 0 and 0 g z g 1.

LEMMA 1. Suppose that (x, k)eCl\Q, l ] x ^ + is a solution of Problem M' for
P 2; 0. Then

and

T{x, P)(t)dtV (3.4)

Proof. Multiplying (2.21) by x'(z){\ +x'(z)2}~±, we have

-{(1 +x'(z)2)*}' j/?(l +x'(l)2)"* + \ (1 +x'(t)2)idt\

+ x'(z)2 =/x(z)x'(z) forO<z<l. (3.5)

Integrating (3.5) from z = y to z = 1 yields (3.3). But (3.2) can be written as

forO<z<l.

Integrating this from z = y to z = 1 yields a quadratic equation for s(x)(l) — s(x)(z).
The only non-negative solution of this equation is given by (3.4).

COROLLARY 2. Suppose that (x, A) e C'[0, l]x^?+ is a solution of Problem M'
for P^O.

If
P = 0, x = 0. (3.6)

If
P>0, xe{0} Q Sn. (3.7)

n = 1

Proo/. Putting z = P = 0 in (3.4), we have

1 ̂  P (l+x'(t)2)*dt = il-X r x(02^P ^ 1,
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206 C. A. Stuart
00

from which (3.6) follows easily. Suppose now that /?>0 and that x $ (J Sn. Then
n = 1

there is a z0 e [0, 1] such that x (z0) = x'(z0) = 0. However, since /J>0, (2.21)
can easily be written in the form

-x"(z) =/(z, x(z), x'(z)), (3.8)
where/(z, •, •) is a Lipschitz continuous function for each z e [0, 1]. Furthermore,
x s 0 is the unique solution of (3.8) satisfying x(z0) = x'(z0) = 0. This establishes
(3.7).

COROLLARY 3. Suppose that (x, l ) eC ' [0 , l ] x ^ + is a solution of Problem M'
for /?>0 anrf f/iaf x £ 0.

-x(z)x"(z)>0 (/x'(z) = 0 (3.9)

x'(z)x"(z)>0 ifx(z) = 0. (3.10)

0<z 1 <z 2 <l a«^0 ^ yt ^ y2 ^ I be zeros of x' andx respectively. Then

x(z1)
2<x(z2)

2 andx'(yi)
2<x'(y2)

2. (3.11)

Proof. Suppose that 2 = 0. Then multiplying (2.21) by x(z) and integrating from
z = 0 to z = 1 gives

0= r h(i + x'(\)
2)-i+ V {\ + x'{t)2fdA

which implies that x = 0. Hence
For /l>0, (2.21) can be rewritten as

U(l +x'(l)T* + f' (1 +x'(t)2)idt\+x'(t)2)idt\ x"(z) +(1 +x'{z)2fx\z) = Xx(z){l +x'{z)2f

from which (3.9) and (3.10) are easily deduced. In particular, the zeros of x' are
simple and are separated by the zeros of x. Hence

Z2-ZX<

But (3.3) implies that

[Z2 (l+x'(t)2)*dt= -z1-|Ax(z1)2+z2+iAx(z2)2.

Thus we have
0 < | A { X ( Z 2 ) 2 - X ( 2 I )

2 }

from which it follows that x(z1)2<x(z2)2.
Suppose now that x'iy^)2 ^ x'(y2)

2. Then

T

Hence we have that x'(_Ki)2<x'(>>2)
2.
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Spectral Theory of Rotating Chains 207

These inequalities can be interpreted as follows. Let (x, X)eC1[0, l]x^2+ be
a solution of Problem M' for p > 0 such that X > 0 and x ^ 0. Suppose that

x(Zl) = x{z2) = 0

and that x(z)>0 for zl<z<z2. Then both x' and x" have exactly one zero (y1 and
y2 respectively) in [zu z2~\ and zt <y2 <Ji <z2. In the interval \zu y2\ x is a strictly
convex and is then strictly concave in the interval \y2, z2]. Similar statements can be
made in the case x(z)<0 for z1<z<z2.

It is clear that, if s(x)(l) = 1, x = 0. We now give a quantitative statement of this.

LEMMA 4. Suppose that x e Snfor some neJf and that x(0) = x(l) = 0. Then

|| x 1| ^i{s(x)(l)2-l}*- (3.12)
Proof. Let the zeros of x be denoted by

0 = z1<z2<. . .<zn + 1 = 1,
and set

Pi = zi+i~zb

for

Note that/>;<(7; and suppose that zi<yi<zi+1 with

| x(yt)\ = Bij for 1 ^ i g n.
Then

and
sCxXz^O-sCx)^) ^ {mf +(zi + 1->>i)

2}±
for

1 g i g «.
Hence

g(S{4m?+p2}*. (3.13)

However, an easy induction argument shows that

X ( E qt) - I pt) (3.14)

provided that q, ^ pt ^ 0 for all i = 1, 2, ..., n.
Thus

X (? i -p ; )
2 by (3.13)

i = 1

- l by (3.14)
and the proof is complete.

COROLLARY 5. Suppose that (x, X)eCi[0, l]x^?+ is a solution of Problem M'
for P ^ 0. Then

T(x, /J)(0) = 1 +p, (3.15)

1 ^ s(x)(l) g (1 +2/S)*, (3.16)
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208 C. A. Stuart

and
|| x || g (ffl*. (3.17)

Proof. Putting z = 0 in (3.3) gives (3.15). But

.+2P-X 11 x(z)2dzV

by (3.4) and consequently (3.16) follows.
Finally (3.17) follows from Corollary 2 and Lemma 4.

Apart from these estimates, Lemma 4 also provides a useful lower bound for
s{x){\) in terms of x'(\).

LEMMA 6. Suppose that (x, X) e C^O, 1] x^?+ is a solution of Problem AT. 77z<?«

^ - r + {l+r2+8j8(4+A)-1}* (3.18)

Proof. Substituting (3.12) in (3.3), we have

2
Jo

and consequently (3.4) yields (3.18).
With these estimates at hand, let us now proceed with the spectral theory for

Problem M'. According to Corollary 2, we need only consider /?>0 and, for /?>0,
there exists a Green's function gp for the problem,

-((l-z+P)x'(z))' = h(z), 0<z<l (3.19),

x(0) = x(l) = 0. (3.20)
Setting

Gp(h)(z)= P gfa, y)h(y)dy f o rO^z^ l , (3.21)
Jo

we have that Gfi: C[0, lj-^C^O, 1] is a compact linear operator and that Gp(h)
is the unique solution of (3.19) ,̂ (3.20) for each heC[0, 1]. Also for p>0, we set

F,(x, A)(z) = T(x, P)(zr1{Xx(z)-x'(z)}{\-z+f$-T(x, P\z)}

and note that Fp: C^O, l]x^->C[0, 1] is a bounded continuous mapping.
Furthermore,

il x IIT1 II Fp(x, A)||-»0 as || x IU-»0 uniformly for X in bounded intervals.

Rearranging (2.21) then leads us to the equation

x = kG^x)-G^Ff{x, X)), (x, X) e Cl[0, 1] x & (3.23),
for fixed /?>0.

For each XeSH, the element (0, X)eC1[Q, 1] x ̂  is a solution of (3.23), and such
solutions are called trivial.

We denote by Sfiff) the subset of C^O, 1] x 0t consisting of all non-trivial solutions
of (3.23),. Note that elements of ̂ (j8) are solutions of Problem M' for P>0 and vice
versa. Hence we have that

(J Sn by (3.7),
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Spectral Theory of Rotating Chains 209

and
(-u, X)ey(P) whenever (u, X)e^(P).

By (3.22), the linearisation of (3.23)^ about the trivial solution (0, A) is

x = ?.GfS(x), ( x , ^ ) e C 1 [ 0 , l ] x «

and this is equivalent to the regular Sturm-Liouville problem,

- ( ( l - z + £ ) x ' ( z ) ) ' = Ax(z), 0 < z < l (3.24),

x(0) = x(l) = 0, (3.25)
by the definition of G$ for /?>0.

The general solution of (3.24)^ is

x(z) = AJ0(2kHl - z +P)*) +BY0(2?Hl ~ z + &)

provided that A > 0, where / 0 and y0 are the Bessel functions of order zero of the
first and second kind and A, B are arbitrary constants. Hence the eigenvalues, Xn(fi),
of (3.24)0, (3.25) are given by the zeros of /( , /?): (0, oo)->&, where

/(A, P) = JO(2A*(1 +P)*)Yo(U*p)-Jo(2X*p)Yo(2X*a +«*)• (3-26)

The zeros of such combinations of Bessel functions are tabulated in [11] for example.
Note that Xn is a monotone increasing function of/? for each n e Jf. Furthermore,

^n(P)^°° a s P~>oo for each neJf
and

Xn(P)^con = ( X ) 2 as JS^O for each H S / ,

where an is the «th zero of/0.
Hence, for each fixed /? > 0, we have

and the eigenfunction

J0(2AB(j8)*(l - z

corresponding to !„(/?) belongs to Sn.
Let 9"($) = ^()S)u{(0, AnO?))6Cx[0, l ] x ^ : n e / } . Then, for each j?>0,

^"(i5) is a metric space with the topology induced from Cl[0, 1] x^? and we denote
by %n(P) the component of Sf'(fl) containing (0, AB(j8)).

THEOREM 7. For eac/z jS > 0 and n e J7",

u e Sn whenever (u, A) 6 %n(p)\ {(0, Antf))} (3.27)

{|| «' || +1 A |: («, A) e ^B()8)} = [0, oo). (3.28)

Proof. It follows from Theorem 1.2 of [4] that either '€„ (fi) is an unbounded subset
of Cl\j), 1] x^? or (0, Am(j8)) e #B(j8) for some w ^ n. However, (3.27) is established
exactly as in section 2 of [4] and consequently the second alternative cannot occur.
Thus (3.28) is also established since \\u\\1 ^ 2 || u' || for all H E C ' [ 0 , 1] with
M(0) = 0.

As indicated in the introduction, the spectrum of Problem M' can now be in-
vestigated by using appropriate comparison results from the theory of linear second
order ordinary differential equations.
PROC. R.S.E. (A) Vol. 73, 1974/75 14
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210 C. A. Stuart

LEMMA 8. Suppose that (x, X)eSf(fi) and that xeSn for some /?>0 and nejf.
Then

Proof. Consider the linear eigenvalue problem,

-((l+x'(z)2)-*(l-z+i?-iAx(z)>'(z))' = A*(1+X'(Z)2)*»(Z), 0<z<l (3.29)

p(0) = v(l) = 0. (3.30)

This is a regular Sturm-Liouville problem since

l-z+p-±Lx(z)2>P(l+x'(l)2yi>0 f o r O ^ z ^ l

by (3.3). Furthermore
l-z+iS-|Ax(z)2 g l - z + J ?

and
(1 +x\zff ^ 1 for O g z g l .

Consequently, Theorem 7 on page 411 of [12] yields nn<Xn(P) for « e / , where
jj.n denotes the «th eigenvalue of (3.29), (3.30). But x e Sn is a solution of (3.29),
(3.30) and so must be a multiple of the nth eigenfunction. That is, X = \in and so we

To obtain a lower bound for X, we choose a new independent variable y defined by

y(z) = s(x)(z),

and consider the Sturm-Liouville problem,

-{[j5(l +x'(l)Ti+s(x)(l)-yJl +x'(z(y))2)iv'(y)}' = nv(y) for 0<y<s(x)(l),
(3-31)

v(0) = v(s(x)(l)) = 0. (3.32)
The function w defined by

w(y(z)) = x(z) for 0 ^ z ^ 1

is an eigenfunction of (3.31), (3.32) which has exactly («—1) interior zeros and
fi = X is the corresponding eigenvalue. That is fin = X where fxn is now the «th
eigenvalue of (3.31), (3.32). However,

[i5(l+x'(l)2)-i+s(x)(l)-y](l+x'(z(y))2)*>s(x)(l)->' for 0<y<s(x)(l)
and so, again by Theorem 7 on page 411 of [12], \in must be larger than the «th
eigenvalue of

for

That is /in>j(x)(l)~1(Mn, where con is defined as above. Recalling the estimate (3.16),
we thus have

completing the proof.
This result immediately enables Theorem 7 to be sharpened.

COROLLARY 9. For each /?>0 and n e Jf, we have

{X: (x, X) e Vjtf)} c((l +2P)-*<Bn, AB(j8)] (3.33)
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Spectral Theory of Rotating Chains 211

and
{\\x'\\: (x, X) e *„(/})} = [0, oo). (3.34)

Having found an interval containing {X: (x, X)e(£n{fi)}, we now seek an interval
contained in {X: (x, X) e <€„{$)}. For j? > 0 and n e Jf, let

108, n) = {X ^ 0: there exists a sequence {(xm, /im)} <= < n̂(/f)

such that nm-*X and || x'm || —> oo as m->oo}.

Since the equation (2.21) is not asymptotically linear the usual methods, [10J
of analysing S (/?, n) fail. However, we do have the following results.

LEMMA 10. For each /?>0 and neJf, !(/?, ri) # 0 . Suppose that A e 2 (/?, n) and
that {{xm, / O } <=#„(/?) is such that nm-*X and || x ,̂ ||->oo as m->co.

T/ien | x^(l)|->oo as m->oo.
Furthermore there exists a continuously differentiable function v on [0, 1) such that

xm->v in Cl[0, b] for all b e (0, 1).

Proof. It follows from Corollary 9 that £ Q3, «) # 0 . We assume therefore that
A e S (/?, n) and that there exist sequences {/m}<=:[0, 1] and {(xm, /im)}c^n(^) such
that /im-»A and | x^(fm)|->oo as w->oo. Then recalling (3.3), we have that

f1

for all m e JV.

Since J C ^ O 2 - * 0 ^ as w->oo by hypothesis, this immediately yields, /m->l and
I -x^,(l)|^oo as w->co. But xm satisfies the equation

for 0 < z < l and so

fo rO<z< l .
Since we have just shown that {x ,̂} is uniformly bounded on any compact subset

of [0, 1), it follows from (3.35) that {x^} is also uniformly bounded on any compact
subset of [0, 1). The existence and properties of the function v in the statement of
lemma now follow easily from the Ascoli-Arzela theorem.

Some further properties of v which will be useful are given in the following lemma.

LEMMA 11. For v as defined in Lemma 10, we have that

I»(z)l^(i0* forO£z<l (3.36)
and

P\\ +2j9)~i ^ v'(0)2 ^ 0(2+P). (3.37)
Furthermore, v' is Lebesgue integrable on (0, 1) and

•i

(1 + v\z)2fdz = lim s(xj( l ) = (1 + 0 ( 1 + o'(0)2)~*. (3.38)

Proof The estimate (3.36) follows immediately from (3.17). From the Lebesgue
Dominated Convergence theorem it then follows that

lim 2
ft!-»OO
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212 C. A. Stuart

exists for each z e [0, 1] and is equal to

h(z) = 2\ {l-

Note that h(z) ^ (1 - z ) 2 >0 for all z e [0, 1).
Hence, from (3.3) and (3.4), it now follows that lim {s(xm)(l)-s(xm)(z)} exists

and is equal to A(z)* for each z e [0,1]. Since ̂ (xm)(0) = 0 for all m e Jf, in particular,
we have that lim s(xm)(l) = /i(0)* and consequently

lim s(xm)(z) = /j(O)*-/z(z)* for all z e [0, 1].
m-*oo

Returning to (3.3), we then have

(1 +v'(z)2)i = -ih'(^Kz)~i for all z e [0, 1)
and so

' (1 +v'{zffdz = - I{h{zf} 'dz = ft(0)*- h(0* for all r e [0, 1).
Jo Jo

Thus we have established that

f1

(1 +v'(z))2dz exists and equals /i(0)* = lim s(xj(l).
J o ""-*00

Since | D'(Z)I ^ (l+v'iz)2)* for all ze[0, 1), v' is also seen to be integrable on
(0, 1). Putting z = 0 in (3.3), we have

f
Jo

from which we conclude that

lims(x
m-*oo

Recalling (3.16), this also yields

and thus

However, we also have that s(xm)(l) 2: 1 for all m e J/~ and so

which yields

The proof of the lemma is now complete.

We can now use comparison theorems to find an interval containing Z(/?, ri).

LEMMA 12. For each /?>0 and n e Jf, we have

£(/?, «) = [(1 +2PT*a>n, ^ m (3.39)
where con is as defined above and

Proof. Suppose that Xe1(P, ri) and that {(xm, Hm)}<=<£n(P) is such that
and | ;x4(l)|-*oo as m-^oo. Then X ^ (l+2j3)-*con by (3.33).
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Spectral Theory of Rotating Chains 213

To obtain an upper bound for X, we consider the Sturm-Liouville problem,

-{[}-z{y)+P-ymxm{z{y))2y{y)Y = vV(y) for 0<y<hm (3.40)

i;(0) = v(hm) = 0, (3.41)
where y(z) = s(xm)(z) and hm = .s(xm)(l). Then, as in Lemma 8 we see that the
function w defined by

w(y(z)) = xjz) for 0 ̂  z ^ 1

is an eigenfunction of (3.40), (3.41) which has exactly n— 1 interior zeros in (0, hm).
That is \xm = vn where vn is the «th eigenvalue of (3.40), (3.41).

However,

P +x'm(t)2fdt+p

= hm-y+p for0

and so Theorem 7 on page 411 of [12] implies that vn is less than the «th eigenvalue
of

-{(hm-y+PW(y)Y = My), o<y<hm,
v(0) = v(hm) = 0.

Hence we find that
^Kh-'Wh'1)

where Xn{fih~l) is defined as before to be the «th zero o f / ( , JS/I"1) : (0, oo)-»^
where / : (0, oo)x (0, oo)->^ is defined by (3.26). Therefore,

X^ lim h-'Wh-1)
m->oo

= h-%(f!hZl), (3.42)
where

hn = lim hm exists by (3.38).

But
1 } * by (3.18)

1 } * (3.43)
since X S Xn 03).
As already noted, Xn: (0, co)->^2 is a strictly monotone increasing function and so
the estimate X ̂  X*(P) follows from (3.42) and (3.43).

In order to summarise what has now been established about the spectrum of
Problem M', for /? > 0 and n e Jf, let

aM(p, n) = {X ̂  0: there exists (x, X)eSf{P) with x e Sn}.

THEOREM 13. For each P>0 andnzJf,

Proof. From Lemma 8, it follows that

Since 1(0, n) # 0 , (3.39) implies that

(Arcs), Xn(P))<={X: (x, X)eVn(P)}<=*M(P,
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214 C. A. Stuart

It should be noted that k*{P)<Xn(P) and that yln(/J) — (1 + 2j8)~*cun tends to zero
as /?->0. In the case ji = 0, we have from (3.6) that aM(0, n) = 0 for all n eJf.
For small enough /?>0, we have (1 +2[3)~icon+1>An(P) for all n ^ N, and therefore
<%(& n)naM(P, m) = 0 provided that m # n and m, n ^ N.

In conclusion, we reinterpret some of the above results to describe a few properties
of solutions of Problem M. For any solution (sB, v, w, T, co) of Problem M for L > 0
and a > 0, we have that:

the tension, T(0), at A is a + pgL;

the length of the chain, sB, does not exceed (pgL + la

the displacement from the vertical axis does not exceed

For any displaced solution, v and v' have at most a finite number of zeros in [0, sB~].
Let st and tt denote the zth zeros of v and v' respectively. Then

v(td2<v(ti+1)
2 andt/(s,.)2<t/(si+1)2.

In particular, the maximum displacement of v occurs at the lowest turning value
of v.
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