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S U M M A R Y
Worldwide jerks occurring in 1969, 1978 and 1991 are not simultaneous at the earth’s surface,
showing differential delays of about 2 yr. One way to explain this intriguing temporal pattern
is to consider the earth’s mantle as a conductor. Consequently the geomagnetic field observed
at the earth’s surface will correspond to a filtered version of the original field generated at the
core–mantle boundary (CMB). We developed the forward approach to this problem assuming
the temporal part of the jerk as a simultaneous impulse in the third time-derivative of the
magnetic field at the CMB. Two synthetic spherical harmonic models of the jerk amplitudes
are built by using two different power spectra. The effect of the mantle is illustrated by a 1-D
radial electrical conductivity model that acts as linear, causal and time-invariant filter. The key
point is that the mantle filter is different for each harmonic degree. Therefore, because the
mixing of harmonics varies with location, distinct time delays will exist at the earth’s surface.
By using Backus’ mantle filter theory, we demonstrate that a simple 1-D mantle electrical
conductivity model is able to generate differential jerk time delays that depend strongly on
the jerk morphology input model. We also illustrate that the time delays will vary for each
component of the magnetic field.
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1 I N T RO D U C T I O N

Most of the geomagnetic field observed at the earth’s surface is

generated in the core, and its first time-derivative is called secu-

lar variation. Geomagnetic jerks are abrupt changes in the trend

of the secular variation that can be seen in magnetic observatory

data, especially in the Y component that is less contaminated by

magnetospheric fields (Fig. 1).

Jerks have a typical ‘V’ shape and can be approximated as

straight line segments dividing intervals of linear secular variation.

In this simplistic model, jerks can be seen in the second time dif-

ferences as a step function and in the third differences as an im-

pulse (Fig. 2). Their amplitudes are evaluated by the difference be-

tween the slope of consecutive straight lines segments of the secular

variation.

The detection and characterization of geomagnetic jerks have

been the topic of much debate in the last few decades. The main

features under discussion are their local or worldwide extent, their

morphologies (i.e. the spatial distribution of amplitude) and whether

a same jerk is observed simultaneously at the earth’s surface or not.

The most well known and studied jerk occurred in 1969 and shows

a global behaviour (Malin & Hodder 1982). Other jerks happened

in 1901 and 1913 with possible worldwide distributions whereas

local jerks occurred first in 1932, mostly observed in the Southern

Hemisphere and second in 1949, mainly in the Pacific and Ameri-

can regions (Alexandrescu et al. 1996). Worldwide jerks also hap-

pened in 1978 and 1991 (Macmillan 1996; De Michelis et al. 1998,

2000) and another jerk in 1999 (Mandea et al. 2000) was detected in

European observatories.

Most jerk studies use monthly or annual means of geomagnetic

elements recorded at observatories. The uneven distribution of ob-

servatories is a clear limitation for the global analysis of geomag-

netic jerks. The use of satellite data overcomes this problem by pro-

viding a good spatial coverage of magnetic measurements. Sabaka

et al. (2004) derived a comprehensive model (CM4) of the geo-

magnetic field, for the epoch from 1960 to mid-2002, by using

hourly means from magnetic observatories and data from satellites

(POGO, Magsat, Oersted and CHAMP). This model was able to

detect the well-known jerks but found their occurrence times to be

1969, 1979, 1992, 2000 and another jerk of questionable global ex-

tent in 1997. Chambodut et al. (2007) used synthetic time-series

from the CM4 model and localised jerks as a rapid movement of

the zero isoline of the second derivative. From an analysis of the

isoline as a function of time, they mapped the spatial extent of jerks

and concluded that jerks do not appear to be worldwide. A new jerk

event around 1985 was also identified in the Pacific area. Olsen &

Mandea (2007) developed an approach to obtain satellite monthly

means at a regular network (‘virtual observatories’) based on

CHAMP measurements for the time period from 2001 to 2005. They

detected a jerk in 2003 occurring only in a limited area near 90◦E

and with a stronger amplitude in the Z component of the magnetic

field.
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Figure 1. Secular variation of east component at Chambon la Forêt observa-

tory in France (yellow circles) and Niemegk observatory in Germany (green

circles). The data shown are first differences of observatory monthly means

that have been smoothed by a 12-month running average.

The internal origin of geomagnetic jerks was demonstrated by

Malin & Hodder (1982) using spherical harmonic analysis, in con-

tradiction with other works (Alldredge 1977, 1984) that believed

jerks were caused by the external field. Other recent works have

confirmed the internal origin of jerks, for example, Le Huy et al.
(1998) who performed spherical harmonic models of the 1969, 1978

and 1991 events (X , Y and Z components). In addition, Nagao

et al. (2002) investigated geomagnetic monthly means, obtained

from hourly mean values at each local time, of the three magnetic

components of the same jerk. They concluded that the distribution of

the jerk is independent of local time and that it cannot be explained

by external currents.

Since jerks are generated in the core, they will pass through the

electrical conducting mantle, before arriving at the surface. Conse-

quently, the geomagnetic field observed at the surface will corre-

spond to a filtered version, delayed and smoothed, of the original

field generated in the core. The most relevant characteristic of ge-

omagnetic jerks is their non-simultaneous behaviour at the earth’s

surface. This means that the same event occurs at slightly different

times at distinct observatories (Fig. 3). We call ‘differential time

delays’ the difference between each jerk arrival time at each ob-

servatory and a reference arrival time of the jerk (at one specific

location) that can be, for example, the location where the jerk first

arrived. For instance, if one observatory registered the jerk at 1968,

then the differential delay of Eskdalemuir would be 1 yr and of

Gnangara 4 yr (Fig. 3).

Gubbins & Tomlinson (1986) first noted a non-simultaneous be-

haviour of the 1969 jerk by analysing monthly means of two obser-

vatories. Later, Alexandrescu et al. (1996) reported a bimodal time

behaviour for the 1969 and 1978 events with a clear geographical

pattern of jerks first appearing in the Northern Hemisphere and later

in the Southern Hemisphere, with a time lag of the order of 2 yr.

Nagao et al. (2003) applied a statistical time-series analysis proce-

dure to observatory data and found that the occurrence epochs of the

1969 and 1978 jerks around South Africa and South Pacific Ocean

are delayed several years from those in other regions. De Michelis

et al. (1998) analysed the 1991 jerk in data from 74 observatories

and also found a non-simultaneous behaviour. Results from the com-

prehensive modelling approach by using the CM4 model confirmed

once more that the 1969, 1978 and the 1991 jerks are not simulta-

neous at the Earth’s surface, with time differential delays of about

2 yr (Chambodut & Mandea 2005).

The reason why jerks are not simultaneous at the Earth’s surface

and why there are distinct delay patterns for different jerks and

magnetic components is still not well understood (Fig. 4). There

are at least two simple hypotheses that could be envisaged as an

explanation for this: the first is to consider these differential time

delays as being generated by dynamic processes in the core which do

not occur simultaneously; the second is to consider jerks generated

instantaneously in the core and the time delays caused entirely by a

conducting mantle.

The Earth’s mantle electrical conductivity reflects chemical and

Figure 2. Simple schematic of secular variation for a hypothetic component Y . The first graph shows the typical V-shape of jerks in the secular variation.

The second and third graphs show sketched the secular acceleration and the third derivative, respectively. In this case, we would have an impulse in the third

derivative at the time when the jerk occurred.

Figure 3. Secular variation (first differences of annual means) of the east component (Y ) at Eskdalemuir observatory in the UK (left-hand side), where a jerk

happens around 1969, and Gnangara observatory in Australia (right-hand side) where a jerk is clearly seen at around 1972.
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Figure 4. Secular variation of the north, east and vertical components of

Niemegk observatory, in Germany. The green lines are the secular variation

using annual means and the grey lines are the secular variation corrected for

external and induced effects by averaging of hourly predictions from model

CM4 (Sabaka et al. 2004).

physical properties of the planet’s interior, places constraints on

core–mantle coupling and controls the transmission of geomagnetic

signals from the core to the surface. Temporal variations of the exter-

nal magnetic field are commonly used to infer global 1-D models of

the mantle’s electrical conductivity. One of the earliest applications

is that of Lahiri & Price (1939), who considered the general theory

for any radially-varying conductivity in a spherical geometry and

obtained a formal solution. They applied this theory to solar diurnal

and storm-time variations to estimate the conductivities up to 1000

km depth. More recent studies such as Olsen (1999), Constable &

Constable (2004) and Kuvshinov & Olsen (2006) provide estimates

of the mantle conductivity. They mostly agree that electrical con-

ductivity rises from 0.03–0.09 S m−1 at 400 km depth to 1–2.5 S m−1

at 900 km depth (Kuvshinov & Olsen 2006), but in the lowermost

mantle induction studies estimates are still very uncertain due to lack

of resolution. This limitation is being explored by mineral physics

experiments (as Dobson & Brodholt 2000; Xu et al. 2000; Mao et al.
2004; Ono et al. 2006),which attempt to replicate the ambient con-

ditions of the deep mantle. The recent discovery of post-perovskite

phase change in the D′ ′ (Iitaka et al. 2004; Murakami et al. 2004;

Oganov & Ono 2004) stimulated even more the debate about the

lower mantle properties. However, the results of mineral physics

experiments still disagree by four orders of magnitude depending

on, for example, the considered geotherm and composition. Con-

sequently, the lower-mantle electrical conductivity is still unknown

and remains as a somewhat open question.

Geomagnetic time variations generated in the core have been used

in an attempt to infer some information about the mantle’s electrical

conductivity. Runcorn (1955) discussed the theory of the diffusion

of the magnetic field by considering the mantle as an infinite sheet of

uniform thickness and conductivity. He applied a step-like impulse

at the bottom of the slab and evaluated what the magnetic signal

observed at the top would be. Achache et al. (1980) performed the

same calculation but they use instead a ramp-function at the bottom

of the slab, assumed to be 2000 km thick. They calculated responses

for different values of electrical conductivity, and based on the 1969

jerk, they estimated the average conductivity of the slab as being

60 S m−1.

More recently, Alexandrescu et al. (1999) assumed a jerk as a

pure singularity at the core–mantle boundary (CMB) and evaluated

the effect caused by a uniformly conducting mantle. The estimated

electrical conductivity is less than 10 S m−1 on average assuming a

uniform conducting lower mantle, 2000 km thick, and an insulating

upper mantle. Nagao et al. (2003) also solved the diffusion equa-

tion in the mantle for an abrupt change occurring simultaneously at

the CMB. They believe that the later arrival of jerks in South Africa

and South Pacific Ocean may be explained by higher conductivities

beneath these regions. The electrical conductivity is assumed to be

constant apart from anomalies around South Africa and the South

Pacific Ocean. There is a contradiction between the estimated con-

ductivity in the region of South Africa by the delay times (>200

S m−1) and by the duration time of jerks (<40 S m−1). The dura-

tion of the jerk is the time it takes for the change in the slope to

be accomplished, and is very difficult to measure in the data due to

the presence of noise. In addition, if there are higher conductivities

under South Africa and the South Pacific Ocean, all jerks would be

late in these regions, a feature not seen in 1991.

In this paper, we analyse the hypothesis that jerks are simultaneous

at the CMB and that the delays are entirely caused by a conduct-

ing mantle. We assume a jerk to be an impulse in time at the CMB

with a morphology given by two synthetic models. A summary of

Backus’ (1983) theory is given in Section 2 and applied to arbitrary

1-D mantle electrical conductivity models to illustrate the physical

effect of the mantle filter. Synthetic models of jerk amplitudes of

the north, east and vertical components of the magnetic field are

presented in Section 3, where we demonstrate that a 1-D mantle

conductivity model is able to generate differential jerk time delays

at the Earth’s surface due to the mixing of harmonics. In this re-

spect it is not necessary to invoke laterally varying conductivity to

generate differential delays in different regions. In addition, since

the jerk morphology varies for different magnetic components, the
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differential time delays at the Earth’s surface also do so. We apply

this theory to a real morphology of a jerk taken from Le Huy et al.’s
(1998) spherical harmonic analysis of the 1969 jerk (Section 4).

The resulting differential time delays that would be seen in a real-

istic distribution of observatories is shown. This also leads to the

conclusion that since jerk morphologies are different in distinct jerk

events, then the pattern of differential time delays will also change

as a function of the particular event.

2 T H E O RY

To explore the hypothesis that jerk differential time delays are gen-

erated entirely by the electrically conducting mantle, the Earth is

modelled as a linear filter system—the input is represented by tem-

poral and a spatial part of the jerk at the CMB, the filter originates

from the properties of the electrically conducting mantle, and the

output is the jerk observed at the Earth’s surface. We assume that

the jerk is simultaneously generated at the CMB and simulated as

an impulse in the third time-derivative of the geomagnetic field. The

diffusive effect of the mantle is illustrated by a simple 1-D radial

conductivity model σ (r).

The transmission of the magnetic field from the core to the surface

is governed by the diffusion equation. For a non-uniform conductor,

the diffusion equation is written as,

∂B

∂t
= −∇ × (η∇ × B) , (1)

where B is the magnetic field and we consider the magnetic diffu-

sivity η as a function of the radius η = η(r ) = 1
μ0σ (r )

.

The appropriate way to solve the diffusion equation when the con-

ductor has a spherical symmetry with a radial conductivity depen-

dence is by using a toroidal–poloidal decomposition of the magnetic

field (Gubbins & Roberts 1987),

B = Bt + Bp, (2)

the vectors Bt and B p are called the toroidal and poloidal magnetic

fields, respectively, and can be written in terms of poloidal and

toroidal scalars [P(r, θ, φ, t) and T (r, θ, φ, t)],

B = ∇ × [T (r, θ, φ, t)r] + ∇ × ∇ × [P(r, θ, φ, t)r] , (3)

where r is the radius vector from the geocentre, θ is the colatitude

and φ the longitude. Only the relation between the poloidal mag-

netic field at the CMB (r = c = 3485 km) and at the Earth’s surface

(r = a = 6371 km) is considered in this paper, since the toroidal

magnetic fields are absent in the region r > a because of the insu-

lating atmosphere. In short hand notation P = P(r, θ, φ, t) and the

magnetic field B in eq. (3) can be written as

B = ∇ × ∇ × (Pr) = ∇
[

∂

∂r
(rP)

]
− r∇2P, (4)

and the curl of the magnetic field will be:

∇ × B = ∇ × [
(−∇2P)r

]
. (5)

Substituting eqs (4) and (5) into (1) we obtain the diffusion equa-

tion for the poloidal scalar:

∂P
∂t

= 1

μ0σ (r )
∇2P, (6)

which can be rewritten in terms of spherical harmonics, since the

poloidal scalar P can be expanded as

P =
∞∑

�=1

�∑
m=−�

pm
� (r, t)Y m

� (θ, φ), (7)

where pm
� (r , t) are functions in the spherical harmonic decom-

position, � is the degree, m the order and Y m
� the Schmidt quasi-

normalized spherical harmonics. If the Laplacian is represented by

∇2(.) = 1

r

∂2

∂r 2
[r (.)] − L2(.)

r 2
, (8)

and the operator L2 applied to spherical harmonics is

L2Y m
� (θ, φ) = �(� + 1)Y m

� (θ, φ), (9)

we can rewrite eq. (6) in the form

∂pm
� (r, t)

∂t
= 1

μ0σ (r )

(
1

r

∂2

∂r 2

(
r pm

� (r, t)
) − l(l + 1)

r 2
pm

� (r, t)

)
. (10)

To solve the diffusion equation in the frequency domain, one must

define the Fourier transform of the poloidal scalar

P̃(r, θ, φ, ω) =
∫ ∞

−∞
P(r, θ, φ, t)eıωt dt, (11)

and its inverse Fourier transform as

P(r, θ, φ, t) = 1

2π

∫ ∞

−∞
P̃(r, θ, φ, ω)e−ıωt dω. (12)

The Fourier equivalent to the poloidal scalar diffusion eq. (6) is

P̃ = − 1

ıωμ0σ (r )
∇2P̃, (13)

or in terms of spherical harmonics (Fourier transform of eq. 10):

p̃m
� (r, ω) = − 1

ıωμ0σ (r )r

{
∂2

∂r 2

[
r p̃m

� (r, ω)
] − �(� + 1)

r
p̃m

� (r, ω)

}
.

(14)

To illustrate the effect of an electrical conductor we adopt a 1-D

mantle model that increases with depth as used by Lahiri & Price

(1939):

σ (r ) = σc

( c

r

)2γ+2

, (15)

where σ c is the electrical conductivity at the CMB and γ a positive

constant. Two radial models are created, following eq. (15): the first

is a weaker conducting model with σ c = 100 S m−1 and γ = 8 and

the second a very strong conductor with σ c = 3000 and γ = 11,

both shown in Fig. 5.

In the weakly conducting model, the electrical conductivity at the

surface is 0.0019 and 0.0416 S m−1 at 1000 km depth, while the

highly conducting model goes from 0.0015 S m−1 at the surface up

to 0.0930 S m−1 at 1000 km. It is clear that both are not realistic

models for the Earth, but instead they are used to illustrate two

issues: how the delay times depend on the conductivity and how a

1-D mantle conductivity model can cause differential time delays at

the Earth’s surface.

By defining,

ν = 1

γ
(� + 0.5) (16)

and

zr = 1

γ
(ıωμ0σcc2)1/2

(
c

r

)γ

, (17)

and assuming the radial mantle conductivity model in eq. (15),

Gubbins & Roberts (1987) show how eq. (14) reduces to Bessel’s

equation, given by

∂2 f (z)

∂z2
+ 1

z

∂ f (z)

∂z
+

(
1 − ν2

z2

)
f (z) = 0, (18)
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Figure 5. Radial models of mantle electrical conductivity (eq. 15): the blue

curve represents a weakly conducting model and the red curve a highly

conducting model.

of order ν for f (z) = r
1
2 p̃m

� (r, ω). We suppose that γ is so large

that the electrical conductivity falls rapidly to zero with increasing

r, being zero before r = a is reached. Since r = ∞ corresponds to

z∞ = 0 (eq. 17), the Bessel function should vanish at z = 0, con-

sequently f (z) = J ν(z), where J ν is the Bessel function of order

ν.

If we let p̃m
� (r, ω) = r− 1

2 Jν(zr ) be the solution of equation (14),

for any fixed harmonic degree (�), p̃m
� (c, ω) can be regarded as the

input to the mantle which produces output p̃m
� (a, ω) at the Earth’s

surface. In the frequency domain, any input and output functions

can be related by

p̃m
� (a, ω) = G� F̃�(ω) p̃m

� (c, ω), (19)

where G� is the geometrical attenuation,

G� =
( c

a

)�+1

, (20)

and F̃�(ω) is the transfer function given by

F̃�(ω) =
(

zc

za

)ν Jν(za)

Jν(zc)
. (21)

Note that the mantle filter can be described as a combination of

geometrical and electromagnetic filters, that depend on the electrical

conductivity and on the spherical harmonic degree �, but not on the

order m.

In the time domain the output is evaluated by the convolution

(denoted∗) of the input with the mantle filter:

pm
� (a, t) = G� F�(t) ∗ pm

� (c, t)

= G�

∫ ∞

−∞
F�(t − t ′)pm

� (c, t ′) dt ′, (22)

where F �(t) is the impulse response function (IRF). The Transfer

Function and the IRF are related by the Fourier transform,

F̃�(ω) =
∫ ∞

−∞
F�(t)e

ıωt dt, (23)

and for zero frequency, ω = 0,

F̃�(0) =
∫ ∞

−∞
F�(t) dt, (24)

which is the area under the IRF curve. We use the same convention

as Backus (1983) that
∫ ∞

−∞ F�(t) dt = 1.

Backus (1983) demonstrated that if the electrical conductivity of

the mantle depends only on radius [σ (r )], the mantle behaves as a

causal, time-invariant, real and linear filter. There are two constants

characterizing this filter for each harmonic degree; the delay time

τ� = 1

F̃�(0)

∫ ∞

−∞
F�(t)t dt, (25)

evaluated from the first moment of the IRF curve, and the smoothing

time:

α� = 1

F̃�(0)

∫ ∞

−∞
F�(t)(t − τ�)

2 dt, (26)

equivalent to the second central moment of the IRF.

For the two radial mantle models (Fig. 5) we evaluated the IRF

for different harmonic degrees (Fig. 6) and their delay times and

smoothing (eqs 25 and 26). The most conducting model suffers

more delay and smoothing by the mantle: the delay time is of the

order of 2.5 yr for � = 1 and for the less conducting one, the delay

time is about 55 d for the same harmonic degree. One of the most

important points is that smaller harmonic degrees suffer more delay

and smoothing than higher harmonic degrees. Fig. 6 shows that for

the weaker conducting model, the time delay for � = 1 is about

55 d while for � = 5 it is of the order of 40 d.

3 S Y N T H E T I C M O D E L S

One of the characteristics of geomagnetic jerks that is not completely

understood is that the jerk arrival times are not the same for each

component of the magnetic field. To illustrate this, Fig. 4 shows

the secular variation of the north, east and vertical components of

Niemegk observatory where the 1969 jerk occurs at slightly different

times. It is also important to note that the jerks will be usually better

seen in the east component because it suffers less influence of the

magnetospheric field. In addition, the jerk time detection will depend

on the method applied, as for example, if it is detected by the fitting of

two straight lines or by more sophisticated methods, such as wavelet

analysis.

Jerk amplitudes are measured at the Earth’s surface [A(a, θ, φ)],

at magnetic observatories, and used to build global spherical har-

monic models:

A(a, θ, φ) =
L∑

�=1

�=1∑
m=0

Am
� (a, θ, φ). (27)

One important issue is that each component of the magnetic field

[X (a, θ , φ), Y (a, θ , φ) and Z (a, θ , φ)] presents a different jerk

morphology [notationX (a, θ, φ),Y(a, θ, φ) andZ(a, θ, φ) for jerk

amplitudes] since they represent components of the gradient of the

potential (V):

X = −1

r

∂V
∂θ

, Y = 1

r sin θ

∂V
∂φ

, Z = −∂V
∂r

,

where the potential can be expanded in spherical harmonics:

V(a, θ, φ) = a
L∑

�=1

�=1∑
m=0

(a

r

)�+1 (
δg̈m

� cos mφ + δḧm
� sin mφ

)
×Pm

� (cos θ )

and the coefficients δg̈m
l and δḧm

l are in nT yr−2. We consider two
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Figure 6. Impulse Response functions for the two electrical radial conductivity models, shown in eq. (15). The left plot corresponds to the higher conducting

model (σ c = 3000 and γ = 11) and the right plot to the weaker conducting model (σ c = 100 and γ = 8).

Figure 7. Power Spectrum of the two synthetic model of jerk amplitudes.

synthetic models defined in terms of their Lowes spatial power spec-

trum:

R� = (� + 1)
�∑

m=0

[(
δg̈m

�

)2 + (
δḧm

�

)2]
, (28)

The first model has two peaks at � = 1 and � = 2 with a truncation

degree L = 2, while the second model presents three peaks at � =
2, 5 and 8 and L = 8 (Fig. 7). Both models were built with a power

spectrum with peaks of R� = 1, where each coefficient (δg̈m
� and

ḧm
� ) of each harmonic degree has the same value. For example, in

the case of the two peaked model, the three non-zero coefficients of

� = 1 are all equal to 0.40825 and the five non-zero coefficients of

� = 2 are equal to 0.25820 which gives as a result two peaks R1 = 1

and R2 = 1. The synthetic spherical harmonic models are shown in

Fig. 8 for the north (X ), east (Y ) and vertical (Z) components of the

magnetic field. We used as an example the highly conducting model

in Fig. 5 (σ c = 3000 and γ = 11) and calculated the time delays

of the two synthetic morphology models (Fig. 9). It is clear that

the patterns of time delays of X , Y and Z components are different

depending on their morphologies. This would explain why jerks are

not seen at the same time in different components. If there is more

mixing of harmonics, the jerk morphology will be more complex as

also will be the pattern of time delays (see comparison in Fig. 9).

4 G E O P H Y S I C A L A P P L I C AT I O N

Let the input be written in a general form as δ p̈m
� (c, t) =

δ(t)Am
� (c, θ, φ), where δ(t) is the Dirac delta function, and eq. (22)

becomes:

δ p̈m
� (a, t)Y m

� (θ, φ) = G�Am
� (c, θ, φ)

∫ ∞

−∞
F�(t − t ′)δ(t ′) dt ′

= G�Am
� (c, θ, φ)F�(t).

(29)

Spherical harmonic models are constructed by using measurements

of jerk amplitudes at the Earth’s surface. However, to obtain the input

model at the CMB [Am
� (c, θ, φ)], the mantle is assumed initially to

be an insulator and a downwards continuation, from the surface to

the CMB, is applied:

Am
� (c, θ, φ) = Am

� (a, θ, φ)
(a

c

)(�+1)

. (30)

There is no inconsistency in considering at first the mantle as an in-

sulator and then in solving the forward problem assuming a mantle

as a conductor. The reason is that the mantle filter does not mod-

ify jerk amplitudes because
∫ ∞

−∞ F�(t) dt = 1, it only delays and

smoothes the input jerk. In addition, when we convolve the input

with the IRF (eq. 29), an upward continuation or geometrical at-

tenuation (G�) is applied. Therefore, both downward and upward
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Figure 8. Synthetic spherical harmonic models evaluated from the synthetic models (Fig. 7) at the core–mantle boundary. The synthetic model with two peaks

in the power spectrum is shown in (a) for the north component of the magnetic field (X ), in (b) for the east component (Y ) and in (c) for the vertical component

(Z). The three peaked synthetic model is shown in (d) for X , in (e) for Y and in (f) for Z. The colour scale in in nT yr−2.

Figure 9. Results of the forward modelling calculation of time delays for the two-peaked model (a, b, c) and for the three-peaked model (d, e, f) by using the

highly conducting model. In (a) and (d) the time delays are for the north component of the magnetic field (X ), in (b) and (e) for the east component (Y ) and

in (c) and (f) for the vertical component (Z). The colour scale is in years and the red would mean late jerks, while the blue earlier jerks. The areas with grey

colour correspond to locations where the time delay could not be detected because of zero jerk amplitude (see Fig. 8).
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continuations cancel out. By using eqs (29) and (30):

δ p̈m
� (a, t)Y m

� (θ, φ) =
(

c

a

)�+1

Am
� (c, θ, φ)F�(t)

=
(

c

a

)�+1

Am
� (a, θ, φ)

(
a

c

)(�+1)

F�(t)

= Am
� (a, θ, φ)F�(t).

(31)

This means that to solve the forward problem we can use the spher-

ical harmonic model of jerk amplitudes at the surface [Am
� (a, θ, φ)]

and ignore the geometrical attenuation, instead of using the model

at the CMB.

In this section, Backus’ (1983) mantle filter theory is applied

to two real geomagnetic jerk morphologies (east component) of

the 1969 jerk taken from Le Huy et al. (1998) who analysed 123

observatories and of the 2003 jerk taken from Olsen & Mandea

(2007) who used CHAMP satellite data (Figs 10 and 11). The trun-

cation degree used by Le Huy et al. (1998) was taken as L = 4,

and for each spherical harmonic degree we evaluated the associ-

ated jerk amplitude model (Fig. 10), while for Olsen & Mandea

Figure 10. Spherical harmonic model obtained from Le Huy et al. (1998) of the east component of the 1969 geomagnetic jerk at the Earth’s surface (a).

Spherical harmonic models of each harmonic degree at the Earth’s surface for: � = 1 (b), � = 2 (c), � = 3 (d) and � = 4 (e).

Figure 11. Morphology of the 2003 geomagnetic jerk for the east component obtained from Olsen & Mandea (2007). Their model is truncated to spherical

harmonic degree L = 14.
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Figure 12. In (a) the Impulse Response Function multiplied by the amplitude value for each harmonic degree (�), of the location corresponding to L’Aquila

magnetic observatory (Italy). By comparison with Fig. 10 it is possible to check that in Italy, for � = 1 and � = 4 the amplitudes are negative, while for � = 2

and � = 3 the amplitudes are positive. The sum of these curves result in the Composite Impulse Response Function (b).
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Figure 13. Results of the forward model for time delays of the 1969 jerk of the Y component using Le Huy et al. (1998) spherical harmonic model of the

1969 jerk (Fig. 10) on the top map with a mean time delay of 2.289 yr and Olsen & Mandea (2007) model for the 2003 jerk (Fig. 11) with a mean time delay of

2.252 yr on the bottom map. In both models a highly electrically conducting mantle model (Fig. 5) was used. The yellow areas correspond to extremely high

time delay values, blue bars represent early jerks where the time delay shown on the vertical scale is to be subtracted from the average and red bars are late

jerks, where the values of the vertical scale are to be added to the average. The stars are at the location of observatories used as example in Fig. 14.
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c

a

b

Figure 14. Synthetic jerks in the case of an insulating mantle (black ‘V’ shape) and in the case of a conducting mantle (red line), which is the result of

the convolution between the CIRF of each observatory (in the right column) and the input jerk at the CMB. These results consider a high mantle electrical

conductivity model (in Fig. 5 for σ c = 3000 and γ = 11) and the jerk morphology of Le Huy et al. (1998) (in Fig. 10). Different observatory locations are

considered to illustrate the delay and smoothing caused by a hypothetic electrical conducting mantle: (a) Niemegk with a positive CIRF, (b) Vassouras with a

negative CIRF and (c) Addis Ababa (AAE) with an oscillatory CIRF. The amplitudes of these hypothetic jerks are roughly the same as the real ones.

(2007) the truncation degree was taken as L = 14. Conversely,

we assume an unrealistic highly conducting model for the man-

tle, as shown in Fig. 5. The aim of this section is to demonstrate

that the same arbitrary 1-D electrical model is able to generate

differential time delays at the surface at a realistic distribution of

observatories.

By having both jerk amplitudes and IRF for each � we can intro-

duce the Composite Impulse Response Function [CIRF, F(r , θ , φ,

t), in short notation F(t)], which is the sum of the IRF [F �(t)]
multiplied by jerk amplitudes [Am

� (r, θ, φ)], for each harmonic

degree:

F(t) =
L∑

�=1

�∑
m=0

Am
� (a, θ, φ)F�(t). (32)

It is obvious that since jerk amplitudes vary spatially, the CIRFs

will also do so (eq. 32). If we look at one observatory location for

Le Huy et al.’s model, for example L’Aquila Observatory (Italy),

we can note how a CIRF is generated by the linear combination of

the IRFs multiplied by the amplitude of that location, for each �

(Fig. 12).

By evaluating the CIRF of each location we can measure its delay

time by combining eqs (25) and (32):

τ = 1

F̃(0)

∫ ∞

−∞
F(t)t dt

= 1

F̃(0)

L∑
�=1

�∑
m=0

Am
� (r, θ, φ)

∫ ∞

−∞
F�(t)t dt

= 1

F̃(0)

L∑
�=1

τ�

�∑
m=0

Am
� (r, θ, φ), (33)
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where,

F̃(0) =
∫ ∞

−∞
F(t) dt

=
L∑

�=1

�∑
m=0

Am
� (r, θ, φ)

∫ ∞

−∞
F�(t) dt

=
L∑

�=1

�∑
m=0

Am
� (r, θ, φ). (34)

As the CIRFs vary spatially it is a straightforward conclusion that

time delays (τ ) will also be different at each location (eq. 33). We

can then evaluate τ , using Le Huy et al.’s (1998) spherical model

and the same 1-D highly conducting mantle model (Figs 10 and 5),

in different locations. The result is presented in Fig. 13 for a typical

distribution of observatories, where the blue bars would correspond

to early jerks and red bars to late jerks. For instance, in Europe the

bars are small because the time delay values are close to the mean

delay time. In this example, the differential delays are of the order

of 2 yr (see vertical scale in Fig. 13). However, it is important to

stress that these results should not be compared with real differen-

tial delays measured in observatories because we are assuming an

arbitrary mantle electrical model and also because small changes

in the spherical harmonic model of jerk amplitudes can cause sub-

stantial differences in the pattern of time delays. We also applied

the high conducting mantle model to the 2003 jerk morphology (Y
component) and we found differential time delays of the order of

3 yr. The 2003 jerk was reported to be concentrated near 90◦E, with

maximum jerk strength at about ±30◦ latitude and with small dif-

ferential time delays of the order of a month. By the application of

this forward approach we found also very small differential delays

in this area.

Some examples of CIRF and the resulting jerk at the surface are

shown in Fig. 14 for the location corresponding to the three obser-

vatories shown in Fig. 13. The extremely high values of time delays

(yellow area in Fig. 13) are caused by an oscillatory CIRF, as shown

in Fig. 14 for the location corresponding to Addis Ababa (AAE)

observatory. The estimated time delays in oscillatory CIRFs have

extremely high values because when the area under the CIRF curve

is close to zero [F̃(0) ∼ 0] then τ values will be also extremely high

(see eq. 33). These anomalous values of time delays coincide with

locations of zero amplitude shown by Le Huy et al. (1998) spherical

harmonic model (Fig. 10). Locations of jerk zero amplitude would

mean that the jerk could not be observed and therefore time delays

could not be measured.

5 C O N C L U S I O N

We applied Backus’ (1983) mantle filter theory and verified that the

mantle filter acts differently on each harmonic degree. The mixing

of harmonics varies with location, depending on the jerk morphol-

ogy at the Earth’s surface. As a consequence, the arrival times of

geomagnetic jerks that are measured by the first moment of the com-

posite impulse response curve, will be different at each location. To

illustrate that, we used an arbitrary 1-D radial conducting model of

the mantle first applied to two synthetic models of jerk morphology

and then to the 1969 and 2003 jerk morphologies obtained from Le

Huy et al. (1998) and Olsen & Mandea (2007).

This work demonstrates that: (1) assuming a simultaneous jerk at

the CMB, a 1-D mantle conductivity model is able to generate jerk

differential time delays at the Earth’s surface; (2) synthetic examples

of jerk morphology of the X , Y and Z components demonstrated that

the pattern of time delays would be different. This would explain why

jerks are not seen in observatory data at the same time in different

components of the magnetic field and (3) the application of this

theory to the 1969 and 2003 jerk morphologies showed that it would

also be a natural consequence to have different time delays for each

jerk. It is clear that the pattern of time delays at the Earth’s surface

it is very sensitive to the input model of jerk morphology.

We used two unrealistic mantle conductivity profiles for the Earth,

however they illustrated that the observed differential time delays

of the order of 2 yr seems to require a highly electrically conduct-

ing mantle. The future work involves solving the inverse problem

to obtain some constraints on mantle electrical conductivity models

based on the observation of differential time delays at the Earth’s sur-

face. We can then compare our results with conductivity estimates

based on information given by high-pressure experiments simulat-

ing the conditions of the deep mantle and with induction studies

which mostly estimate the upper-mantle conductivity.
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