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Abstract

Objective: Angiotensin II (Ang II), endothelin-1 (ET-1) and reactive oxygen species (ROS) have been implicated in the development of
pathologic changes associated with obesity including hypertension and atherosclerosis. The aim of this study was to investigate the effects of
dietary fat content on vasoreactivity and receptor expression at the level of gene and protein expression.
Methods: C57BL/6 mice were fed diets of normal (Control, 12.3% kcal from fat), high (HF, 41% kcal from fat) and very high (VHF, 58%
kcal from fat) fat content for 15 weeks. Glucose tolerance tests were performed, and aortic rings were exposed to ET-1 (0.01–300 nM) and
Ang II (100 nM) in the presence of L-nitro-arginine-methyl ester (L-NAME; 300 μM). Gene and protein expressions of angiotensin and
endothelin receptors were examined by real-time PCR and immunoblotting, respectively. The effects of diet on responses to acetylcholine
(ACh 0.1–300 μM), in the absence or presence of L-NAME, and to exogenous ROS/UOH were also investigated.
Results: Both high fat diets similarly impaired glucose tolerance (Pb0.05). Increasing dietary fat augmented contractions to Ang II in a step-
wise manner (Pb0.05). Conversely, increasing dietary fat had no effect on contractions to ET-1. Exposure to ROS/UOH resulted in a rapid
vasodilation that was markedly augmented in a step-wise manner with increasing dietary fat (Pb0.05). Endothelium-dependent relaxation to
ACh was unaffected whereas vasoconstriction to high concentrations of ACh was enhanced in VHF animals (Pb0.05 vs. control). Gene
expression of the AT1B receptor was increased in the aorta of VHF mice, and aortic ETA receptor protein expression was increased after both
high fat diets.
Conclusions: These findings demonstrate that changes in dietary fat intake modulate vascular reactivity in response to Ang II and ROS, as
well as expression of vascular angiotensin and endothelin receptors. Dietary fat intake may thereby directly affect cardiovascular risk.
© 2006 European Society of Cardiology. Published by B.V. All rights reserved.
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1. Introduction

Dietary fat intake is a major determinant of the dramatic
increase of obesity world-wide during the past two decades
[1]. Obesity increases cardiovascular risk, significantly alters
metabolic and cardiovascular function, and is associated
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with increased risk for diabetes, hypertension, and athero-
sclerosis [2,3]. Inflammation, vascular remodeling, and
changes in vascular reactivity play a central role in the
pathogenesis of these diseases [4–6].

Angiotensin II (Ang II) has been implicated in the
development of hypertension and atherosclerosis [7,8]. The
effects of Ang II are mediated via two receptor subtypes, AT1

and AT2; the AT1 receptor consists of two isoforms, the AT1A

and the AT1B receptor, which are functionally and pharma-
cologically indistinguishable [8]. Angiotensin II activates
intracellular signalling pathways, primarily through the AT1
ed by B.V. All rights reserved.
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Table 1
Major macronutrient constituents of diets given in percent of kcal

Diet Control High fat Very high fat

Protein 22.4 17 16.4
Carbohydrate 65.4 43 25.5
Fat 12.3 41 58
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receptor, which promote atherosclerosis and hypertension
through formation of reactive oxygen species (ROS) [9,10],
inflammation [11,12], activation of cell growth [13], oxida-
tive modification of lipoproteins [14], and by impairing
endothelium-dependent vasodilation [8,15]. AT1 receptor
expression is increased in vascular smooth muscle cells of
hypertensive patients [10]. In addition to its direct effects on
the vasculature, Ang II also stimulates production of other
vasoactive factors including endothelin-1 (ET-1) [16], a po-
tent vasoconstrictor and mitogen [17] that binds to endo-
thelin A (ETA) and endothelin B (ETB) receptors [18]. In
pathological conditions such as atherosclerosis, ETA recep-
tors contribute to disease-progression [19,20]. Additionally,
Ang II and ET-1 increase ROS generation [21,22], which
include superoxide anion (O2

−) and hydroxyl radical (UOH).
Changes in the vascular expression and/or activity of

Ang II, ET-1 and ROS have been demonstrated in obesity,
and preceed pathological changes associated with obesity
[23–26], which in humans is often due to excessive dietary
fat intake [1]. The aim of the current study, therefore, was to
investigate the effect of diets of different fat content (41%
and 58% fat) on vascular activity of Ang II and ET-1 and the
expression of their receptors in fat-fed mice, a commonly
used model of human obesity [27]. Moreover, the effects of
ROS/UOH, and acetylcholine in precontracted aortic rings
were investigated.

2. Methods

2.1. Animals and dietary treatments

Healthy male mice (C57BL/6, Charles River, Sulzfeld
Germany) were housed in the institutional animal facilities
on a 12:12-h light–dark cycle, and animals had free access to
food and water. Housing facilities and experimental proto-
cols were approved by the local authorities for animal
research (Kommission für Tierversuche des Kantons Zürich,
Switzerland) and conform to the Guide for the Care and Use
of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised
1996). Mice were randomly assigned to one of the following
diets (n=10–12 mice/group): control (12.3% of total kcal
from fat, Kliba Nafag 3430, Kaiseraugst, Switzerland), high
fat (HF, 41% of total kcal from fat, Research Diets D12079B,
New Brunswick, NJ), and a diet containing very high
amounts of fat (VHF, 58% of total kcal from fat, Research
Diets D12331) for 15 weeks. The macronutrient composi-
tions of the three diets are reported in Table 1. At the end of
the treatment, mice were anesthetized (xylazine: 100 mg/kg
body weight; ketamine: 23 mg/kg BW; and acepromazine:
3.0 mg/kg BW, i.p.), and exsanguinated via cardiac puncture.
Blood was centrifuged at 5000 rpm at 4 °C for 15 min and
plasma was stored at −80 °C.

2.2. Metabolic parameters and lipid measurements

In the week of the experiment mice were fasted overnight
for 14 h, weighed, and venous blood was obtained from the
tail vein (0 min) for baseline glucose measurements. Mice
were subsequently injected (i.p.) with 2 mg/g BW D-glucose
and blood was collected at 5, 10, 15, 30, 45, 60, 90, and
120 min. Blood glucose was determined with an AccuChek
Advantage glucose meter (Roche Diagnostics, Switzerland).
Plasma lipoproteins were determined enzymatically using a
Cobas Integra 800 autoanalyzer (Roche Diagnostics, Rot-
kreuz, Switzerland), as previously described [28].

2.3. Vascular function studies

The thoracic aorta was isolated and placed in cold Krebs
Ringer bicarbonate solution (in mmol/L: NaCl 118.6; KCl
4.7; CaCl2 2.5; MgSO4 1.2; KH2PO4 1.2; NaHCO3 25.1;
EDTANa2Ca 0.026; glucose 10.1), dissected free of connec-
tive tissue under a microscope (Olympus SZX9, Volketswil,
Switzerland) and cut into rings 3 mm in length. Special care
was taken not to damage the endothelium during this
procedure. Experiments were performed as previously de-
scribed [29]. Vascular rings were mounted onto two
tungsten wires (100 μm) and transferred to water-jacketed
organ baths containing Krebs solution (95% O2, 5% CO2 at
37 °C, pH 7.4) and connected to force transducers (Hugo
Sachs Elektronik, March-Hugstetten, Germany). Resting
tension was gradually increased to the optimal level as
previously determined in this laboratory (1.75 g) and aortic
rings were repeatedly exposed to 100 mmol/L KCl until a
stable response was achieved.

2.4. Vascular responses to angiotensin II and endothelin-1

Aortic rings were exposed to Ang II (100 nmol/L) [30] or
ET-1 (0.01–300 nmol/L) [31] in the presence of the nitric
oxide synthase inhibitor L-nitro-arginine methylester (L-
NAME, 300 μmol/L) preincubated for 30 min.

2.5. Effect of ROS/UOH on precontracted aortic rings

Aortic ringswere preincubatedwith L-NAME (300μmol/L)
for 30 min. The vascular response to exogenously generated
reactive oxygen species (ROS), predominantly consisting of
hydroxyl radical (UOH) was then investigated by simulta-
neous addition of vitamin C and Fe2+ (100 μmol/L each) [32]
to rings of aorta preconstricted with phenylephrine to 50% of
the KCl-induced contraction, as previously described [33].
The generation of hydroxyl radicals in the bath was con-
firmed by addition of terephthalic acid (TPA, 2.5 mmol/L).
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Table 2
Primers used for amplification of a specific cDNA fragment encoding for
ETA receptor, ETB receptor, AT1A receptor, AT1B receptor, AT2 receptor and
β-actin

Gene
accession number

Forward primer
reverse primer

Product size
(bp)

ETA receptor 5′-GAAGGACTGGTGGCTCTTTG-3′ 149
BC_008277 5′-CTTCTCGACGCTGTTTGAGG-3′
ETB receptor 5′-CGGTATGCAGATTGCTTTGA-3′ 189
NMU_32329 5′-CACCTGTGTGGATTGCTCTG-3′
AT1A receptor 5′-AGCCTGCGTCTTGTTCTGAG-3′ 114
NM_177322 5′-ACTGGTCCTTTGGTCGTGAG-3′
AT1B receptor 5′-GCCTGCTAGTGACATGATC-3′ 133
NM_175086 5′-GTACAGTCCAGAGTCCTTTC-3′
AT2 receptor 5′-CGCAGTGTGTTTAGAGTTCCC-3′ 146
NM_007429 5′-AACCAATGGCTAGGCTGAC-3′
β−Actin 5′-CGTGCGTGACATCAAAGAGA-3′ 180
X_03672 5′-CCCAAGAAGGAAGGCTGGA-3′

Fig. 1. Plasma glucose levels at base line (0 min) and at indicated time points
after i.p. injection of 2 mg/g BW D-glucose (glucose tolerance test). Mice
were fed diets containing control (C, 12.3%), high fat (HF, 41%) and very
high fat (VHF, 58%) kilocalories from fat for 15 weeks. Data are means±
standard error (n=5, C; n=6, HF; n=12, VHF). ⁎Pb0.04 vs. control diet.
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Hydroxylation of TPA yields a stable and highly specific
isomer (monohydroxyterephthalate, TPA-OH) not directly
produced from superoxide or hydroperoxides [34]. Fluores-
cence of TPA-OH was measured using a SpectraMax M2
(Molecular Devices, Basel, Switzerland) at 326 nM and
432 nM excitation and emission wavelength, respectively
[35]. Addition of TPA to Krebs solution containing vitamin
C and Fe2+ yielded 1804±178 versus 0.002±6.6 relative
fluorescence units for Krebs solution alone (Pb0.005).

2.6. Endothelium-dependent and -independent vasodilation

Rings were precontracted with phenylephrine (50% of
KCl) and endothelium-dependent vasodilation was investi-
gated using acetylcholine (ACh, 0.1 nmol/L–3 μmol/L) in
the presence or absence of L-NAME (300 μmol/L). Endo-
thelium-independent vasodilation was investigated using the
nitric oxide donor sodium nitroprusside (SNP, 10 μmol/L).

2.7. Real-time PCR

Aortic tissue was snap-frozen in liquid nitrogen and stored
at −80 °C. Tissue was pulverized and total RNA was ex-
tracted using the silica-based RNeasey Mini™ Kit (Qiagen,
Hilden Germany). 150 ng RNAwas reversed transcribed with
Quantitect Reverse Transcription Kit™ (Qiagen, Hilden
Germany), including a genomic DNA digestion step. Expres-
sion levels of the murine genes encoding for ET-1 receptors
(ETA and ETB receptors) and AT1A, AT1B and AT2 receptors
were determined by real-time PCR as described [36]. Real-
time PCR experiments were run on the iQ™ iCycler (Bio-
Rad, Reinach, Switzerland) using specific cDNA primers
(Microsynth, Balgach, Switzerland, Table 2). Murine β-actin
was used as a house-keeping control.

2.8. Western blot analyses

For protein expression analysis, three pieces of tissue
from each group were pooled and homogenized in RIPA
lysis buffer. Equal amount of protein lysates were separated
on an 8–16% SDS-PAGE gel and immunoblotted with anti-
angiotensin receptor type I antibody and anti-ET-1 receptor
antibody. Equal amount of protein loading was controlled by
probing with an anti-p42/p44 antibody [37].

2.9. Materials and antibodies

ET-1 and L-NAME were supplied by Alexis Corp
(Lausanne, Switzerland). All other chemicals were supplied
by Sigma Chemicals Co. (Buchs, Switzerland). Antibodies
against angiotensin II type I receptor, against p42/p44 were
obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA, USA) and anti-ET-1 receptor antibody from BD
Transduction Laboratories (Franklin Lakes, NJ, USA).

2.10. Statistical analyses

Data are given as mean±SEM and n denotes the number
of animals used. Contraction is expressed as a percentage of
contraction to100 mmol/L KCl, and dilations are given as a
percentage of the maximal contraction. EC50 values (as
negative logarithm pD2) were calculated with non-linear
regression analysis and the area under the curve (AUC) was
calculated for each individual curve using SigmaPlot (SPSS
Inc. Chicago, IL). Data were analyzed using ANOVA for
repeated measurements with Bonferroni correction, the un-
paired Student's t-test or the Mann–Whitney U test, when
appropriate. A P value b0.05 was considered significant.

3. Results

3.1. Weight gain and metabolic studies

After 15 weeks mice fed a control diet had gained 11±1 g
of body weight, while the mice fed high fat and very high fat
diets gained 17±1 g and 21±1 g, respectively (Pb0.004 C
vs. HF, Pb0.001 C vs. VHF, Pb0.04 HF vs. VHF). While
the feeding of high fat diets for 15 weeks did not alter fasting



Fig. 2. Effects of dietary fat content on contraction toAng II (100 nmol/L) in aorta
(A). Dietary fat content increased vasoconstrictor responses to Ang II in aorta.
n=8–15/group. ⁎Pb0.04 vs. control. †Pb0.04 vs. high fat. Effects of dietary
fat content on contractions to ET-1 in aorta (B). Increasing dietary fat and animal
weight had no effect on ET-1-induced contractions in the aorta. n=6–12/group.

Fig. 3. Endothelium-dependent vasodilation to acetylcholine (ACh) in the
aorta, in the absence (A) or presence (B) of L-NAME (300 μmol/L). While
increasing dietary fat had no effect on vasodilation to ACh, vasoconstriction
at high concentrations of ACh (≥1 μmol/L) in the presence of L-NAME was
markedly increased in very high fat diet fed animals. n=8–12/group.
⁎Pb0.05 vs. control, †Pb0.05 vs. high fat.
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glucose (in mmol/L, C=5.5±0.2, HF=5.2±0.4, VHF=5.9±
0.3), glucose tolerance was significantly impaired in both the
41% (HF) and 58% fat (VHF) diet fed mice (Pb0.04 versus
control, Fig. 1). Plasma cholesterol levels similarly increased
after both high fat diets (in mmol/L, C=2.1±0.1, HF=3.1±
0.2, VHF=3.2±0.2, Pb0.001 HF and VHF vs. C).

3.2. Contractility to angiotensin II and endothelin-1

In the aorta, increasing dietary fat content enhanced
contractions to Ang II in a concentration-dependent manner
(Pb0.04 HF vs. C; Pb0.002 VHF vs. C; Pb0.04 VHF vs.
HF, Fig. 2A). Endothelin-1 caused concentration-dependent
contractions that were unaffected by 15 weeks of high fat
diets (Fig. 2B). The AUC values of contractions and sen-
sitivity to ET-1 were also unaffected (Table 3).
Table 3
pD2 values and area under the curve values (AUC, a measure of overall
contractility) were calculated for each dose–response curve to ET-1 and data
were averaged

Diet Control High fat Very high fat

Aorta
pD2 8.4±0.04 8.5±0.1 8.5±0.1
AUC 17±3 13±2 18±3
3.3. Endothelium-dependent and -independent vasodilation

Acetylcholine caused concentration-dependent relaxa-
tions, which was unchanged with increasing dietary fat con-
tent (Fig. 3A), and no difference in endothelium-independent
Fig. 4. Dilator responses to reactive oxygen species (ROS/UOH) in vascular
rings precontracted with phenylephrine (to 50% of KCl). Increasing dietary
fat content enhanced the vasodilation. n=8–12/group. ⁎Pb0.05 vs. control.
†Pb0.05 vs. high fat.



Fig. 5. Effects of dietary fat content on relative Ang II receptor mRNA expression levels in aorta. Increasing dietary fat content had no effect on AT1A receptor
expression, but increased the expression of AT1B receptor expression in the very high fat diet group. n=4–6/group. ⁎Pb0.05 vs. control. Effects of dietary fat
content on relative ET-1 receptor mRNA expression levels in aorta (B). Increasing dietary fat content had no effect on ETA or ETB receptor expression. The
expression of ETA receptors was 3-fold greater than that of ETB receptors (Pb0.05). n=4–6/group. †Pb0.03 ETA vs. ETB within a treatment group.
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vasodilation to SNP between groups was observed (data not
shown). Inhibition of nitric oxide synthase with L-NAME
completely abolished the vasodilator response to ACh
(Fig. 3B). Interestingly, at high concentrations (≥1 μM,
Fig. 3B) ACh caused contractions in the VHF group
(Pb0.004 versus control) that were not seen in either the
control or HF group.

3.4. Vascular responses to reactive oxygen species

Exogenously added ROS/UOH caused vasodilation in
precontracted aortic rings (Pb0.0001 vs. untreated). In-
creasing dietary fat augmented the vasodilator responses to
ROS/UOH independently of nitric oxide synthesis, which
Fig. 6. Effects of dietary fat content on AT1 and ETA receptor protein
expression in aorta. Tissue extracts were analyzed by immunoblotting with
antibodies against AT1 receptor, ETA receptor and ERK1/2 as a loading
control. Representative immunoblots are shown.
was inhibited by L-NAME (Pb0.05 C vs. HF and VHF,
Fig. 4).

3.5. Gene expression of angiotensin and endothelin receptors

In mice fed a VHF diet vascular AT1B receptor gene
expression was increased compared to control diet fed mice
(Pb0.03 VHF vs. C, Fig. 5B). AT1A receptor gene expres-
sion, however, was similar between groups (Fig. 5A). The
AT2 receptor gene could not be reliably quantified as it was
expressed at very low levels close to the detection limit
(amplification began around 34 PCR cycles, data not shown).

Endothelin A (ETA) and endothelin B (ETB) receptors
were expressed in all samples investigated, and gene ex-
pression levels were similar between groups (Fig. 5C and D).
ETA receptor gene expression was approximately 3-fold
higher than that of the ETB receptor in each group (Pb0.03 C
and VHF, P=0.067 HF).

3.6. Protein expression of angiotensin and endothelin
receptors

Immunoblot analysis of AT1 receptor indicated no
differences in expression between dietary groups (Fig. 6).
However, protein expression analysis of ETA receptor
indicated an increase in receptor expression in the HF- and
VHF diet fed mice as compared to controls (Fig. 6).
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4. Discussion

The current study demonstrates, for the first time,
differential effects of fat intake on aortic vascular reactivity
to and receptor expression of vasoactive factors despite
similar changes in glucose tolerance and plasma cholesterol.
Increasing fat intake caused a step-wise increase in the
vasoconstriction to Ang II and acetylcholine, while the
vasodilator response to ROS was enhanced. High dietary fat
intake was associated with increased vascular AT1B and ETA
receptor expression.

Angiotensin II plays an important role as a trophic factor in
the development of hypertension [38], and enhanced
vasoconstrictor effects to Ang II and increased Ang II plasma
levels have been reported in obese patients and animal
models [24,39,40]. In the present study we observed that fat
intake dose-dependently augments aortic contractile
responses to Ang II, which in young mice is largely mediated
by cyclooxygenase-1 [30], and similar changes were seen in
the renal artery (Mundy and Barton, unpublished observa-
tion, 2006). Additionally, aortic AT1B receptor gene expres-
sion increased in VHF mice as compared to controls, while
AT1A receptor gene expression remained unchanged. In mice,
the AT1B receptor mediates Ang II-induced vasoconstriction
[41], and activation of the AT1 receptor has been implicated in
the development of atherosclerosis and hypertension [8]. The
AT1 receptor is also upregulated in leptin-deficient rats that
spontaneously develop obesity [42]. The data of the present
study suggest that enhanced sensitivity of the vasculature to
Ang II and the increased receptor expression upon increasing
dietary fat content are likely to facilitate the development of
hypertension and vascular disease due to obesity.

Angiotensin II induces vascular ET-1 expression in vivo
[16], and circulating levels of ET-1 are increased in obese
patients [23,24] and in the kidney of obese mice [24]; we
have now investigated the effects of different amounts of
dietary fat intake for 15 weeks on the vascular responses to
ET-1. Vascular contractions to ET-1 were unchanged after
15 weeks with either of the high fat diets and no effect on the
expression of both ETA and ETB receptor mRNA was
observed. In contrast, at protein level, ETA receptor ex-
pression was increased in HF and VHF groups as compared
to the control group. This increase in protein expression is
likely to be mediated by post-translational modifications
and/or changes in protein stability. The results of other
studies have shown variable results depending on a number
of factors, especially the duration of dietary intervention and
vascular bed studied. For example, while increased contrac-
tions to ET-1 were observed in the aorta of mice fed a high fat
diet for 30 weeks, contractions in the carotid artery were
unaffected [29]. In the present study maximal contraction to
ET-1 was also unaffected by 15 weeks of either the HF or
VHF diet in both the renal and femoral arteries (Mundy and
Barton, unpublished data, 2006). The shorter duration of
dietary treatments used in the current study (15 vs. 30 weeks)
and the vascular bed examined may explain the observed
differences [29]. When assessing contractile responses, pa-
rameters such as receptor density, receptor affinity, signaling
cascades mediating contraction (including calcium flux)
could not be studied in our experimental set-up. However,
endothelin is a potent trophic factor stimulating cell growth
via the ETA receptor [43]. Thus, upregulation of the ETA
receptor could promote accelerated myocardial and vascular
hypertrophy, which are also known to occur in animals and
patients with obesity [44].

Angiotensin II [9] and ET-1 [22] are both known to induce
vascular generation of ROS, which include superoxide anion
(O2

−) and hydroxyl radical (UOH). In the present study we
investigated the effects of ROS/UOH on the vasculature and
changes of the responses by increasing fat intake. Although
UOH is commonly perceived to be an “injurious” ROS
[45,46], generated by the interaction of superoxide, hydrogen
peroxide and iron (Fenton and Haber-Weiss Reactions), we
have recently found that constitutively generated UOH also
has vasodilatory effects, which are enhanced in the aorta of
genetically obese mice [33]. In the current study, the dilatory
effect of ROS/UOH increased depending on dietary fat,
suggesting that high fat intake and/or obesity, enhance
vasodilating properties of ROS/UOH. Remarkably, the
vasodilator response to ROS/UOH was unaffected by the
inhibition of NO synthesis in all study groups. This may
represent a novel vasodilator back-up mechanism in states
associated with high fat intake and/or obesity, as well as low
NO bioactivity. In most forms of vascular diseases such as
atherosclerosis, diabetes, aging and particularly in obese
patients, bioactivity of NO is reduced, which is mimicked in
our experimental set-up by the presence of L-NAME in the
aortic rings [6,19].

No differences in the endothelium-dependent vasodila-
tion to acetylcholine were observed between groups after
15 weeks of feeding. Previous studies have demonstrated
impaired endothelium-dependent vasodilation to ACh in
aorta of mice after 30 weeks of high fat diet treatment [29],
and in aorta of rats after 2 years [47] or 8 weeks [48] of high
fat feeding. Thus, differences are possibly due to variations
in duration of dietary treatment. In the absence of nitric oxide
after L-NAME treatment in vitro, however, a marked increase
in the vasoconstriction to ACh was noted in the VHF group
as compared with the control group. The vasoconstrictor
response to ACh in mice is known to be caused by cyclo-
oxygenase-dependent prostanoids [29,49], which increase
with obesity [29]. Given our previous observation that
endothelium-dependent relaxation is impaired after 30 weeks
of high fat diet, our data suggest the possibility that changes
in prostanoid activity in the early stages of obesity deve-
lopment precede overt impairment of endothelium-depen-
dent vasodilation.

In conclusion, changes in fat intake specifically alter the
reactivity to vasoconstrictor substances and ROS/UOH,
accompanied by changes in angiotensin and endothelin
receptor expression. As glucose tolerance and cholesterol
levels were affected to a similar degree in mice fed either of
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the two high fat diets, the increase in the responses to Ang II
and ROS/UOH are likely to be directly related to fat intake.
The results suggest that, already at early stages of obesity
development, the vasculature is sensitive to functional and
expressional changes in response to modifications in dietary
fat content. In view of the growth-promoting effect of Ang II
and ET-1, and if applicable to human obesity, these results
suggest important new roles for fat intake and obesity for
vascular dysfunction and early development of cardiovas-
cular disease [50,51].
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