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Background. Invasive aspergillosis (IA) remains a leading cause of morbidity and mortality in patients receiving
allogeneic hematopoietic stem cell transplantation (HSCT). To date, no reliable immunological biomarkers for man-
agement and outcome of IA exist. Here, we investigated reconstitution of antifungal immunity in patients during the
first 12 months after HSCT and correlated it with IA.

Methods. Fifty-one patients were included, 9 with probable/proven IA. We determined quantitative and qual-
itative reconstitution of polymorphonuclear (PMN), CD4, CD8, and natural killer (NK) cells against Aspergillus fu-
migatus over 5 time points and compared the values to healthy donors.

Results. Absolute CD4 and CD8 cell counts, antigen-specific T-cell responses, and killing capacity of PMN
against A. fumigatus were significantly decreased in all patients over 12 months. In patients with probable/proven
IA, reactive oxygen species (ROS) production tended to be lower compared to patients without IA, and absolute NK-
cell counts remained below 200 cells/µL. Patients with well-controlled IA showed significantly higher ROS produc-
tion and NK-cell counts compared to patients with poor outcome.

Conclusions. This study highlights the importance of functional PMN, T-cell, and NK-cell immunity for the
outcome of IA. Larger multicenter studies should address the potential use of NK-cell counts for the management
of antifungal therapy.

Keywords. antifungal innate and adaptive immunity; HSCT; immune reconstitution; NK-cell count as immu-
nological marker.

Invasive aspergillosis (IA) remains a leading cause of
morbidity and mortality in patients receiving allogeneic
hematopoietic stem cell transplantation (HSCT) [1].
This infection occurs either early posttransplantation
during neutropenia or late due to graft-versus-host

disease (GVHD) and the required immunosuppressive
treatment [2].

Antifungal prophylaxis or treatment in high-risk pa-
tients is often ineffective due to impaired host immuni-
ty and is furthermore associated with drug interactions,
emergence of resistant fungi, toxicity, and high costs
[1, 3, 4]. Immune surrogate markers such as CD4+ cell
counts in human immunodeficiency virus–infected in-
dividuals [5] and cytomegalovirus (CMV)–specific cell-
mediated immunity in solid organ transplantation [6]
to guide treatment have not been established for pa-
tients with IA.

Innate immune cells, including macrophages and
polymorphonuclear cells (PMNs), are key players to
control fungal invasion. PMNs possess an array of

Received 9 January 2015; accepted 26 February 2015; electronically published 6
March 2015.

Correspondence: Nina Khanna, MD, Infection Biology Laboratory and Divi-
sion of Infectious Diseases and Hospital Epidemiology, University Hospital of
Basel, Hebelstrasse 20, Basel, Basel Stadt, 4031 Switzerland (nina.khanna@
usb.ch).

The Journal of Infectious Diseases® 2015;212:959–67
© The Author 2015. Published by Oxford University Press on behalf of the Infectious
Diseases Society of America. All rights reserved. For Permissions, please e-mail:
journals.permissions@oup.com.
DOI: 10.1093/infdis/jiv143

Reconstitution of Antifungal Immunity • JID 2015:212 (15 September) • 959

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85210491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nina.khanna@usb.ch
mailto:nina.khanna@usb.ch
mailto:journals.permissions@oup.com


effector functions involving reactive oxygen species (ROS)–
dependent and independent killing mechanisms [7, 8].

T cells, particularly CD4+ memory T cells, specific for differ-
ent Aspergillus antigens can be detected in the peripheral blood
of healthy individuals and HSCT recipients [9–11]. In general, T
helper (TH)1 and potentially TH17 cytokines are considered to
confer protective immunity against Aspergillus, whereas TH2 re-
sponses are deleterious [12]. Furthermore, recent studies suggest
that natural killer (NK) cells are crucial for fungal clearance
[13–16].

So far, specific reconstitution of antifungal immune respons-
es in patients after HSCT with and without IA has not been
investigated in detail. The purpose of this study was to prospec-
tively follow patients after HSCT and to obtain comprehensive
data on immune reconstitution and the functionality of PMNs,
NK cells, different TH subsets, and CD8+ T cells in order to
characterize susceptibility of these patients to IA and to identify
possible biomarkers to guide antifungal treatment.

PATIENTS AND METHODS

Patients and Healthy Blood Donors
Adult patients undergoing allogeneic HSCT with peripheral
blood stem cells at the University Hospital Basel from December
2012 to April 2013 were included. GVHD prophylaxis included
cyclosporine A, methotrexate, and Cellcept in nonmyeloablative
conditioning, and in some cases antithymoglobulin treatment.
Antifungal prophylaxis consisted of fluconazole 400 mg once
per week from conditioning to stop of immunosuppression. Pre-
emptive and therapeutic antimold treatment consisted primarily
of voriconazole 400 mg daily or higher doses according to ther-
apeutic drug monitoring, posaconazole, or liposomal amphoter-
icin B. GVHD treatment consisted of methylprednisolone 2 mg/
kg/d. Corticosteroid refractory GVHDs were treated with alemtu-
zumab. All patient characteristics and follow-up information in-
cluding occurrence of GVHD were retrospectively collected by
chart review. Ethylenediaminetetraacetic acid blood was obtained
before conditioning therapy and at day 30, 90, 180, and 360 after
allo-HSCT. Additionally, 20 healthy donors were included as
controls. The study was approved by the Ethic committee north-
west and central Switzerland. Patients and healthy donors gave
informed consent. The study was conducted in accordance
with the Declaration of Helsinki.

Definitions
Possible, probable, and proven IA cases were defined according
to the consensus definitions developed by the Invasive Fungal
Infections Cooperative Group of the European Organization
for Research and Treatment of Cancer and the Mycoses Study
Group [17].Definition of acute and chronic GVHD was accord-
ing to the consensus workshop and the National Institutes of
Health consensus criteria, respectively [18, 19].

Generation of Viable and Heat-Inactivated Fungi
Candida albicans ATCC60193 and A. fumigatus D141 were pro-
vided by Dr Reno Frei (University Hospital Basel, Switzerland)
and PD Dr Sven Krappmann (Medical Immunology Campus Er-
langen, Germany), respectively. Fungi were cultured as published
[20] and heat-inactivated directly (A. fumigatus conidia) or after 15
hours’ growth (C. albicans yeast and A. fumigatus hyphae).

Purification of PMNs and Peripheral Blood
Mononuclear Cells
PMNs and peripheral blood mononuclear cells (PBMCs) were
isolated from peripheral blood on a percoll gradient as pub-
lished [21]. PMNs were incubated overnight in Roswell Park
Memorial Institute (RPMI) 1640 medium (Gibco) with 5%
pooled human serum, and PBMCs were used directly after
isolation.

Determination of ROS and 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyltetrazolium Bromide Assay
ROS production of PMNs to A. fumigatus conidia (multiplicity
of infection [MOI] 4) or C. albicans yeast (MOI 2) was deter-
mined using luminol-enhanced chemiluminescence as de-
scribed [21].

Killing of A. fumigatus hyphae and C. albicans yeast by
PMNs was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyltetrazolium bromide (MTT) assay based on published
protocols [22]. Briefly, 3 × 104 outgrown A. fumigatus conidia
or 3 × 105 C. albicans yeast were coincubated with PMNs for
2 hours at an effector:target ratio of 5:1 or 1:5, respectively. Am-
photericin B (20 µg/mL, Sigma Aldrich) was used as positive
control. After 2 hours, PMNs were lysed and an MTT solution
(0.5 mg/mL in RPMI [Sigma Aldrich]) with 100 µM menadione
(Applichem) added for 90 minutes. Formazan formation was
quantified photometrically at 590 nm–650 nm. The hyphal dam-
age was calculated as ([optical density {OD}control −ODtest]/
ODcontrol) × 100.

Interferon-γ, Interleukin-17, and IL-4 Enzyme-Linked
Immunospot and Flow Cytometry
Interferon-γ (IFN-γ), interleukin (IL)–17, and IL-4 enzyme-
linked immunospot (ELISPOT) (Mabtech) were performed as
described [20]. PBMCs were stimulated with A. fumigatus hy-
phae, C. albicans yeast (MOI 0.05), staphylococcal enterotoxin
B (SEB; 0.5 µg/mL, Sigma Aldrich), CMV pp65 (0.05 µg/mL),
adenovirus hexon protein (0.05 µg/mL) (both from JPT Peptide
Technologies), or tetanus toxoid (7IE, Tetanol Pur, Novartis) for
72 hours. CMV pp65 was analyzed in CMV seropositive HSCT
recipients, adenovirus hexon protein in CMV seronegative.

Lymphocyte subsets were determined flowcytometrically with
anti-CD3-peridinin chlorophyll (PerCP), anti-CD4-PacificBlue,
anti-CD8-allophycocyanin, and anti-CD56 fluorescein isothiocy-
anate (all Biolegend). Data were acquired on a BD LSRFortessa
(BD Biosciences) and analyzed with FlowJo software vX.0.7.
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Reference laboratory values validated at the Diagnostic Labora-
tory Hematology of the University Hospital Basel were used.
The normal range for lymphocytes, CD4+ T cells, CD8+ T
cells, and NK cells is 900–3300, 700–1100, 500–900, and 200–
400 cells/µL, respectively.

For NK-cell proliferation, PBMCs were labeled with carboxy-
fluorescein diacetate succinimidyl ester (CFSE, Invitrogen) ac-
cording to the manufacturer’s instructions and stimulated with
A. fumigatus hyphae for 8d. NK-cell proliferation was determined
by staining with anti-CD3–PerCP and anti-CD56 phycoerythrin-
Cy7 (Biolegend).

Statistical Analysis
Comparisons between 2 groups were performed with the 2-
sided Mann–Whitney U test. P≤ .05 was considered statistically
significant. Statistical analyses were done using GraphPad Prism
6.0f and Stata 13.1 software (StataCorp LP).

RESULTS

Patients’ Characteristics
Of the 87 allogeneic HSCT performed between December 2012
and April 2013 at the University Hospital of Basel, 51 (59%) pa-
tients were included in the present study. All patients were en-
rolled before conditioning except for 1 patient with IA who was
included post-HSCT. Proven and probable pulmonary IA were
diagnosed in 3 and 6 HSCT recipients, respectively, and possible
pulmonary IA in 16 patients (Table 1 and Figure 1). Of the 9
patients with probable or proven IA, 4 were diagnosed before
HSCT during induction chemotherapy. These patients had per-
sisting pulmonary lesions at HSCT and were under antifungal
treatment after HSCT. One patient was diagnosed during neu-
tropenia. Four patients were diagnosed during GVHD. IA was
diagnosed 3 weeks, 10 weeks, and in 2 patients 6 months after
HSCT, respectively. IAwas diagnosed by growth of A. fumigatus
in bronchoalveolar lavage in 4 patients, by galactomannan >1.0
in bronchoalveolar lavage in 2 patients, and by histology in 3
patients (Supplementary Table 1).

Neutrophil-Mediated Killing of A. fumigatus is Decreased for up
to One Year After HSCT
First, we investigated the recovery of absolute PMN counts and
their functionality after HSCT. Absolute PMN counts were com-
parable to healthy individuals 30 days after HSCT in 91.6% of
patients, independent of fungal infection (Supplementary
Figure 1).

Production of ROS in response to C. albicans yeast and
A. fumigatus conidia was significantly decreased 30 days after
HSCT compared to healthy donors (P = .0008 and P = .052, re-
spectively). In patients without IA, ROS production normalized
90 days after HSCT but remained significantly reduced in patients
with probable/proven IA over 6 months (P = .04) (Figure 2A).

As fungal killing is dependent on oxygen-dependent as well
as oxygen-independent mechanisms, MTT assays to study
PMN killing capacity were performed. PMN killing of C. albi-
cans yeast recovered concomitantly with the improvement
of ROS production, whereas killing of A. fumigatus hyphae
remained significantly decreased up to 1 year after HSCT in
73% of patients, even in patients with recovery of ROS produc-
tion (P≤ .0086 [d30–360], Figure 2B).

In conclusion, these data show that despite normalized PMN
values, ROS production is critically impaired in patients with
IA, and PMN-mediated killing of A. fumigatus remains signifi-
cantly reduced over 1 year in all HSCT recipients.

CD8 and CD4 T-cell Recovery is Delayed in All HSCT Recipients
and Patients With IA Show Impaired NK-cell Recovery
We next analyzed the recovery of the different lymphocyte sub-
populations. Absolute CD8+ and CD4+ T-cell counts remained
below the reference values over 12 months after HSCT indepen-
dent of IA (Figure 3A and Supplementary Figure 1). NK-cell
counts recovered to normal values 30 days after HSCT in pa-
tients without IA. In patients with probable/proven IA, NK-
cell counts remained below the reference values for up to 180
days (median of 164 cells/µL compared to ≥200 cells/µL in
healthy individuals; Figure 3A).

To determine if antigen-specific cytokine secretion by differ-
ent T-cell subsets is affected after HSCT, we stimulated PBMCs
with the mitogen SEB and different fungal (A. fumigatus hy-
phae, C. albicans yeast), bacterial (tetantus toxoid), and viral
(CMV pp65, adenovirus hexon protein) antigens and deter-
mined IFN-γ, IL-17, and IL-4 secretion by ELISPOT. Mito-
gen-induced IFN-γ and IL-17 secretion was significantly
decreased over 12 months after HSCT compared to healthy in-
dividuals (for IFN-γ, P ≤ .0003 [d30–90]; for IL-17, P≤ .0091
[d30–360]), whereas IL-4 secretion showed almost normal levels.
Compared to healthy donors, antigen-specific responses were sig-
nificantly lower for all antigens and cytokines (P≤ .015) with the
exception of some patients reactivating CMV that showed high
IFN-γ responses toward CMV pp65 (Figure 3B and Supplemen-
tary Figure 2). The deficiency of antigen-specific responses was
probably at least partly due to the quantitative T-cell deficiency.
Moreover, the antigen-specific responses were not shifted toward
IL-17 or IL-4 production.

These findings show that T-lymphocyte recovery and cyto-
kine secretion is significantly impaired over 12 months after
HSCT in all patients, rendering them susceptible to various in-
fections. Low NK-cell counts may be associated with probable/
proven IA.

Patients With Well-Controlled IA Show Higher NK-cell Counts
and ROS Production Than Patients With Poor Outcome
To address the question if immunological markers differ in pa-
tients with probable/proven IA with favorable or poor outcome,
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we compared patients with recovery of IA (well-controlled IA)
(n = 5) to patients with treatment failure and poor outcome
(n = 4). Patients with well-controlled IA showed significantly
higher ROS production to A. fumigatus (P = .047 [d90]), signif-
icantly higher lymphocyte counts (P ≤ .048 [d90–360]), and
significantly higher NK-cell counts (P = .0082 [d180]) com-
pared to patients with poor outcome, suggesting that these
cells may be essential for fungal control (Figure 4A and 4B

and Supplementary Figure 3). Interestingly, of 5 patients that
developed IA after HSCT, 4 had NK-cell counts ≤66 cells/µL
before disease development, suggesting that low NK-cell counts
may predispose to IA. Additionally, in 3 of 4 patients, increasing
NK-cell numbers coincided with the decrease of fungal lesions
(Supplementary Table 1). Due to the low number of patients, it
is unclear if patients with good outcome had a better T-cell re-
sponse (Figure 4C and Supplementary Figure 3). However, 3 of

Table 1. Characteristics of Patients After Hematopoietic Stem Cell Transplantation

Patients Without IA
(n = 26)

Patients With Possible IA
(n = 16)

Patients With Probable/Proven IA
(n = 9)

Age (median, range) 45 (27–71) 46 (23–64) 55 (23–68)
Gender, male 16 (62%) 11 (69%) 6 (67%)

Underlying disease

Acute myeloid leukemia 8 (31%) 7 (44%) 4 (44%)
Acute lymphoblastic leukemia 6 (23%) 2 (13%) 2 (22%)

MDS/MPS 5 (19%) 2 (13%) 0

Plasma cell disorders 1 (4%) 2 (13%) 1 (11%)
Chronic myeloid leukemia 4 (15%) 0 0

Lymphoma 0 1 (6%) 0
Chronic lymphocytic leukemia 0 1 (6%) 2 (22%)

Others 2 (8%) 1 (6%) 0

Donor source
Matched unrelated donor 17 (65%) 11 (69%) 3 (33%)

Matched related donor 9 (35%) 5 (31%) 6 (67%)

Conditioning
Myeloablative 19 (73%) 12 (75%) 6 (67%)

Nonmyeloablative 7 (27%) 4 (25%) 3 (33%)

Antithymocyte globulin 10 (38%) 10 (63%) 2 (22%)
GVHDa

Acute GVHD Grade 1 6 (23%) 1 (6%) 3 (33%)

Acute GVHD Grade 2 6 (23%) 8 (50%) 0
Acute GVHD Grade ≥3 3 (11%) 3 (19%) 5 (56%)

Antimold therapya

Voriconazole 5 (19%) 15 (94%) 6 (67%)
Posaconazole 0 0 2 (22%)

Caspofungin 5 (19%) 1 (6%) 1 (11%)

Infectious complicationsa

Other fungal infectionsb 1 (4%) 1 (6%) 3 (33%)

CMV replication 8 (31%) 8 (50%) 3 (33%)

Other viral infectionsc 0 0 1 (11%)
Bacterial infectionsd 1 (4%) 1 (6%) 2 (22%)

Immunsuppressiona

Cyclosporine A 26 (100%) 16 (100%) 9 (100%)
Corticosteroids 15 (58%) 10 (63%) 9 (100%)

Alemtuzumab 0 2 (13%) 2 (22%)

Mortality 7 (27%) 4 (25%) 5 (56%)

Abbreviations: CMV, cytomegalovirus; GVHD, graft-versus-host disease; IA, invasive aspergillosis; MDS/MPS, myelodysplastic and myeloproliferative syndrome.
a Occurred at least once during study period.
b Candida parapsilosis, Candida albicans, Candida sake.
c Human herpesvirus 6, Epstein-Barr virus.
d Enterococcus faecium, Enterococcus faecalis, Klebsiella pneumoniae.
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4 patients showed increased A. fumigatus–specific IFN-γ re-
sponses at the time of disease resolution (Supplementary
Table 1).

Influence of Corticosteroid Treatment on Immune Reconstitution
It has been previously shown that corticosteroid treatment for
GVHD management may impair PMN and T-cell function and
delay NK-cell reconstitution [23–25].We similarly saw that pa-
tients with GVHD and corticosteroid treatment tended to have
diminished ROS production against A. fumigatus compared to
patients without GVHD (P = .1 [d180]), whereas killing of
A. fumigatus was decreased in all patients independent of corti-
costeroid treatment (P≤ .022 [d180]; Figure 5A). Corticosteroids
had no significant influence on T-lymphocyte recovery and cyto-
kine production over 1 year after HSCT compared to patients
without GVHD. NK-cell counts, although not significantly,

were lower in patients with GVHD (Figure 5B and Supplemen-
tary Figure 4).

NK Cells of HSCT Recipients Have a Proliferation Defect in
Response to A. fumigatus
As we have demonstrated that absolute NK-cell counts are de-
creased in patients with IA, we aimed to determine their function-
ality against A. fumigatus. For these experiments, we included 6
HSCT recipients without GVHD and 4 patients with GVHD.
Compared to healthy individuals, NK-cell proliferation was sig-
nificantly reduced in HSCT recipients with and without GVHD
(P = .015 and P = .039, respectively; Figure 6) which was irrespec-
tive of absolute NK-cell counts. Patients with GVHD tended to
have lower NK-cell proliferation than patients without GVHD
(P = .055). Therefore, NK cells in HSCT recipients seem to have
a proliferative defect in response to A. fumigatus.

Figure 2. PMN-mediated killing of A. fumigatus is decreased for up to 1 year after HSCT. A, Maximum release of reactive oxygen species by PMNs after
stimulation with heat-inactivated A. fumigatus conidia or C. albicans yeast in patients with no IA, possible IA, or probable/proven IA. Shown are median
values + interquartile ranges of relative light units per second (RLU/s). The shaded areas indicate the 95% CI of medians of healthy controls (n = 19). No IA/
possible IA/ probable IA: n = 24/6/4 (d0), n = 23/10/6 (d30), n = 20/10/6 (d90), n = 17/8/7 (d180), n = 16/8/4 (d360). B, Percent fungal damage of A. fumi-
gatus or C. albicans by PMNs in patients with no IA, possible IA, or probable/proven IA. A. fumigatus hyphae or C. albicans yeast were coincubated with
PMNs for 2 hours and the percentage of viable fungi determined by MTT assay. The hyphal damage was calculated as ([ODcontrol-ODtest]/ODcontrol)×100.
Shown are median values + interquartile range. The shaded areas indicate the 95% CI of medians of healthy controls (n = 15/18 for A. fumigatus/
C. albicans). No IA/possible IA/probable IA: for A. fumigatus n = 12/5/3 (d0), n = 17/8/4 (d30), n = 11/6/4 (d90), n = 14/7/5 (d180), n = 15/7/3 (d360); for
C. albicans n = 13/4/3 (d0), n = 15/9/2 (d30), n = 14/10/5 (d90), n = 15/7/5 (d180), n = 14/3/4 (d360). Data are shown after subtraction of unstimulated con-
trols. Abbreviations: CI, confidence interval; HSCT, hematopoietic stem cell transplantation; IA, invasive aspergillosis; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyltetrazolium bromide; OD, optical density; PMN, polymorphonuclear cell.

Figure 1. Patients included in the study. A, Total number of patients without invasive aspergillosis (no IA), possible IA, or probable/proven IA. B, Number
of patients evaluated at the time of transplantation (day 0) and 30, 90, 180, and 360 days after HSCT. Patients were grouped at each time point according to
current status of fungal infection. Twenty-one patients dropped out until day 360 because of death (n = 16) and loss of follow-up (n = 5). Abbreviation: HSCT,
hematopoietic stem cell transplantation.
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DISCUSSION

In this study, we show that patients with probable/proven
IA after HSCT have significant defects in PMN function
to A. fumigatus and reduced restoration of NK-cell counts

over 1 year. These findings are further strengthened by
the fact that in patients with well-controlled IA, these im-
munological parameters recovered faster than in patients
with poor outcome. Moreover, NK-cell counts below 200
cells/µL were associated with probable/proven IA after HSCT.

Figure 3. NK-cell counts are decreased in patients with probable/proven IA and A. fumigatus–specific cytokine secretion of PBMCs is reduced over 1
year after HSCT. A, Absolute CD4+ T cells and NK cells in patients with no IA, possible IA, or probable/proven IA. The absolute counts of CD4+ cells and NK
cells were calculated from the percentage of CD3+CD4+ and CD3−CD56+ cells determined in flow cytometry, respectively, and the absolute lymphocyte
counts. Shown are median values + interquartile ranges per µL. The shaded areas indicate reference values used at the University Hospital Basel. No IA/
possible IA/probable IA: n = 35/7/5 (d0), n = 24/11/6 (d30), n = 20/10/5 (d90), n = 19/9/7 (d180), n = 17/9/4 (d360). B, IFN-γ and IL-17 response to heat-
inactivated A. fumigatus hyphae in patients with no IA, possible IA, or probable/proven IA. Cytokine response was determined by ELISPOT after 72 hours’
stimulation. Shown are median values + interquartile ranges. The shaded areas indicate the 95% CI of medians of healthy controls (n = 20). No IA/possible
IA/probable IA: for IFN-γ n = 31/6/4 (d0), n = 26/12/6 (d30), n = 20/10/4 (d90), n = 19/8/6 (d180), n = 16/9/4 (d360); for IL-17 n = 26/5/4 (d0), n = 25/9/6 (d30),
n = 20/8/3 (d90), n = 18/6/6 (d180), n = 15/8/4 (d360). Data are shown after subtraction of unstimulated controls. Abbreviations: CI, confidence interval;
ELISPOT, enzyme-linked immunospot; HSCT, hematopoietic stem cell transplantation; IA, invasive aspergillosis; IFN-γ, interferon-γ; IL-17, interleukin-17;
NK, natural killer; PBMCs, peripheral blood mononuclear cells; SFC, spot-forming cells.

Figure 4. Patients with well-controlled IA show higher ROS production and NK-cell counts than patients with a poor outcome. A, Maximum release of
ROS to A. fumigatus by PMNs in patients with probable/proven IA with well-controlled infection or poor outcome. Median values + interquartile ranges of
relative light units per second (RLU/s) are shown. The shaded areas indicate the 95% CI of medians of healthy controls (n = 19). Well-controlled infection/
poor outcome: n = 3/2 (d0), n = 4/3 (d30), n = 4/2 (d90), n = 3/3 (d180), n = 2/2 (d360). B, Absolute CD4+ T cells and NK cells in patients with probable/proven
IA with well-controlled infection or poor outcome. The absolute counts of CD4+ cells and NK cells were calculated from the percentage of CD3+CD4+ and
CD3−CD56+ cells determined in flow cytometry, respectively, and the absolute lymphocyte counts. Shown are median values + interquartile range per µL.
The shaded areas indicate reference values used at the University Hospital Basel. Well-controlled infection/poor outcome: n = 5/3 (d0), n = 4/3 (d30), n = 4/2
(d90), n = 3/3 (d180), n = 2/2 (d360). C, IFN-γ response to heat-inactivated A. fumigatus hyphae in patients with probable/proven IA with well-controlled
infection or poor outcome. Shown are median values + interquartile ranges. The shaded areas indicate the 95% CI of medians of healthy controls (n = 20).
Well-controlled infection/poor outcome: n = 4/3 (d30), n = 3/0 (d90), n = 3/2 (d180), n = 2/2 (d360). Data are shown after subtraction of unstimulated con-
trols. Time points before development of probable/proven IA are also included. Abbreviations: CI, confidence interval; HSCT, hematopoietic stem cell transplan-
tation; IA, invasive aspergillosis; IFN-γ, interferon-γ; NK, natural killer; PMNs, polymorphonuclear cells; ROS, reactive oxygen species; SFC, spot-forming cells.
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Therefore, NK-cell counts may serve to guide antifungal
treatment.

The strength of this study is the comprehensive longitudinal
analysis of quantitative and qualitative innate and adaptive im-
munity specific for A. fumigatus in a large number of HSCT re-
cipients. This allowed for identifying significant immunological

impairments in HSCT recipients compared to healthy individ-
uals. To date, this is the largest prospective in-depth analysis of
antifungal immunity of patients after HSCT. However, due to
the low number of patients with IA, the differences between pa-
tients with and without IA rarely reached significance. More-
over, 8 of 9 patients with IA suffered concomitantly from
GVHD and were under treatment with corticosteroids, making
it difficult to distinguish between GVHD- or IA-related factors.
As 5 of 9 patients developed IA before or early after HSCT, it is
also uncertain whether the observed immunological defects
predisposed to IA or if the fungal infection secondarily caused
the immunological defects. Therefore, these data must be inter-
preted with caution and need further evaluation in larger
studies.

We found that despite normal PMN counts, PMN function
was significantly impaired after HSCT. Whereas PMN killing
and ROS production to C. albicans recovered early after
HSCT, PMN effector functions to A. fumigatus were impaired
over 12 months, especially in patients with IA. This might ex-
plain why patients are more susceptible to mold infections for a
prolonged period after HSCT [1, 26].

The CD4+ and CD8+ T-cell recovery and antigen-specific
IFN-γ secretion to fungal, bacterial, and viral pathogens was sig-
nificantly impaired over 12 months in all patients. Only some
patients that reactivated CMV showed higher CD8+ T-cell
counts and higher IFN-γ responses to the CMV pp65 peptide
pool [27]. Similarly, we found that patients with IA showed

Figure 5. ROS production of PMNs to A. fumigatus is reduced and NK-cell recovery delayed in patients with GVHD receiving corticosteroid treatment. A,
Maximum release of ROS to A. fumigatus and percent fungal damage of A. fumigatus by PMNs in patients without GVHD, with GVHD without IA, and with
GVHD with IA. For ROS production, median values + interquartile ranges of relative light units per second (RLU/s) are shown. The shaded areas indicate the
95% CI of medians of healthy controls (n = 19). For fungal killing, percentage of viable A. fumigatus hyphae was determined by MTT assay. Shown are
median values + interquartile ranges. The shaded areas indicate the 95% CI of medians of healthy controls (n = 15). No GVHD/GVHD no IA/GVHD IA: for
ROS production n = 34/0/0 (d0), n = 22/14/5 (d30), n = 17/16/5 (d90), n = 20/10/4 (d180), n = 16/12/2 (d360); for killing n = 20/0/0 (d0), n = 18/10/2 (d30),
n = 7/12/4 (d90), n = 13/10/4 (d180), n = 15/10/2 (d360). B, Absolute CD4+ T cells and NK cells in patients without GVHD, with GVHD without IA, and with
GVHD with IA. The absolute counts of CD4+ cells and NK cells were calculated from the percentage of CD3+CD4+ and CD3−CD56+ cells determined in flow
cytometry, respectively, and the absolute lymphocyte counts. Shown are median values + interquartile range per µL. The shaded areas indicate reference
values used at the University Hospital Basel. No GVHD/GVHD no IA/GVHD: n = 46/0/0 (d0), n = 22/17/5 (d30), n = 17/15/4 (d90), n = 18/14/5 (d180), n = 17/
12/2 (d360). Data are shown after subtraction of unstimulated controls. Abbreviations: CI, confidence interval; GVHD, graft-versus-host disease; HSCT,
hematopoietic stem cell transplantation; IA, invasive aspergillosis; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide; NK, natural killer;
PMNs, polymorphonuclear cells; ROS, reactive oxygen species.

Figure 6. Patients after HSCT show decreased proliferation of NK cells
to A. fumigatus hyphae. Proliferation of NK cells from healthy individuals
(n = 14), HSCT recipients without GVHD (n = 6), and HSCT recipients with
GVHD (n = 4) after 8 days’ stimulation with A. fumigatus hyphae. The per-
centage of CFSEdim cells in the CD3−CD56+ population was determined by
flow cytometry (*P < .0.5). Abbreviations: CFSE, carboxyfluorescein succini-
midyl ester; GVHD, graft-versus-host disease; HSCT, hematopoietic stem
cell transplantation; NK, natural killer.
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increased A. fumigatus–specific IFN-γ responses at the time of
disease resolution. This indicates that an A. fumigatus–specific
TH1 response may be beneficial for fungal clearance. This cor-
relation of a TH1 immune response with better clinical outcome
has been previously reported [20, 28–30] and encourages the
development of antifungal T-cell transfer.

Previous studies reported that TH17 responses are beneficial
for fungal control, although data for A. fumigatus are controver-
sial [12, 31], and that a high TH2-to-TH1 ratio is detrimental for
fungal infection [12, 28]. In our study, all cytokines after anti-
gen-specific stimulation were low, indicating that the risk for
infection is probably due to an overall lack of specific immune
responses and delayed T-cell recovery and not because of a
disbalance in the cytokine milieu. Nevertheless, this should be
interpreted with caution, as we did not investigate T-cell immu-
nity at the site of infection (ie, lung).

We further identified an association of decreased NK-cell
counts with probable/proven IA. Interestingly, most of the pa-
tients that developed IA after HSCT had very low NK-cell
counts before disease development, and increasing NK-cell
numbers coincided with the decrease of fungal lesions, indicat-
ing that low NK-cell counts may correlate with outcome and
possibly also the development of IA. The role and mechanism
of NK cells against A. fumigatus in human fungal infections has
been scarcely investigated. Previous mouse studies reported that
NK-cell recruitment is essential for antifungal defense in neu-
tropenic animals [15] and that NK-cell proliferation is associat-
ed with inhibition of fungal growth [32]. Moreover, adoptive
NK-cell transfer led to enhanced fungal clearance in neutrope-
nic mice [13]. In healthy individuals, NK cells exert direct and
indirect antifungal activity [14, 33]. As patients with isolated
NK-cell deficiencies have no increased susceptibility for fungal
infections [16, 34],NK cells probably need to interact with other
immune cells for fungal control. Additionally, many fungal
pathogens have immunomodulatory properties with suppres-
sive effects on phagocytes, T cells, and NK cells [35, 36]. There-
fore, the observed NK-cell impairments could be a consequence
as well as a cause of IA.

Consistent with previous studies, we confirmed that patients
receiving corticosteroids for the management of GVHD tended
to have decreased effector functions of PMNs againstA. fumigatus,
particularly with respect to ROS production, confirming that
these patients are highly susceptible to IA [2, 37]. Previous stud-
ies also reported an association of GVHD with low NK-cell
counts [25]. In this study, we found only a slight reduction of
NK-cell counts in patients with GVHD but a significant de-
crease of NK-cell proliferation after stimulation with A. fumiga-
tus, which may be associated with higher susceptibility to IA.

Biomarkers to predict IA and to guide antimold prophylaxis
and treatment would be desirable. Encouraging progress has
been made in the identification of genetic factors implicated
in the development of IA [38]. However, immunological factors

have so far not been investigated. In this study, we found that
(1) ROS production was significantly lower in patients with
IA, (2) NK-cell counts of patients with IA remained below
200 cells/µL for up to 6 months after HSCT, and (3) increasing
NK-cell counts coincided with the decrease of fungal lesions
and were associated with a good outcome. Due to the conve-
nience of measuring and validating NK-cell counts, they
would be ideal as immune biomarker to initiate antimold pro-
phylaxis and guide antifungal treatment.

In conclusion, in this comprehensive analysis of antifungal
immune responses after HSCT the importance of functional
PMN, T-cell, and NK-cell immunity is shown. We demonstrate
that the absolute NK-cell counts may be valuable as biomarker
for the management of IA therapy. However, larger multicenter
studies are needed to validate its use in the clinics.
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