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1. Introduction

The heterogeneous multiscale method (HMM) is a general framework for
designing multiscale algorithms for a wide variety of applications (E and
Engquist 2002, E and Engquist 2003, E et al. 2007a). The word ‘hetero-
geneous’ was used in order to emphasize the fact that the algorithm may
involve macro and micro models of very different natures: for example, the
micro model may come from molecular dynamics and the macro model may
come from continuum theory. In fact, at a very rough level, HMM can be
thought of as a way of blending together models of very heterogeneous types.

Most problems that we encounter in nature have a multiscale character.
The multiscale character can occur in a variety of ways. Take, for example,
problems from materials science, where many properties, such as conductiv-
ity, have a multiscale nature. This is the case for composites. It could also
be that the material can be viewed at different levels of detail: as a continu-
ous medium, in which case one naturally applies the principles of continuum
mechanics, or at the atomic scale, in which case one naturally applies var-
ious atomistic models of molecular dynamics or quantum mechanics. Each
viewpoint has its merits and drawbacks. Continuum models are quite effi-
cient but sometimes their accuracy is inadequate, particularly when defects
are involved. Atomic models are typically more accurate, but much less effi-
cient. This situation is not limited to materials science but is quite common
in most areas of science and engineering. One of the main motivations for
multiscale modelling is to develop models that have accuracy close to that
of microscopic models and efficiency close to that of macroscopic models.

From the viewpoint of numerical algorithms, we are interested in extract-
ing useful information from the microscopic model, which in principle has the
required accuracy. If we use the traditional viewpoint, then we would have
to solve the microscopic model in full detail, which is practically impossible
for engineering applications. In terms of computational complexity, the best
one can do with such an approach is to have linear scaling algorithms: the
complexity scales as the number of microscopic degrees of freedom. How-
ever, in many cases, we are not interested in the full microscopic solution or
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The heterogeneous multiscale method 3

we cannot afford the cost of computing it. Instead, we are only interested in
the behaviour of some macroscopic variables, or the microscopic behaviour
in very small parts of the system, for example near defects. The question
is: Can we develop much more efficient algorithms, such as sublinear scal-
ing algorithms, that would give us such information? To develop these new
types of algorithms, we have to compress not only the operators, as has been
done in multigrid methods, but also the variables. We have to be content
with getting information about only a subset of the system variables. These
types of algorithms cannot be completely general: one has to explore special
features of the problem in order to construct such algorithms.

From the viewpoint of analysis, many analytical techniques have been
developed in order to derive simplified models. Examples include averag-
ing methods, homogenization methods, matched asymptotics, WKB meth-
ods, geometric optics approximations, and renormalization group methods
(E 2011). The principles of such techniques are quite general, but in practice
they only give us explicit analytical models in very limited situations. In
other situations, it is natural to ask whether one can devise efficient compu-
tational techniques based on these principles. This is the case that we are
interested in, and it was one of the main motivations for developing HMM.

This was the background against which HMM was proposed. Of course,
prior to HMM, there were already many techniques of a similar spirit in
many different fields. Well-known examples include:

• Car–Parrinello molecular dynamics, in which electronic structure mod-
els are used together with molecular dynamics to predict the dynamics
of nuclei (Car and Parrinello 1985),

• the quasicontinuum method, in which atomistic models are used to
analyse the mechanical deformation of crystalline solids (Tadmor, Ortiz
and Phillips 1996),

• superparametrization models, in which cloud-resolving models are used
to capture large-scale tropical dynamics of the atmosphere (Grabow-
ski 2001, Xing, Grabowski and Majda 2009).

HMM was proposed as a general framework that can be used for a variety of
problems. It was not the only attempt. Other notable examples include the
extended multigrid method and the equation-free approach (Brandt 2002,
Kevrekidis et al. 2003). A common theme of these approaches is that the
microscopic models are used throughout the computational process. These
should be contrasted with techniques such as model reduction methods,
wavelet-based homogenization and variational multiscale methods, in which
the microscale model is only used at the beginning of the computation to
obtain compressed effective operators.

In spite of competing efforts, HMM was the only general attempt based
on a top-down philosophy, which at the time was not the most popular
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viewpoint. In fact, in the early days of multiscale modelling, most efforts
were devoted to a bottom-up approach, seeking strategies that would give us
the information needed by working only with the microscale model, without
any prior information about the system at the macroscale. This certainly
sounds very attractive, and may at first sight seem the only correct approach.
In one way, a key insight of HMM was the recognition that the bottom-up
approach is bound to have technical difficulties, and will for some time be
limited to rather simple applications. One can appreciate such difficulties
by noticing the fact that, even if the effective macroscale model is explic-
itly available, designing stable and accurate numerical algorithms for such
macroscale models is still a non-trivial task. Important constraints, such
as conservation properties or upwinding, have to be implemented in order
to guarantee that the algorithms give rise to the correct numerical solu-
tions. Implementing such constraints at the level of microscale models, in
the absence of any explicit knowledge about the macroscale model, seems
to be next to impossible. Therefore compromises are necessary: for many
problems we have to guess the form of the macroscale model to start from.
Fortunately, in many cases we do have some prior knowledge of the macro-
scale behaviour of the system under consideration, and this knowledge is
often sufficient for us to make an adequate guess.

Since multiscale modelling is a vast subject, touching almost all aspects of
modelling, we will not be able to do justice to all the work that has been done
on this subject. Instead we will focus on HMM. For a general introduction
to multiscale modelling, we refer to the monograph by E (2011).

2. The HMM framework

2.1. The main components of HMM

We will use U to describe the set of macroscopic variables, and u the set of
microscopic variables. They are related by

U = Q(u), (2.1)

where Q is called the compression operator. Any operator that reconstructs
u from U is called a reconstruction operator:

u = R(U). (2.2)

For consistency, Q and R should satisfy the relation

Q(R(U)) = U. (2.3)

In HMM, we assume that we have an incomplete macroscale model to
begin with:

F (U,D) = 0. (2.4)
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Figure 2.1. Schematics of the HMM framework.

Here D represents the missing part of the model. For example, if this is a
model in continuum mechanics, then D might be the constitutive relation
for the stress. If it is a model for molecular dynamics, then D might be
the inter-atomic forces. If it is a model for heat conduction in composite
materials, then D might be the macroscale effective conductivity tensor.

HMM proceeds by estimating the missing data on the fly using the micro-
scale model, at each location where some missing data is needed. To do
this, the microscale model has to be constrained so that its macrostate is
the same as the macrostate we are interested in, that is,

f(u, d(U)) = 0. (2.5)

Here d(U) represents the constraint for the microscale model. For example,
if the microscale model is the canonical ensemble of molecular dynamics, d
might be the average density, momentum and energy.

If we use H and h to denote the macro and micro numerical parameters,
such as mesh size, one can write HMM abstractly in the following form:

FH(UH , DH(uh)) = 0,

fh(uh, dh(UH)) = 0.
(2.6)

In practical terms, the basic components of HMM are as follows.

1 A macroscopic solver. Based on knowledge of the macroscale behaviour
of the system, we make an assumption about the form of the macroscale
model, for which we select a suitable macroscale solver. For example, if
we are dealing with a variational problem, we may use a finite element
method as the macroscale solver.

2 A procedure for estimating the missing macroscale data D using the
microscale model. This is typically done in two steps.

(a) Constrained microscale simulation. At each point where macroscale
data are needed, perform a series of microscopic simulations which
are constrained so that they are consistent with the local value of
the macro variable.
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(b) Data processing. Use the results from the microscopic simulations to
extract the macroscale data needed in the macroscale solver.

For dynamical problems, we can state the HMM procedure formally as
follows. At each macro time step:

1 Given the current state of the macro variables Un, re-initialize the micro
variables:

un,0 = RUn. (2.7)

2 Evolve the micro variables for some micro time steps:

un,m+1 = Sδt(un,m;Un), m = 0, . . . ,M − 1. (2.8)

3 Estimate D:
Dn = DM (un,0, un,1, . . . , un,M ). (2.9)

4 Evolve the macro variables for one macro time step using the macro
solver:

Un+1 = S∆t(U
n;Dn). (2.10)

Here R is some reconstruction operator which plays the same role as the
interpolation or prolongation operators in the multigrid method; Sδt is the
micro solver, which also depends on Un through the constraints, as indi-
cated; and DM is some data processing operator, which in general involves
spatial/temporal/ensemble averaging. This is sometimes referred to as the
data estimator. Finally, S∆t is the macro solver.

For static problems, the procedure is very similar, particularly in the
context of iterative algorithms: we simply replace macro time step by macro
iteration step.

For dynamic problems, there are two important time scales that we need
to consider. The first, denoted by tM , is the time scale for the dynamics of
the macro variables. The second, denoted by τε, is the relaxation time for
the microscopic model. We will need to distinguish between two different
cases. The first is when the two time scales are comparable, that is, τε ∼ tM .
In this case, from the viewpoint of numerical efficiency, there is not much
room to play with as far as time scales are concerned. We just have to evolve
the microscale model along with the macroscale model. The second case is
when τε � tM . This is the case we will focus on. The general guideline in
this case is as follows.

1 Choose ∆t to accurately resolve the tM time scale.

2 Choose M so that Mδt covers the τε time scale sufficiently to allow
equilibration to take place in the micro model.
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2.2. Simple examples

Examples of this set-up include the following.

• ODEs with disparate time scales, where U is a complete set of slow
variables and u is the full set of variables. In this case, the macroscale
model could just be an ODE system for U , and the missing data could
just be the force. If we know that the macroscale system has additional
structure, then we can take that into account when selecting the macro
solver. For example, if the macroscale system is a Hamiltonian system,
then we can use a symplectic integrator as the macro solver.

• Elliptic equations with multiscale coefficients, such as those arising in
the modelling of the behaviour of composite materials, where U is the
averaged displacement field and u is the microscale displacement field.
In this case, the macroscale model is still an elliptic equation, and the
missing data could be the coefficients in the macroscale model. If we
use the finite element method as the macro solver, then the missing
data could just be the stiffness matrix, which has to be evaluated with
the help of the full microscale model.

• Molecular dynamics models of complex fluids such as polymer fluids.
Here U is the set of hydrodynamic variables, which in the simplest case
would be the field of mass, momentum and energy densities, and u is
the set of microscopic variables, that is, the position and momentum of
all of the participating particles in a molecular dynamics model. The
macroscale model might be the set of local conservation laws for U .
The missing data might be the fluxes in these conservation laws.

• Microscopic pore-scale models of the pressure distribution in a porous
medium. Here U is the macroscale pressure distribution and u is the
set of variables in the pore-scale model, which could be a network-based
model. The macroscale model is of Darcy law type. The missing data
are the coefficients in this model.

• Microscale models of the moving contact line. Here U is the set of
macroscopic variables (velocity and pressure fields, position of the in-
terface between the fluid phases), and u is the set of variables in the
microscopic description, say using molecular dynamics, of the contact
line region. The macroscale model might just be the standard model in
two-phase flows. The missing data might be the boundary conditions
at the contact line.

Example 1: Stiff ODEs. Consider
dx

dt
= f(x, y),

dy

dt
= −1

ε
(y − ϕ(x)).

(2.11)
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Here U = x, u = (x, y). The macroscale should of course be an ODE, which
can be written as

dx

dt
= F (x) = f(x, ϕ(x)). (2.12)

The missing data are implicitly given by F .
Let us choose the simplest solver for (2.12), the forward Euler method.

HMM would then proceed as follows.

1 Initialize the micro solver, e.g., yn,0 = yn−1,M .
2 Apply the micro solver for M micro steps:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)), (2.13)

for m = 0, 1, . . . ,M − 1.
3 Estimate F (x):

Fn = f(xn, yn,m). (2.14)

4 Apply the macro solver:

xn+1 = xn +∆t Fn. (2.15)

Example 2: Stiff stochastic ODEs. Consider the stochastic ODE
dx

dt
= f(x, y),

dy

dt
= −1

ε
(y − ϕ(x)) +

√
2

ε
ẇ,

(2.16)

where ẇ(t) is standard white noise. Averaging theorems suggest that the
effective macroscale equation should again be an ODE:

dx

dt
= F (x). (2.17)

HMM with forward Euler as the macro solver proceeds as follows.

1 Initialize the micro solver, e.g., yn,0 = yn−1,M .
2 Apply the micro solver for M micro steps:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)) +

√
2δt

ε
ξn,m, (2.18)

form = 0, 1, . . . ,M−1. Here the {ξn,m} are independent normal random
variables with mean 0 and variance 1.

3 Estimate F (x):

Fn =
1

M

M∑
m=1

f(xn, yn,m). (2.19)
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The heterogeneous multiscale method 9

4 Apply the macro solver:

xn+1 = xn +∆t Fn. (2.20)

Example 3: Elliptic PDEs with multiscale coefficients. Consider

−∇ · (aε(x)∇)uε(x) = f(x). (2.21)

Abstract homogenization theory tells us that the macroscale model should
be of the form

−∇ · (a0(x)∇)U(x) = f(x). (2.22)

The missing data are the coefficients a0(x). Naturally, for the macroscale
solver we choose standard finite element methods, for example the piecewise
linear finite element method over a coarse mesh. The data that need to
be estimated form the stiffness matrix for the finite element method. If
a0 = a0(x) were known, we would simply follow standard practice and use
numerical quadrature to compute the elements in the stiffness matrix. Since
a0 is not known, we set up a microscale simulation around each quadrature
point in order to estimate the function value needed at that quadrature
point. The details of this procedure will be discussed later.

Example 4: The parabolic homogenization problem. Consider

∂tu
ε = ∂x ·

(
a

(
x,
x

ε
, t

)
∂xu

ε

)
, (2.23)

where a(x, y, t) is a smooth function and is periodic in y, say with period 1.
The macroscale model is of the form

∂tU = ∂x ·D, (2.24)

D =

〈
a

(
x,
x

ε
, t

)
∂xu

ε

〉
, (2.25)

where 〈·〉 means taking spatial averages.
We will choose a finite volume method as the macro solver. Then D

needs to be evaluated at the cell boundaries (Abdulle and E 2003). We will
make the assumption that the flux D depends on the local values of U and
∂xU only. Consequently, for the micro model, we will impose the boundary
condition that uε(x, t) − Ax is periodic where A = ∂xU is evaluated at the
location of interest.

Denote the micro solver by

un+1 = Sδτ,δx(un;A). (2.26)

Assuming that we have the numerical approximation {Unj } (where tn =
n∆t, Unj ∼ U(n∆t, j∆x)) at the nth macro time step, we obtain the numer-
ical approximation at the next macro time step via the following procedure.
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1 For each j, let Anj = (Unj − Unj−1)/∆x.

2 Re-initialize the micro solver, so u0j (x)−Anj x is periodic for each j.

3 Apply the micro solver M steps:

un,m+1
j = Sδτ,δx(un,mj ;Anj ),

with m = 0, 1, . . . ,M − 1.

4 Compute

Dn+1
j−1/2 =

〈
a

(
x,
x

ε
, tn

)
∂xu

n,M
j

〉
. (2.27)

5 Evolve the macrostate variables using

Un+1
j = Unj +∆t

Dn+1
j+1/2 −Dn+1

j−1/2

∆x
. (2.28)

Example 5: Incompressible polymeric fluid flow. Let U be the mac-
roscale velocity field. The macroscale model should be of the form

ρ0(∂tU + (U · ∇)U) = ∇ · σ,
∇ · U = 0.

These are simply statements of the conservation of momentum and mass,
for a fluid of constant density ρ0. The missing data comprise the stress field
σ: D = σ.

Let us assume that the micro model is a molecular dynamics model for
the particles that make up the fluid:

mj
d2yj
dt2

= fj , j = 1, 2, . . . , N. (2.29)

Here mj , yj are, respectively, the mass and position of the jth particle and
fj is the force acting on the jth particle, and u is the set of variables in this
model.

Given that the macroscale model is in the form of an incompressible flow
equation, it is natural to select the projection method as the macro solver
(Chorin 1967). In the implementation of the projection method, we will
need the values of σ at appropriate grid points. These are the data that
need to be estimated. At this point, we have to make an assumption on
the functional dependence of σ; this enters in the constraints applied to the
microscale model. Let us assume that

σ = σ(∇U). (2.30)

We will constrain the molecular dynamics in such a way that the average
strain rate is given by the value of ∇U at the relevant grid point. In general,
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The heterogeneous multiscale method 11

implementing such constraints is the most difficult step in HMM. For the
present example, one possible strategy is discussed in Ren and E (2005).

From the results of molecular dynamics, we need to extract the values of
the required components of the stress. For this purpose, we need a formula
that expresses stress in terms of the output of the molecular dynamics. This
can be obtained by modifying the Irving–Kirkwood formula (Irving and
Kirkwood 1950). These details will be explained in Section 5. We refer to
Ren and E (2005) for some numerical results obtained using this strategy.

2.3. Error analysis

The basic idea, as explained by E and Engquist (2003), is to compare the
HMM solution with the solution of the selected macroscale solver for the
effective macroscale model. Their discrepancy is caused by an additional
error in the HMM solution, due to the error in the data estimation process.
This new error term is called the HMM error, denoted by e(HMM). We will
assume that both the HMM and the macro solver for the effective macroscale
model can be expressed in the form

Un+1
HMM = UnHMM +∆tF ε(UnHMM, U

n−1
HMM, . . .), (2.31)

Ūn+1
H = ŪnH +∆tF̄ (ŪnH , Ū

n−1
H , . . .). (2.32)

Note that

‖Quε − UHMM‖ ≤ ‖Quε − Ū‖+ ‖ŪH − Ū‖+ ‖UHMM − ŪH‖, (2.33)

where Ū is the solution of the macroscale model, ŪH is the numerical solution
to the effective macroscale model computed using (2.31), and UHMM is the
HMM solution. The first term on the right-hand side of (2.33) is due to
the error of the effective model; the second term is due to the error in the
macroscale solver; the third term is the HMM error, due to the error in
the estimated data. Normally we expect that estimates of the following
type hold:

‖Quε − Ū‖ ≤ Cεα, (2.34)

‖Ū − ŪH‖ ≤ C(∆t)k, (2.35)

where k is the order of accuracy of the macro solver. In addition, define

e(HMM) = max
U

‖F̄ (Un, Un−1, . . .)− F ε(Un, Un−1, . . .)‖. (2.36)

Then, under general stability conditions, one can show that (E and Engquist
2003):

‖UHMM − ŪH‖ ≤ Ce(HMM) (2.37)
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12 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

for some constant C. Therefore, we have

‖Quε − UHMM‖ ≤ C(εα + (∆t)k + e(HMM)). (2.38)

The key to getting concrete error estimates, and thereby giving guide-
lines to designing multiscale methods, lies in the estimation of e(HMM).
This is specific to each problem. But typically, e(HMM) contains several
contributions:

• the relaxation error, due to the influence of the transients,
• the sampling error, due to empirical averages being used to estimate

the ensemble average,
• the size effect, due to a computational domain of much smaller size

being used to estimate quantities on domains of much larger size.

Examples of these error components will be discussed in subsequent sections.

2.4. Difficulties with HMM

The most significant shortcoming of HMM is that it is based on a precon-
ceived macroscale model. If the form of the macroscale model is chosen
incorrectly, one cannot expect the resulting HMM procedure to produce ac-
curate results. For example, if the effective macroscale model should be a
stochastic ODE but one makes the assumption that it is a deterministic
ODE, then the stochastic component of the macroscale solution will not be
captured correctly by an HMM based on such an assumption.

There is a important reason for starting with the macro solver: even for
problems for which we do have a sufficiently accurate macroscale model,
finding an effective numerical algorithm for that macroscale model may still
be a significant task. Indeed, this has been the focus of the computational
mathematics community for more than 50 years. One example is Euler’s
equation in gas dynamics, whose solutions typically contain shocks, i.e.,
discontinuities (LeVeque 1990). In this case, the numerical algorithms have
to satisfy certain constraints in order to be able to solve Euler’s equation
accurately. Obviously this should also be a concern for multiscale methods.

For practical problems of interest, we have often accumulated some knowl-
edge of the macroscale model. Such information can be used when making
assumptions about the macroscale model used in HMM. In cases when one
makes a wrong assumption, one can still argue that HMM produces an ‘opti-
mal approximation’ for the macroscale behaviour of the solution in the class
of the models considered. In this sense, HMM is a way of addressing the
following question: What is the best one can do given the knowledge we
have about the problem at all scales?

Another difficulty is that HMM, as presented, is not very ‘seamless’, for
two reasons.
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The heterogeneous multiscale method 13

• It requires knowledge of a complete set of macroscale variables to be-
gin with.

• It requires conversion back and forth between the macro- and micro-
states of the system. This can become rather difficult in actual imple-
mentations, particularly when constructing discrete microstates (e.g.
in molecular dynamics) from continuous macroscale variables.

The seamless strategy proposed in E, Ren and Vanden-Eijnden (2009) is
intended to overcome the second difficulty. This will be explained next. The
first difficulty is more significant. It can be dealt with in various situations
with different levels of satisfaction, as we explain in Section 3.1.2.

2.5. Seamless HMM

To motivate the seamless algorithm, let us consider the stiff ODE example
(2.11). If we want an efficient algorithm for capturing the behaviour of x
without resolving the detailed behaviour of y, we can simply change the
small parameter ε to a larger value ε′, the size of which is determined by the
accuracy requirement

dx

dt
= f(x, y),

dy

dt
= − 1

ε′
(y − ϕ(x)).

(2.39)

This is then solved using standard ODE solvers. This idea of boosting the
parameters is very simple, but it can also be quite useful, as in Car–Parrinello
molecular dynamics (Car and Parrinello 1985).

We can look at this differently. Instead of changing the value of ε, we may
change the clock for the microscale model, that is, if we use τ = tε/ε′ in the
second equation in (2.39), then (2.39) can be written as

dx

dt
= f(x, y),

dy

dτ
= −1

ε
(y − ϕ(x)).

(2.40)

If we discretize this equation using standard ODE solvers but with different
time step sizes for the first and second equations in (2.40), we obtain the
following algorithm:

yn+1 = yn − δτ

ε
(yn − ϕ(xn)), (2.41)

Dn+1 = yn+1, (2.42)

xn+1 = xn +∆′tf(xn, Dn+1). (2.43)

Here yn ∼ y(nδτ) and xn ∼ x(n∆′t). The value of δτ is the time step size we
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(a)

(b)

(c)

Figure 2.2. (a) Illustration of HMM, and (c) the
seamless algorithm. (b) Rescaling the micro time scale.

would use if we were to attempt to solve (2.40) accurately. If (2.40) were the
molecular dynamics equations, then δτ would be the standard femtosecond
time step size. ∆′t is the time step one would use for (2.39). It satisfies

∆′t

ε′
=
δτ

ε
. (2.44)

In general, ∆′t should be chosen such that one not only resolves the macro
time scale, but also allows the microstate to relax sufficiently, that is, to
adjust to the changing macroscale environment. For example, if ∆t is the
time step size required for accurate resolution of the macroscale dynamics,
and if τε is the relaxation time of the microscopic model, then we should
choose ∆′t = ∆t/M where M 	 τε/δτ .

The advantage of this second viewpoint is that it is quite general, and it
does not require tuning parameters in the microscopic model. In a nutshell,
the basic idea is as follows.

1 Run the (constrained) micro solver using its own time step δτ .

2 Run the macro solver at a pace that is slower than a standard macro
model: ∆′t = ∆t/M .

3 Exchange data between the micro and macro solvers at every step.
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The heterogeneous multiscale method 15

Because data are exchanged at every time step, there is no need to recon-
struct new microscale states to initialize the microscale simulation. Intu-
itively, what one does is to force the microscale model to accommodate the
changes in the macroscale environment (here the change in x) at a much
faster pace. This is illustrated in Figure 2.2.

The general form of the seamless algorithm can be written as follows.

1 Given the current state of the micro variables u(τ) and the macro vari-
ables U(t), evolve the micro variables for one time step:

u(τ + δτ) = Sδτ (u(τ);U(t)). (2.45)

2 Estimate D:

D = D(u(τ + δτ)). (2.46)

3 Evolve the macro variables:

U(t+∆′t) = S∆′t(U(t);D). (2.47)

In this algorithm, we alternate between the macro and micro solvers, each
running with its own time step (therefore the micro and macro solvers use
different clocks). At every step, the required macroscale data are estimated
from the results of the micro model (at that step) and are supplied to the
macro solver. The new values of the macrostate variables are then used to
constrain the micro solver.

From the consideration of time scales alone, the computational savings in
the seamless algorithm come from the fact that effectively the system evolves
on the time step ∆′t. In the case when the time scales are disparate, ∆′t
can be much larger than δτ . Therefore one can define the savings factor:

CS =
∆′t

δτ
=

∆t

Mδτ
. (2.48)

For example, assume that the microscopic model is molecular dynamics, and
the time step size is femtoseconds (δτ = 10−15 seconds): to simulate one sec-
ond of physical time we need to run the simulation for 1015 steps. On the
other hand, assume that the relaxation time is of the order of picoseconds
(10−12 seconds), that is, O(103) micro time steps: then M = 105 is a rea-
sonable choice. Simulating one second of physical time using the seamless
algorithm requires 105 steps. This is a saving by a factor of 1010. The price
to be paid is that we no longer obtain accurate dynamic information at the
level of microscopic detail: we can only hope to get the distribution of the
fast variables accurately.

A slightly different interpretation of the seamless algorithms will be given
in the next subsection.
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16 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

Example: SDEs with multiple time scales. Going back to the SDE
(2.16), the seamless algorithm with forward Euler scheme is simply

yn+1 = yn − δτ

ε
(yn − φ(xn)) +

√
2δτ

ε
ξn, (2.49)

xn+1 = xn +∆′t f(xn, yn+1), (2.50)

where the {ξn} are independent normal random variables with mean 0 and
variance 1. Note that for HMM we have xn ∼ x(n∆t), but for the seamless
algorithm we have xn ∼ x(n∆′t) = x(n∆t/M).

2.6. HMM for type A problems

There are two major types of multiscale problems: type A problems, for
which multiscale modelling is needed to resolve local defects or singularities,
and type B problems, for which multiscale modelling is needed to supply
constitutive relations at the macroscale (E and Engquist 2003). HMM is
most easily formulated for type B problems, and so far the formulations we
have discussed are mostly for these problems. But HMM can also be used
for type A problems, particularly in situations for which the relaxation time
scale for the local structure near defects is much faster than the macroscopic
dynamic time scale. In that case, the effect of the microscale structure near
defects can be viewed as providing effective boundary conditions for the
macroscale model at the defects.

One example is the moving contact line problem. There the macroscale
model is simply the continuum two-phase flow model. The missing data are
the boundary conditions at the contact line, which is then extracted from a
molecular dynamics simulation of the local structure around the contact line.

3. ODEs and dynamical systems

3.1. General considerations

3.1.1. Standard HMM scheme
It is useful to revisit the ideas discussed in the previous section in the context
of more general stiff ODEs. Consider a generic multiscale system of the type

dxε

dt
= f(xε, yε),

dyε

dt
=

1

ε
g(xε, yε).

(3.1)

Let us assume that, in the limit as ε → 0, the dynamics of this system can
be described by the parametric distribution

µX(t)(dy), (3.2)
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The heterogeneous multiscale method 17

where µx(dy) is the invariant distribution of

dY

dt
= g(x, Y ), (3.3)

with x viewed as a fixed parameter, and X(t) in (3.2) solves

dX

dt
= F (X(t)), (3.4)

where

F (x) =

ˆ
f(x, y)µx(dy). (3.5)

In other words, we assume that, as ε → 0, xε converges pathwise to X,
while yε converges in law to Y , in a fashion that is captured by the distri-
bution (3.2). This way of phrasing the limit theorem encompasses all the
situations of interest to HMM. For example, (3.1) might be a set of stiff
ODEs with a slow manifold structure, in which case µx(y) is atomic on this
manifold (i.e., for any x, µx(dy) = δy(x)(dx) for some y(x)). Alternatively,
(3.1) might be a set of SDEs, in which case µx(y) is typically broad (E 2011).

The standard HMM scheme starts with an integrator for (3.4). We will
denote the numerical map associated with this integrator by ηFt . Here the
superscript F makes explicit the dependence of this map on the function F
defined in (3.5), which we do not know explicitly: the aim of HMM is to
approximate it on the fly. Note that ηFt could depend on the derivatives of F
itself, in which case the HMM scheme will have to estimate these as well as
F : the F -information needed in the map ηFt will be denoted collectively by
(F (x), DF (x), . . .). In order to obtain this input, let ζxt denote the numerical
map associated with (3.3), where x is now a parameter. Finally, given the
output (ζxδt(y0), (ζ

x
δt)

o2(y0), . . . , (ζ
x
δt)

oN (y0)) of this map for N micro steps of
size δt starting from the initial condition Y (0) = y0, let

(F̃ (x), DF̃ (x), . . .) = F
(
ζxδt(y0), (ζ

x
δt)

o2(y0), . . . , (ζ
x
δt)

oN (y0)
)

(3.6)

denote the estimator for (F (x), DF (x), . . .). The HMM scheme then iterates
using the following procedure.

1 Microscale solver. Given Xm∆t, generate

(ζXm∆t
δt (y0), (ζ

Xm∆t
δt )o2(y0), . . . , (ζ

Xm∆t
δt )oN (y0)).

2 Estimator. Use these data to estimate

(F̃ (Xm∆t), DF̃ (Xm∆t), . . .) =

(ζXm∆t
δt (y0), (ζ

Xm∆t
δt )o2(y0), . . . , (ζ

Xm∆t
δt )oN (y0)).

3 Macroscale solver. Set

X(m+1)∆t = ηF̃∆t(Xm∆t).
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18 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

Note that in the micro solver step, an initial y0 is needed. A natural choice
is to use the last update of the previous iteration, that is, at iteration m+1
take ym+1

0 = (ζXm∆t
δt )oN (ym0 ).

3.1.2. Seamless HMM schemes
Let us now revisit the question of developing seamless HMM schemes, al-
ready discussed in Section 2.5. To this end, consider again the generic
multiscale system (3.1), let φt denote a map that approximates numerically
the solution of

dX

dt
= f(X,Y ),

dY

dt
= 0,

(3.7)

and let ψt denote a map that approximates numerically the solution of

dX

dt
= 0,

dY

dt
= g(X,Y ).

(3.8)

Note that the map ψt associated with (3.8) leaves the slow variables xε
unchanged and could, for example, be used in the micro solver of HMM: in
the notation of the last section ψt(x, y) = (x, ξxt (y)). In terms of these maps,
a vanilla splitting scheme for (3.1) with time step δt would, for example,
iterate

φδt ◦ ψδt/ε. (3.9)

Alternatively, we could take advantage of the fact that the map associated
with (3.7) probably remains stable with larger time steps than that associ-
ated with (3.8), and use

φMδt ◦ ψ◦M
δt/ε, (3.10)

instead of M iterates of (3.9), to advance time by Mδt.
It is interesting to revisit the HMM using this notation. Suppose that as

the estimator in the HMM we simply pick the last value of the fast variables
afterM steps of size δt, then take a macro time step of size ∆t. The resulting
scheme can be written compactly as

φ∆t ◦ ψ◦M
δt/ε. (3.11)

This scheme has exactly the same cost as (3.10), but it advances the variables
by ∆t instead of Mδt, thereby resulting in an efficiency gain if

∆t > Mδt. (3.12)

If (3.1) were a stiff system of ODEs, the estimator chosen to derive (3.11) is
the standard one, and so we already know why HMM works. Remarkably,
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The heterogeneous multiscale method 19

it works in the general case. To see why, note that (3.11) can alternatively
be interpreted as a time-splitting scheme for (cf. (3.1))

dxε
′

dt
= f(xε

′
, yε

′
),

dyε
′

dt
=

1

ε′
g(xε

′
, yε

′
),

(3.13)

where ε′ = ε∆t/Mδt. Indeed, (3.11) is consistent with (3.13) in the limit

∆t→ 0, δt→ 0 with ∆t/Mδt→ α ∈ (1,∞), (3.14)

where we used the inequality (3.12) to restrict the range of α. Thus (3.13)
is a version of the original system (3.1) in which ε has been boosted to the
higher value ε′ = εα > ε, thereby making it less stiff. The key observation
that this re-interpretation permits is this: as long as

ε∆t�Mδt ⇔ ε′ = εα� 1, (3.15)

the limit theorem we used to justify the HMM scheme guarantees that the
solution to (3.13) remains close to that of the original system (3.1), in the
sense that xε′ ≈ xε pathwise, and the stationary distribution of yε′ condi-
tional on the current value of xε′ approximates that of yε conditional on the
current value of xε. This also implies that the numerical solution generated
by (3.11) gives an approximation to the solution of the original system (3.1),
which is accurate in the same sense. Thus, inequalities (3.12) and (3.15) give
the conditions necessary for the scheme to provide an efficiency gain and re-
main accurate, respectively.

To make the link with the discussion in Section 2.5, note that (3.13) can
also be interpreted as a system in which ε remains the same but the clock of
the fast variables has been changed to be consistent with the time-rescaling
τ = tε/ε′.

In practice, the values of ∆t for which (3.15) remain valid may be too large
for the scheme (3.11) to be stable, which seems to put an unnecessary cap
on the efficiency gain achievable by the scheme. In these cases, letting ∆′t =
∆t/M , we can use the following scheme, whose cost is close to that of (3.11)
and also advances the variables by ∆t at every iterate (i.e., provides the
same efficiency boost) without suffering from the same stability limitations:

(φ∆′t ◦ ψδt/ε)◦M . (3.16)

In terms of ∆′t, (3.15) becomes

∆′t� δt

ε
. (3.17)

If the numerical error of the vanilla time-splitting scheme (3.9) is C(δt/ε)a

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492912000025
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:42:10, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492912000025
https:/www.cambridge.org/core


20 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

for some C > 0, then that of the scheme (3.16) is

C(∆′t/ε′)a + C̄ε′b = C(δt/ε)a + C̄(ε∆′t/δt)b, (3.18)

where C̄ > 0 and the exponent b depends on the rate of convergence of the
solution of (3.1) towards its limit as ε→ 0. Note that in order to be useful,
the constant C in the error estimate (3.18) needs to be independent of ε.
This property is not standard for time-dependent problems, but is expected
to hold if the map ψt for (3.8) is chosen appropriately, and takes advantage
of the fact that the fast variables reach a stable (statistical) steady state
conditional on the slow variables being fixed. The scheme (3.16) was first
introduced by Fatkullin and Vanden-Eijnden (2004) and further developed
by E et al. (2009). It is a seamless version of HMM in which the slow
and fast variables are evolved concurrently, and no re-initialization of the
fast variables is required. This last feature is especially handy in situations
where the values taken by the fast variables are constrained by the slow
variables, which arises in molecular dynamics simulations, for example (for
applications in this context see, e.g., Maragliano and Vanden-Eijnden (2006,
2007), Abrams and Vanden-Eijnden (2010)).

The scheme (3.16) is so simple, both in its implementation and interpre-
tation, that it may seem like a trivialization of HMM: just boost the value of
ε in the original system (3.1), adjust the time step accordingly, and we are
done! Yet it opens the door to more sophisticated strategies. Indeed, since
C̄(ε∆′t/δt)b is the only extra term appearing in the error estimate (3.18),
and this term is controlled by the rate of convergence of (3.1) towards its
limit as ε → 0, this suggests modifying (3.1) in such a way that the limit
is unchanged but convergence is accelerated. How to actually achieve this
should be examined on a case-by-case basis.

The seamless version of HMM also opens the door to schemes in which
the slow variables do not need to be identified beforehand, as was first noted
by Vanden-Eijnden (2007). To see why, suppose that (3.1) is replaced by

dzε

dt
= F (zε) +

1

ε
G(zε), (3.19)

and let us assume that there exists some diffeomorphism that maps zε onto
the variables (xε, yε) satisfying (3.1). More specifically, we require that xε =
θ(zε) for some θ such that

Dθ(z)G(z) = 0, (3.20)

so that
dxε

dt
= Dθ(zε)F (zε), (3.21)

that is, the variables xε = θ(zε) are indeed slow. We also require that no
other (hidden) slow variable exists, that is, xε = θ(zε) are those entering the
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limit theorem on which the HMM scheme is built. Even if we do not know
the explicit form of θ we can make use of its existence. To see how, let Φt
denote the map that approximates the solution to

dZ

dt
= F (Z), (3.22)

and let Ψt denote the map that approximates the solution to

dZ

dt
= G(Z). (3.23)

In terms of these maps, a vanilla time-splitting integrator for (3.19) would,
for example, read (cf. (3.9))

Φδt ◦Ψδt/ε (3.24)

or (cf. (3.10))
ΦMδt ◦Ψ◦M

δt/ε. (3.25)

This last scheme updates the variables by Mδt at every iterate, and the
discussion above suggests replacing it instead by (cf. (3.11))

Φ∆t ◦Ψ◦M
δt/ε (3.26)

or
(Φ∆′t ◦Ψδt/ε)

◦M , (3.27)

where again ∆′t = ∆t/M . In the limit (3.14), both (3.26) and (3.27) are
consistent with a version of (3.19) where ε has been boosted to a higher
value ε′ = εα = ε∆t/Mδt, that is,

dzε
′

dt
= F (zε

′
) +

1

ε′
G(zε

′
), (3.28)

which can again be used to explain why the scheme is accurate: essentially
(3.15) needs to hold, and if the numerical error of the vanilla time-splitting
scheme (3.24) is C(δt/ε)a, for some C > 0, then that of the scheme (3.27)
is again given by (3.18).

The scheme (3.27) was first proposed by Vanden-Eijnden (2007). Later a
very close variant of this scheme was proposed by Tao, Owhadi and Marsden
(2010) under the name ‘FLAVORS’. Specifically, if we let χ1/ε

t denote the
map that approximates numerically the solution of (3.19), and assume that
we can control the size of ε in this map, then the scheme proposed by Tao
et al. (2010) is (in our notation)(

χ0
∆′t−δt ◦ χ

1/ε
δt

)◦M
. (3.29)

As can be seen, compared to (3.27), this scheme amounts to a slight mod-
ification of the way the time-splitting is implemented: (3.27) evolves the
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22 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

variables by first using the term G/ε for a δt step, and then the term F
for a ∆′t step, whereas (3.29) evolves the variables by first using the full
F + G/ε for a δt step, and then the term F alone for a ∆′t − δt step. In
terms of accuracy, this modification is inconsequential: like (3.27), (3.29)
is consistent with (3.28) in the limit (3.15). It also leads to no significant
change in cost.

3.2. ODEs with oscillatory solutions

One advantage of the HMM framework is that sophisticated data estimation
techniques can be used in the estimator step in order to improve its perfor-
mance. This is most easily seen in the context of ODEs with highly oscil-
latory solutions. The examples discussed here also illustrate the subtleties
involved in knowing or not knowing the slow variables. To be consistent
with the existing literature, we will also use slightly different notation here.

Ordinary differential equations (ODEs) with highly oscillatory solutions
are naturally challenging for numerical simulation. Several different nu-
merical approaches have been suggested, each appropriate to some class of
ODEs. For harmonic oscillatory problems, traditional numerical approaches
attempt to either filter out or rapidly fit ε-scale oscillations to some known
functions in order to reduce complexity (e.g., Gautschi 1961, Kreiss 1992,
Scheid 1983), or use some form of Poincaré map to determine slow changes
in the orbital structure (Gear and Gallivan 1982, Petzold, Laurent and
Jeng 1997). A general class of approaches aiming at Hamiltonian systems
are geometric integration schemes that preserve a discrete version of cer-
tain invariance. We refer readers to Hairer, Lubich and Wanner (2002) and
Leimkuhler and Reich (2004) for a more extensive list of the literature. These
types of algorithms require O(ε−1) time steps. In certain applications, spe-
cial considerations are given to the high cost of evaluating non-local potential
in large systems: see, for instance, the impulse method and its derivatives
(Leimkuhler and Reich 2004). For a recent review of numerical methods for
highly oscillatory systems, see Cohen, Jahnke, Lorenz and Lubich (2006).

In recent years, substantial progress has been made in HMM-style inte-
gration; see, for example, E and Lu (2007), E et al. (2009), Calvo and Sanz-
Serna (2009, 2010), Chartier, Murua and Sanz-Serna (2010), Sanz-Serna
(2009), Ariel, Sanz-Serna, and Tsai (2012) and Tao et al. (2010).

3.2.1. A kernel averaging theorem
In the present context, the appropriate HMM is best illustrated by Fig-
ure 3.1: the upper axis represents the grid used for U imposed by the macro
solver, and the lower axis represents the finer grids on which solutions of
the microscopic equation are constructed by the micro solver, with initial
conditions determined from the values of U . The downward-pointing arrows
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Figure 3.1. Two typical structures of the proposed multiscale
algorithm. Figure (a) is for time-reversible problems.

symbolize the determination of a consistent initial condition for the micro-
scale equation from U at tn: this process is referred to as reconstruction. The
upward-pointing arrows relate the evaluation of the effective equation from
the time history of microscale variables computed in a short time interval
η: this process is referred to as data estimation. Data estimation includes
an evaluation of dU/dt as well as the values of U at different times. The
process of evaluating a consistent value of Uat time t∗ from the time history
of the microscopic variables is referred to as compression. Typically, this
evaluation is accomplished by filtering with a chosen compactly supported
kernel K.

Hence we may present the above procedures algorithmically as follows.

1 Force estimation.

(a) Reconstruction: at T = tn, U
n �→ x0n = RUn.

(b) Solve
dxn
dt

= fε(xn, t), x(tn) = x0n,

for t ∈ [tn, tn + η].
(c) Compression: U∗ = Q[xn(·)].
(d) Estimate force: f̄(tn + δt∗) ∼ f̃(tn + δt∗) = K ∗ fε(xn).
(e) If n = 0, prepare (reset) the initial data by K̃: U0 = K̃ ∗ xn.

2 Evolve the macro variables:

{U j}nj=0, U
∗, f̄(tn + δt∗) −→ Un+1, T = tn+1.

3 Repeat.

In this subsection, the reconstruction operator R will be taken to be the
identity operator, that is, RUn = Un, and the compression Q[xn(·)] =
xn(tn + δt∗).
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The two diagrams in Figure 3.1 therefore differentiate the general struc-
tures of the HMM ODE solvers. The top axis represents the macro grid on
which we solve for the values of U (step 2), and under each grid node on the
top axis is a corresponding micro grid over which step 1(b) takes place. The
arrow pointing from each macro grid point tn down to a micro grid denotes
the action taken in step 1(a), while the arrows pointing from each micro grid
up to the macro axis represent steps 1(c) and 1(d).

The schemes depicted in Figure 3.1 allow f̄ and U∗ (see steps 1 and 2)
to be evaluated at the time location tn + δt∗. The structure depicted in
Figure 3.1(a) requires δt∗ = 0, and is thus suitable for implementing a linear
multi-step method as macro solver. In this type of scheme, the effective
force is usually evaluated at the left end of each fine-scale evolution, and
therefore a non-symmetric kernel is used. In comparison, in the structure in
Figure 3.1(b), δt∗ = η/2, and a one-step method such as Runge–Kutta can
be used as a macro solver. Due to this particular structure, a symmetric
kernel can be used. In what follows, we use H and h for the discrete time
steps used in the macro and micro grid respectively.

Force estimation by specialized kernels. In our formulation, we need to esti-
mate the effective force locally at a point using the microscale data (steps
1(b)–1(d)). Motivated by the analytic averaging techniques (see, e.g., E
(2011)), we hypothesize that the effective force of a system of interest can
be defined by

f̄(t) = lim
δ−→0

[
lim
ε−→0

1

δ

ˆ t+δ

t
fε(τ) dτ

]
.

We assume that f̄ is slowly varying in the sense that∣∣∣∣ dpdtp f̄(t)
∣∣∣∣ ≤ C for 0 ≤ p ≤ s

for some constant C independent of ε. Our goal in this section is to show
that time filtering using a kernel Kp,q

η converges to f̄ , defined below, with
η = η(ε) −→ 0 as ε −→ 0:

Kp,q
η ∗ fε = Kp,q

η ∗
(
f̄ + gε(t)

)
−→ f̄ as ε −→ 0. (3.30)

In many situations, fε or gε assumes special forms such as fε(t) = fε(t, t/ε),
which are periodic in the second variable. For example,

du

dt
= fε(u, t) =

i

ε
λu+ φ(t)

has solution

u(t) = eiε
−1λt

(
u0 +

ˆ t

0
e−iε−1λsφ(s) ds

)
.

The force fε(t) = fε(u, t) =
i
ελu+ h(t) is of the form fε(t, t/ε). In this case,

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492912000025
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:42:10, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492912000025
https:/www.cambridge.org/core


The heterogeneous multiscale method 25

we define

f̄(t) =

ˆ 1

0
f(t, s) ds,

and
gε(t) = g

(
t,
t

ε

)
= fε − f̄(t).

We will use K
p,q to denote the kernel space discussed here. K ∈ K

p,q(I)
if K ∈ Cqc (R) with supp(K) = I, and

ˆ
R

K(t)tr dt =

{
1 r = 0,

0 1 ≤ r ≤ p.

Furthermore, we will use Kη(t) to denote the scaling of K:

Kη(t) :=
1

η
K

(
t

η

)
.

For convenience, we will also use Kp,q to denote a function in K
p,q(I) . We

use K ∈ K
p,q([−1, 0]) if δt∗ = 0 in step 1 of the algorithm described above,

and K ∈ K
p,q([−1, 1]) if δt∗ = η/2.

Theorem 3.1. Let fε(t) = f(t, t/ε), where f(t, s) is 1-periodic in the sec-
ond variable and ∂rf(t, s)/∂tr is continuous for r = 0, . . . , p − 1. For any
K ∈ K

p,q, there exist constants Cf̄ ,gεand Cgε , independent of ε and η, such
that

E = |Kη ∗ fε(t)− f̄(t)| ≤ Cf̄ ,gεη
p + Cgε

(
ε

η

)q
.

Furthermore, the error is minimized if η is chosen to scale with εq/(p+q).

3.2.2. Problems with hidden slow variables
We start by considering a class of systems that has an explicit slow–fast
grouping in the solution’s components:

dx

dt
=

1

ε
f(x, y, t) + g(x, y, t),

dy

dt
= h(x, y, t).

(3.31)

Here the x components stay bounded but are highly oscillatory, and the
y components are called the slow variables of the system, since their time
derivatives are formally bounded. This would be the case for Hamiltonian
systems written in the action and angle coordinates (E 2011). If x(t) yields
an invariant measure on some fixed manifold M, then y(t) can be consis-
tently approximated in any constant time interval by the averaged equation

dȳ

dt
= h̄(y, t) :=

ˆ
M
h(x, y, t) dµ(x). (3.32)
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26 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

Such systems are widely studied in the construction of multiscale methods;
see, for instance, Vanden-Eijnden (2003) or E (2003). In this case, it is
reasonable to use y as the macroscopic variable, that is, U = ȳ � y, and
R(U,DR) = (x∗, y), where DR gives the value x∗ ∈ M. For example, x∗
may be taken from the x values in the previous microscale simulation. The
compression Q may simply be Q(x, y) = y.

However, if there are resonances among the oscillations, x(t) is unlikely to
remain on a fixed invariant manifold (Kreiss 1992), and more sophistication
in the algorithm is needed. One can see the essence of this problem from
the simple example

dx

dt
= i

εx+ g(x), x(0) = 1,

dy

dt
= h(x), y(0) = y0.

=⇒


dw

dt
= e−

i
ε
tg(e

i
ε
tw), x(t) = e

i
ε
tw(t),

dy

dt
= h(e

i
ε
tw), y(0) = y0.

Let us formally decompose e−
i
ε
tg(e

i
ε
tw) = ḡ(w) + α(e

i
ε
t, w), where ḡ does

not depend on any fast oscillations. If ḡ ≡ 0, then w(t) stays close to 1, due
to strong self-averaging in α. Thus (3.32) corresponds to averaging h over
the unit circle, and dµ is the arc-length element. Resonance in this system
corresponds to the case where ḡ is non-zero. Consequently, the averaging
has to be performed with the correct measure:

dȳ

dt
= h̄(y, t) :=

ˆ
M(t)

h(x, y, t) dµ(x; t).

For example, if g(x) = x, then ḡ(w) = w, and α ≡ 0. Consequently, M(t)
is a circle with radius equal to w(t) = exp(t). Without knowledge of w(t),
it is impossible to define a consistent reconstruction operator R, and conse-
quently it is impossible to build a convergent multiscale algorithm. In some
of the literature, the issue caused by resonance is referred to as the system
having hidden slow variables (Fatkullin and Vanden-Eijnden 2004, Engquist
and Tsai 2005, Ariel, Engquist, Kreiss and Tsai 2009c, Tao et al. 2010). It is
essential that a multiscale method should compute the effect of the hidden
slow variables accurately.

It is possible to design multiscale algorithms that compute the effective
behaviour of highly oscillatory dynamical systems by using slow variables
(Ariel, Engquist and Tsai 2009a). We continue our discussion using the
previous example, but instead we rewrite the equation for x as a system
in R

2:
dx1
dt

=
1

ε
x2 + x1,

dx2
dt

= −1

ε
x1 + x2,
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with initial conditions (x1(0), x2(0)) = (0, 1). Thus

(x1(t), x2(t)) = (et sin ε−1t, et cos ε−1t).

Taking I = x21 + x22, we notice that I has a bounded derivative along
the trajectory of the solution, that is, I ′ := (d/dt)I(x1(t), x2(t)) = 2I is
independent of ε. For this particular example one can easily solve for I,
I(t) = I(0) e2t. In fact, the uniform bound on I ′ indicates the slow nature
of I(x1(t), x2(t)) when compared with the fast oscillations in (x1(t), x2(t)).
This type of characterization of the effective dynamics of highly oscillation
systems is commonly used in the literature. In this example it was easy to
find the slow quantity I. In general it is difficult, and the proposed research
aims to avoid this difficulty. In classical mechanics, I is referred to as the
action variable, and there is a corresponding angle variable whose gradient
is τ .

We say that ξ : D0 ⊂ R
d �→ R has a bounded derivative along xε(t) if, for

0 < ε < ε0,
sup

xε∈D0,ε∈(0,ε0)
|∇ξ(xε) · ẋε| ≤ C. (3.33)

Such functions are commonly referred to as slow variables of the system; see,
for example, Kreiss (1979, 1992), Kreiss and Lorenz (1993), Fatkullin and
Vanden-Eijnden (2004), Gear and Kevrekidis (2005) and Ariel et al. (2009a,
2009b). Other approaches to finding slow variables include, for example,
those of Artstein, Kevrekidis, Slemrod and Titi (2007a) and Artstein, Linshiz
and Titi (2007b).

Typically, one may expect the trace of a slow variable along the dynamical
system’s solutions, ξ ◦ xε, to converge to a smooth curve as ε → 0. We
shall denote this limit by ξ̄(t;x0). In designing multiscale algorithms for
this type of problem, it is often convenient to aim at constructing accurate
approximation of ξ̄ by suitable filtering of the oscillations in xε(t).

3.2.3. Algorithms with hidden slow variables
Consider an ODE system of the general form

dx

dt
=

1

ε
f(x) + g(x), x(0) = x0, (3.34)

where 0 < ε ≤ ε0 is a small parameter that characterizes the separation of
time scales in the problem. Let ζ(t) denote the solution of

dζ

dt
= F̄ (ζ) =

ˆ
S1

F (ζ, σ, γ = 0) dσ, ζ(0) = ξ(0). (3.35)

The first step in our algorithm is to identify the slow variables ξ(x). The
slow variables can be determined analytically or numerically by identifying
coefficients in a predetermined form. For details, see Ariel et al. (2009a).
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Then the ODE (3.34) is integrated using a two-level algorithm: each level
corresponds to the integration of (3.34) in a different time scale. The first is
a macro solver, which integrates the averaged equation (3.35). The second
level is a micro solver that is invoked whenever the macro solver calls for it.
Each time the micro solver is invoked, it computes a short time solution of
(3.34) using suitable initial data.

1 Construction of slow variables. Find functions ξ1(x), . . . , ξr(x) such that
|∇xξẋ|≤C0 and rank(∂ξ/∂x)=r. (See Ariel et al. (2009a) for details.)

2 Multiscale evolution.

(a) Initial conditions: x(0) = x0 and n = 0.
(b) Force estimation.

(i) Microscale solver: solve (3.34) in t ∈ [tn, tn + 2η] with initial
conditions xn.

(ii) Averaging: approximate ξ̇(tn + η) by

〈ξ̇〉η(tn + η) = (Kη ∗ ξ̇)(tn + η) = (−K̇η ∗ ξ)(tn + η).

(c) Macroscale solver (forward Euler example): xn+1 = x
M/2
n + Hδx,

where δx is the least-squares solution to the linear system

δx · ∇ξi = F̄i(ξ) = 〈ξ̇i〉η,
for all i = 1, . . . , r.

(d) n = n+ 1. Repeat steps (b) and (c) until time T .

Note that there is no need to actually change the original ODE (3.34) to a
form with explicit use of the slow variables.

3.2.4. A Fermi–Pasta–Ulam model
The Fermi–Pasta–Ulam model (Fermi, Pasta and Ulam 1955) is a simple
system of unit mass particles connected by springs. The springs alternate
between stiff linear and soft non-linear ones. Recently, this model was con-
sidered by Hairer et al. (2002) as a benchmark problem for studying the
long-time properties of numerical solutions to stiff ODEs using geometric
integrators. The model is derived from the Hamiltonian

H(p, q) =
1

2

2k∑
i=1

p2i +
1

4
ε−2

k∑
i=1

(q2i − q2i−1)
2 +

k∑
i=0

(q2i+1 − q2i)
4. (3.36)

The following linear change of variables is convenient, since it separates the
elongations of the stiff springs and associated momentum,

xi = ε−1(q2i−1 − q2i)/
√
2, vi = (p2i−1 − p2i)/

√
2, (3.37)
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Figure 3.2. Comparison of the HMM approximation for the solution of the
Fermi–Pasta–Ulam equations of motion (3.39) with three stiff springs, k = 3,
with that obtained using the Verlet method with step size of the order of ε.
(a) Soft variables on an O(1) time scale, and (b) I1, I2 and I3 on an O(ε−1)
scale. With the above parameters the HMM algorithm runs an order of
magnitude faster than the Verlet one. The ratio between running times
increases with smaller ε.
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Figure 3.3. The HMM approximation for the solution of the Fermi–Pasta–
Ulam equations of motion (3.39) with ten stiff springs, k = 10. (a) y1, u1,
y10 and u10 on an O(1) time scale, and (b) I1, . . . , I10 on an O(ε−1) scale.
The Verlet method takes too long to integrate.
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and a second set of variables associated with the soft springs:

yi = (q2i−1 + q2i)/
√
2, ui = (p2i−1 + p2i)/

√
2, (3.38)

Defining y0 = x0 = y2k+1 = x2k+1 = 0, the equations of motion become

ẏi = ui,

ẋi = ε−1vi, (3.39)

u̇i = −(yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3,

v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3.

Typical initial conditions are x1 = y1 = v1 = u1 = 1 and zero otherwise,
which means that initially k − 1 of the stiff springs are at rest. The system
admits 4k − 1 slow variables: first, all the degrees of freedom which are
related to the soft springs, yi and ui, i = 1, . . . , k; second, the total energy
(kinetic + potential) of the stiff springs, Ii = x2i +v

2
i ; and finally, the relative

phases between the different stiff springs, φk = x1xi+ v1vi, i = 1, . . . , k− 1.
On the O(1) time scale the system can be evolved using the HMM algo-

rithm described above. Figure 3.2(a) depicts our results for systems with
three stiff springs, k = 3, and Figure 3.3(a) shows the results for ten springs,
k = 10. Simulation parameters for k = 3 are ε = 10−4, h = ε/15, and
H = 0.02 and η = 15.4ε. For k = 10 we used ε = 10−4, h = ε/15, and
H = 0.02 and η = 20.4ε. On the O(ε−1) time scale the dynamics become
more interesting as the energies Ii begin to change (Fermi et al. 1955, Hairer
et al. 2002).

3.3. Stochastic simulation algorithms

Chemical kinetics can be described using either the rate equations or stochas-
tic simulation algorithms. The former is suited to situations when the vol-
ume (or number) of the participating species is large. The latter is necessary
for situations when stochastic and/or discrete effects are important. This is
particularly the case in biological applications. Since the rate of reaction of-
ten depends exponentially on physical parameters such as temperature, it is
quite common for these rates to be very different. Hence the rate equations
are typically very stiff and the stochastic simulation algorithms often have
a pronounced multiscale nature.

In this subsection we discuss how HMM can be used to overcome the
difficulties associated with the disparity of the rates in stochastic simulation
algorithms. We begin with the general set-up.

Let us assume that we have a total of N species of molecules, denoted by
S1, . . . , SN . The number of molecules of species Sk is denoted by xk, The
state vector is then given by x = (x1, . . . , xN ), with corresponding state
space denoted by X . Assume that there are M reaction channels, each
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The heterogeneous multiscale method 31

described by its reaction rate and stoichiometric vector:

Rj = (aj , νj), R = {R1, . . . , RM}. (3.40)

Given the state x, the occurrence of the reactions on an infinitesimal time
interval dt is independent for different reactions, and the probability of the
reaction Rj happening during this time interval is given by aj(x) dt. After
reaction Rj , the state of the system changes to x+ νj . In the chemistry and
biology literature, this is often called the stochastic simulation algorithm
(SSA), or Gillespie algorithm, named after an algorithm that realizes this
process exactly (see Gillespie (1976)).

Let X(t) be the state variable at time t, and let Ex denote the expectation
conditional on X(0) = x. Then the observable u(x, t) = Exf(X(t)) satisfies
the following backward Kolmogorov equation:

∂u(x, t)

∂t
=
∑
j

aj(x)
(
u(x+ νj , t)− u(x, t)

)
= (Lu)(x, t). (3.41)

The operator L is the infinitesimal generator of the Markov process associ-
ated with the chemical kinetic system we are considering.

The SSA proceeds as follows. Let

a(x) =

MR∑
j=1

aj(x). (3.42)

Assume that the current time is tn, and the system is at state Xn. We
perform the following steps.

1 Generate independent random numbers r1 and r2 with uniform distri-
bution on the unit interval (0, 1]. Let

δtn+1 = − ln r1
a(Xn)

, (3.43)

and let kn+1 be the natural number such that

1

a(Xn)

kn+1−1∑
j=0

aj(Xn) < r2 ≤
1

a(Xn)

kn+1∑
j=0

aj(Xn), (3.44)

where a0 = 0 by convention.

2 Update the time and the state of the system by

tn+1 = tn + δtn+1, Xn+1 = Xn + νkn+1 . (3.45)

Then repeat.
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In this algorithm, r1 is used to update the clock and r2 is used to select
the particular reaction to be executed.

Now assume the rate functions have the form

a(x) =

(
as(x),

1

ε
af (x)

)
, (3.46)

where ε� 1 represents the ratio of the fast and slow time scales of the sys-
tem. The corresponding reactions and the associated stoichiometric vectors
can be grouped accordingly:

Rs = {(as, νs)}, Rf =

{(
1

ε
af , νf

)}
. (3.47)

We call Rs the slow reactions and Rf the fast reactions. We have made the
simplifying assumption that the rates are divided into two groups. Clearly
the algorithm can be easily extended to situations when there are multiple
groups. The more serious assumption here is that the groups of slow and
fast reactions do not change in time. Some adaptive strategies have to be
introduced in order to remove this restriction.

Our interest is in the dynamics of the slow processes, not the detailed
dynamics of the fast processes. To this end, an effective system can be
derived using standard averaging methods (Kurtz 1973, Papanicolaou 1977).
For this purpose it is helpful to introduce an auxiliary process, called the
virtual fast process (Cao, Gillespie and Petzold 2005). This auxiliary process
retains the fast reactions only: all slow reactions are turned off. Intuitively,
each realization of the SSA consists of a sequence of realizations of the virtual
fast process, punctuated by occasional firing of the slow reactions. Due to
the time scale separation, with high probability, the virtual fast process has
enough time to relax to equilibrium before another slow reaction takes place.
Therefore the effective slow rates for the slow dynamics should simply be
the original slow rates averaged over the equilibrium distributions associated
with the virtual fast process.

Let µx denote the equilibrium distribution of the virtual fast process when
it is initialized at x, and let

ãsi (x) =
∑
z∈X

asi (z)µx(z). (3.48)

It can be shown that the effective dynamics is governed by the set of reac-
tions:

R̄ = (ās(x), ν̄s). (3.49)

The effective master equation is given by

∂u

∂t
(x, t) =

Ms∑
i=1

ãsi (x)
(
u(x+ νsi , t)− u(x, t)

)
. (3.50)
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We will discuss an algorithm proposed by E, Liu and Vanden-Eijnden
(2005a), which is a simple modification of the original SSA by adding a
nested structure according to the time scale of the rates. The process at
each level of the time scale is simulated with an SSA with some effective
rates. Results from simulations on fast time scales are used to compute the
rates for the SSA at slower time scales.

Let tn, Xn be the current time and state of the system respectively. The
two-level nested SSA proceeds as follows.

1 Microscale solver: the inner SSA. Pick an integer N . Run N indepen-
dent replicas of SSA with the fast reactions Rf = {(ε−1af , νf})} only,
for a time interval of T0 + Tf . During this calculation, compute the
modified slow rates for j = 1, . . . ,Ms,

ãsj =
1

N

N∑
k=1

1

Tf

ˆ Tf+T0

T0

asj(X
k
τ ) dτ, (3.51)

where Xk
τ is the result of the kth replica of this auxiliary virtual fast

process at virtual time τ whose initial value is Xk
t=0 = Xn, and T0 is a

parameter we choose in order to minimize the effect of the transients to
the equilibrium in the virtual fast process.

2 Macroscale solver: the outer SSA. Run one step of SSA for the modified
slow reactions R̃s = (ãs, νs) to generate (tn+1, Xn+1) from (tn, Xn).

Then repeat.
This algorithm is called the nested stochastic simulation algorithm (nested

SSA). Unlike standard examples of HMM, here we do not need to know what
the slow and fast variables are in order to carry out the computation. The
algorithm is formulated in terms of the original variables.

Convergence and efficiency of the nested SSA. The original SSA is an exact
realization of the stochastic chemical kinetic system. The nested SSA, on
the other hand, is an approximation. The errors in the nested SSA can be
analysed using the general strategy for analysing HMM. The details can be
found in E, Liu and Vanden-Eijnden (2007b).

Let f be a smooth function. Let X̃t denote the solution of the nested SSA.
Consider the observable v(x, t) = Exf(Xt), where the expectation is taken
with respect to the randomness in the outer SSA only. Let u(x, t) be the
solution of the effective equation (3.50) with u(x, 0) = f(x). The following
result is proved in E et al. (2005a, 2007b).
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Theorem 3.2. For any T > 0, there exist constants C and α independent
of (N,T0, Tf ) such that

sup
0≤t≤T,x∈X

E|v(x, t)−u(x, t)| ≤ C

(
ε+

e−αT0/ε

1 + Tf/ε
+

1√
N(1 + Tf/ε)

)
. (3.52)

This result can be used to analyse the efficiency of the nested SSA. Given
a chemical kinetic system with R = {(aj , νj)}, we assume that the total rate
a(x) =

∑
aj(x) does not fluctuate greatly in time: a(x) ∼ O(ε−1). Given an

error tolerance λ, we choose the parameters in the nested SSA so that each
term in (3.52) is less than O(λ). One possible choice of the parameters is

T0 = 0, N = 1 + ε−1Tf =
1

λ
. (3.53)

The total cost for the nested SSA over a time interval of O(1) is

cost = O(N(1 + T0/ε+ Tf/ε)) = O

(
1

λ2

)
. (3.54)

In comparison, the cost for the direct SSA is

cost = O

(
1

ε

)
. (3.55)

since the time step size is of order ε. When ε� λ2, the nested SSA is much
more efficient than the direct SSA.

Next we discuss the influence of the other numerical parameters on the
efficiency. The parameter T0, which plays the role of numerical relaxation
time, has little influence on the efficiency. Given the same error tolerance λ,
for the last term in the error estimate (3.52) to be less than O(λ), we need
to have

N

(
1 +

ε

Tf

)
≥ O

(
1

λ2

)
. (3.56)

Therefore

cost ≥ O

(
N

(
1 +

ε−1

Tf

))
= O

(
1

λ2

)
, (3.57)

which is the same as (3.55) regardless of the value of T0. The above argument
also implies that the optimal cost for the nested SSA is O

(
1
λ2

)
to achieve an

error tolerance of λ.
Turning now to the effect of parameter N , the number of realizations for

inner SSA, let us see what happens when we take N = 1. For the error
estimate (3.52) to satisfy the same error tolerance λ, we have to choose

1 +
ε

Tf
=

1

λ2
. (3.58)
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The cost of the nested SSA is given by

cost = O

(
N

(
1 +

ε

Tf

))
= O

(
1

λ2

)
, (3.59)

which is the same as the cost if we use multiple realizations. This means
that using multiple realizations in the inner SSA does not increase the effi-
ciency of the overall scheme either. Obviously, using multiple realizations is
advantageous for implementation on parallel computers.

Other versions of the nested SSA are discussed by Samant and Vlachos
(2005) and Salis and Kaznessis (2005). Although they appear to be quite
different, it can be shown that they are essentially the same as the nested
SSA discussed here.

A numerical example: a virus infection model. As a concrete example, we
discuss a virus infection model studied by E et al. (2005a) and Haseltine
and Rawlings (2002). The model was originally proposed by Srivastava,
You, Summers and Yin (2002) as an example of the failure of modelling
reacting networks with deterministic dynamics. The reactions considered in
this model are listed in Table 3.1 with MR = 6. The species that need to
be modelled are genome, struct, template and virus (Ns = 4). Genome is
the vehicle of the viral genetic information which can take the form of DNA,
positive-strand RNA, negative-strand RNA, or some other variants. Struct
represents the structural proteins that make up the virus. Template refers to
the form of the nucleic acid that is transcribed and involved in catalytically
synthesizing every viral component. The nucleotides and amino acids are
assumed to be available at constant concentrations.

When template > 0, the production and degradation of struct, which are
the third and fifth reactions, marked with ∗ in Table 3.1, are faster than
the others. From the reaction rates, we can see that the ratio of time scales
is about ε = 10−3. In a system that consists of only the fast reactions,

Table 3.1. Reaction channels of the virus infection model.

nucleotides
a1=1.×template−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome−−−−−−−−−−−−−−−−−−−−−−→ template

nucleotides + amino acids
a3=1000×template−−−−−−−−−−−−−−−−−−−−−−−→ struct ∗

template
a4=.25×template−−−−−−−−−−−−−−−−−−−−−−→ degraded

struct a5=1.9985×struct−−−−−−−−−−−−−−−−−−−−−−→ degraded/secreted ∗

genome + struct
a6=7.5d−6×genome×struct−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus
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Table 3.2. The reduced virus infection model.

nucleotides
a1=1.×template−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome−−−−−−−−−−−−−−−−−−−−−−→ template

template
a4=.25×template−−−−−−−−−−−−−−−−−−−−−−→ degraded

genome + struct
a6=3.75d−3×genome2×struct−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Table 3.3. Efficiency of the nested SSA for the virus infection model.

Tf/ε 1 4 16 64 ‘Exact’

CPU 154.8 461.3 2068.2 9190.9 34806.4
template 4.027 3.947 3.796 3.757 3.717± 0.005

var(template) 5.401 5.254 5.007 4.882 4.978± 0.005

struct has an equilibrium distribution which is Poisson, with parameter λ =
500× template, such that

Ptemplate(struct = n) =
(500× template)n

n!
exp(−500× template). (3.60)

Note that struct only shows up in the last slow reaction. The reduced dy-
namics in the form of the slow reactions (a1,2,4,6), with the rates averaged
with respect to the quasi-equilibrium of the fast reactions (a3,5), can be given
as a system with four reactions, shown in Table 3.2. The initial condition
is chosen to be

(struct, genome, template, virus) = (0, 0, 10, 0). (3.61)

The mean value and the variance of template at time T = 20 are used as a
benchmark. A computation of these values by a direct SSA using N0 = 106

realizations leads to

template = 3.7170± 0.005, var(template) = 4.9777± 0.005. (3.62)

For the nested SSA, we make a series of simulations in which we choose the
size of the ensemble and the simulation time of the inner SSA according to

(N,T0, T/ε) = (1, 0, 22k), (3.63)

for different values of k = 0, 1, 2, 3, . . . . The error estimate in (3.52) then
implies that the error δ should decay with the rate

δ = O(2−k), (3.64)
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Figure 3.4. Relative errors of template using the nested
SSA for the virus infection model (courtesy of Di Liu).

which is consistent with the results in Figure 3.4. Table 3.3 gives the total
CPU time and the obtained values of template and var(template), with the
parameters of inner SSA chosen according to (3.63) and using N0 = 106

realizations of the outer SSA (the same as in the direct SSA).

4. Finite element HMM

Finite element heterogeneous multiscale methods (FE-HMM) for homog-
enization problems, first proposed by E and Engquist (2003), have been
developed for elliptic problems (Abdulle 2005b, E, Ming and Zhang 2005b,
Abdulle 2006, Abdulle and Schwab 2005), elastic problems (Abdulle 2006),
parabolic problems (Ming and Zhang 2007, Abdulle and Vilmart 2012a),
wave problems (Abdulle and Grote 2011), and advection–diffusion problems
(Abdulle 2005a, Henning and Ohlberger 2010). Further developments for el-
liptic problems include coupling of finite element macroscopic methods with
spectral methods (Abdulle and Engquist 2007), with reduced basis meth-
ods (Abdulle and Bai 2012), FE-HMM with special quadrature formulas
(Du and Ming 2010), and discontinuous Galerkin FE-HMM (Abdulle 2008,
Abdulle 2012).

Various numerical methods have been derived in the past few years for
multiscale partial differential equations, mostly for elliptic problems. We
do not attempt to review the literature on the subject, and just give a
few references. Numerical approaches for homogenization problems were
pioneered by Babuška (1976) for static problems and Engquist (1987) for
dynamic problems. For multiscale elliptic problems, an important early de-
velopment is the generalized finite element method proposed by Babuška and
Osborn (1983), who developed the idea of adapting the finite element space
to the particular fine-scale features of the problem. Dorobantu and Engquist
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38 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

(1998) and Engquist and Runborg (2002) proposed a method based on multi-
resolution analysis, Neuss, Jäger and Wittum (2001) combined the multigrid
method with homogenization in the coarsening process, Hou, Wu and Cai
(1999) proposed the multiscale finite element method (MsFEM) based on
modified basis functions obtained from the fine-scale equations (see Efendiev
and Hou (2009) for a review), Matache, Babuška and Schwab (2000) and
Matache and Schwab (2002) developed the two-scale finite element method,
and Viet Ha Hoang and Schwab (2005) proposed the high-dimensional fi-
nite element method. We also mention the huge literature in the structural
mechanics and engineering communities concerned with micro–macro meth-
ods based on representative volume elements (RVEs). Such methods have
been proposed for various types of problems, but often without convergence
analysis. We mention the methods of Terada and Kikuchi (2001), Miehe,
Schröder and Bayreuther (2002) and Geers, Kouznetsova and Brekelmans
(2010).

4.1. General methodology

We start by explaining the methodology of the FE-HMM. We consider a
general multiscale problem of the form

Lε(uε, aε) = f in Ω,

where Lε is a differential operator, aε denotes the data of the problem, Ω is
an open bounded subset of Rd, f : Ω → R is given and uε : Ω̄ → R is the
solution of the above problem for which appropriate boundary conditions
are specified. To emphasize the multiscale nature of the data of the above
problem, we put a superscript ε (representing the typical size of a small scale
in the considered problem) on a, L and u. Here, for simplicity, in view of
numerical discretization, we assume that Ω ⊂ R

d (d = 1, 2, 3) is a polygonal

Figure 4.1. Sketch of the FE-HMM algorithm: macro triangulation TH
(quadrilateral and simplicial elements) with sampling domains within
the macro elements. A close-up of the sampling domains shows the
micro triangulation Th, chosen here to be quadrilaterals.
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domain. The effective problem, assumed to exist, is of the form

L0(u0, a0) = f in Ω,

where u0 : Ω̄ → R is the effective solution. One can think of u0 as being the
limit (in an appropriate sense) of the solution uε as ε → 0. The weak solu-
tions of any of the above problems are assumed to belong to an appropriate
Sobolev space, denoted by H(Ω). The FE-HMM can be summarized by the
following steps.

• Macroscale solver.

– Macro triangulation. Define a macroscopic partition Ω =
⋃
K∈TH K

and a macroscopic finite-dimensional subspace S(Ω, TH) of H(Ω).
– Macro method. Let uH ∈ S(Ω, TH) be the solution of LH(uH) = f,

where LH is an unknown approximation of the effective differential
operator L0.

• Microscale solver.

– Constrained micro simulations. For every K ∈ TH , consider a
suitable quadrature formula {xKj , ωKj}Jj=1, and sampling domains
Kδj = xKj + δI, I = (−1/2, 1/2)d (δ ≥ ε). Define a micro tri-
angulation

⋃
T∈Th T = Kδj and a micro finite-dimensional space

S(Kδj , Th). Compute micro solutions uh ∈ S(Kδj , Th) constrained
by the macro variable using the original fine-scale operator.

– Data processing. Recover LH(uH)|K locally by a suitable average
of uh in Kδj .

We notice that the method described here could be used to solve problems
with a right-hand side depending on ε (e.g., fε) with minor changes (see
Abdulle and Schwab (2005)).

4.2. Model problem

To describe the method, we consider Lε(uε, aε) = −∇ · (aε∇uε), that is, the
linear elliptic homogenization problem seen in Section 2,

−∇ · (aε∇uε) = f in Ω, uε = 0 on ∂Ω, (4.1)

where the family of tensors aε(x) ∈ (L∞(Ω))d×d (indexed by ε) is assumed
to be uniformly elliptic and bounded, that is,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x)ξ · ξ and |aε(x)ξ| ≤ Λ|ξ|, (4.2)

∀ξ ∈ R
d, ∀ε, a.e. x ∈ Ω,
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where ε is a microscopic scale that characterizes the multiscale nature of the
tensor aε(x). Here we take zero Dirichlet boundary conditions for simplicity.1
We also assume that f ∈ L2(Ω) (f ∈ H−1(Ω) would also be possible). By
the Lax–Milgram theorem, owing to the uniform ellipticity and boundedness
of the tensor aε, the weak form of (4.1) possesses for each ε a unique solution,
and we can thus consider a family of solutions {uε} (indexed by ε) which
are bounded in H1

0 (Ω) by the same constant.

Homogenization results. The goal of homogenization theory is to find an
‘averaged equation’ corresponding to (4.1). Using H-convergence theory
(Murat and Tartar 1997) – or G-convergence theory in the symmetric case
(De Giorgi and Spagnolo 1973) – and without further assumptions on the
heterogeneities of the tensor aε(x), it is possible to show that there exists
a tensor a0(x) (again uniformly elliptic and bounded) and a subsequence of
{uε} which weakly converges in H1

0 (Ω) to a function u0 ∈ H1
0 (Ω), such that

−∇ · (a0∇u0) = f in Ω, u0 = 0 on ∂Ω. (4.3)

Returning to the general description of Section 4.1, we see that

L0(u0, a0) = −∇ · (a0∇u0).

If aε(x) has a more specific structure, for example if aε(x) = a(x, x/ε) and
is periodic in its second argument, then classical results show that the whole
sequence {uε} weakly converges to u0 ∈ H1

0 (Ω), and the homogenized tensor
a0(x) at x ∈ Ω can be characterized as the average of the solutions of ‘cell
problems’ (i.e., d boundary value problems on a domain of size εd involving
the fine-scale tensor aε(x) = a(x, x/ε)). For details we refer, for example,
to Bensoussan, Lions and Papanicolaou (1978), Jikov, Kozlov and Oleinik
(1994) and Cioranescu and Donato (1999). Notice that even in this fortunate
case, we generally still have an infinite number of cell problems to solve, due
to the slow variation in the tensor. Classical numerical approaches consist of
pre-computing an approximation of the effective tensor a0(xi) at predefined
sampling points xi ∈ Ω, i = 1, . . . , p, and using a standard finite element
method based on these pre-computed data. Although straightforward, this
sequential strategy does not allow for a natural way to derive a priori or
a posteriori error control of the overall discretization (as it depends on the
accuracy of the numerically pre-computed homogenized tensors). Further,
this procedure does not give a straightforward discretization for non-periodic
or non-linear problems, and makes it difficult to switch locally to a fine-scale
approximation (desirable in some applications).

1 The algorithm and results stated in this section are valid for other boundary conditions
(non-zero Dirichlet, Neumann, mixed, etc.) with obvious changes.
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4.3. FE-HMM: algorithm

In this section we give a detailed description of the FE-HMM. We restrict
ourselves to the model problem (4.1). In Section 4.3.3, generalizations to
more involved problems (e.g., non-linear problems) will be described.

4.3.1. Macroscale solver
Let TH denote a family of (macro) partitions2 of Ω in simplicial or rectangu-
lar elements K. The diameter of an element K ∈ TH is denoted by HK and
we set H = maxK∈TH HK . We then consider a macro finite element space

S�0(Ω, TH) = {vH ∈ H1
0 (Ω) : vH |K ∈ R�(K), ∀K ∈ TH}, (4.4)

where R�(K) is the space P�(K) of polynomials on K of total degree at most
�, if K is a simplicial finite element, or the space Q�(K) of polynomials on
K of degree at most � in each variable, if K is a rectangular finite element.
For every K we consider the quadrature formula {xKj , ωKj}Jj=1 (described
further in Section 4.3.2), and sampling domains Kδj , defined as Kδj = xKj +

δI, I = (−1/2, 1/2)d (δ ≥ ε).

Multiscale method. Find uH ∈ S�0(Ω, TH) such that

BH(uH , vH) =

ˆ
Ω
fvH dx, ∀vH ∈ S�0(Ω, TH), (4.5)

where for arbitrary vH , wH ∈ S�0(Ω, TH) the bilinear form BH(·, ·) is defined
by

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj

|Kδj |

ˆ
Kδj

aε(x)∇vh,Kj · ∇wh,Kj dx, (4.6)

where vh,Kj = RKj (vH), wh,Kj = RKj (wH) and RKj = R|Kj is the re-
construction operator (in the terminology of Section 2) restricted to the
sampling domain Kδj . In the notation of Section 4.1, we have

LH : S�0(Ω, TH) −→ L2(Ω),

where
(LH(vH), wH) = BH(vH , wH),

and (·, ·) is the L2 inner product. In order to assemble the bilinear form
BH(vH , wH) we need to compute the functions RKj (vH), RKj (wH), as de-
scribed in the next subsection.

2 By macro partition we mean that H � ε is allowed.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492912000025
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:42:10, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492912000025
https:/www.cambridge.org/core


42 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

4.3.2. Microscale solver
The location of the sampling domains Kδj and the choice of the weights ωKj

(j = 1, . . . , J) in the definition ofBH(·, ·) rely on the definition of appropriate
quadrature formulas. We consider K̂ to be the reference element, and for
every elementK of the triangulation we let FK denote the C1-diffeomorphism
such that K = FK(K̂). For every K we consider the quadrature formula
xKj = FK(x̂j), ωKj = ω̂j |det(∂FK)|, j = 1, . . . , J, where {x̂j , ω̂j}Jj=1 is a
quadrature formula on K̂. We then consider a (micro) partition Th of each
sampling domain Kδj in simplicial or rectangular elements T and define a
micro finite element space

Sq(Kδj , Th) = {zh ∈W (Kδj ) : zh|T ∈ Rq(T ), ∀T ∈ Th}, (4.7)

where h = maxT∈Th hT (hT is the diameter of the element T ) and W (Kδj )
is a given Sobolev space.

Coupling. Various spaces W (Kδj ) can be chosen for the micro numerical
method, for example

W (Kδj ) =W 1
per(Kδj ) =

{
z ∈ H1

per(Kδj ) :

ˆ
Kδj

z dx = 0

}
, (4.8)

for a periodic coupling, or

W (Kδj ) = H1
0 (Kδj ) (4.9)

for a coupling via Dirichlet boundary conditions. Other coupling conditions,
constraining the averaged gradient of a microscale solution, can be used. We
refer to Yue and E (2007) for further discussion.

Micro method. For each vH ∈ S�0(Ω, TH) we define a micro function vh,Kj ,
satisfying (vh,Kj − vH,lin) ∈ Sq(Kδj , Th), which is a solution of

ˆ
Kδj

aε(x)∇vh,Kj · ∇zh dx = 0, ∀zh ∈ Sq(Kδj , Th), (4.10)

where vH,lin|Kδj
= vH(xKj ) + (x − xKj ) · ∇vH(xKj ) is the linearization of

vH at the quadrature point xKj . As explained in Section 4.4.1, the bilinear
form (4.6) can be rewritten as

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
K(xKj )∇vH(xKj ) · ∇wH(xKj ),

where a0K(xKj ) is the macroscale data (effective tensor) at the quadrature
point xKj recovered by the microscale simulations. This is the data process-
ing step mentioned in Section 4.1, which is implicitly computed by defining
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the bilinear form via the quantities

1

|Kδj |

ˆ
Kδj

aε(x)∇vh,Kj · ∇wh,Kj dx.

Remark 4.1. Conditions on the quadrature formula are needed to ensure
that the optimal convergence rates for elliptic finite element methods are
obtained when using numerical quadrature. We make the following classical
assumptions on the quadrature formula {x̂j , ω̂j}Jj=1 on the reference element
K̂ (see Ciarlet and Raviart (1972)):

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, for all p̂(x̂) ∈
R�(K̂), λ̂ > 0,

(Q2)
´
K̂ p̂(x̂) dx̂ =

∑J
j=1 ω̂j p̂(x̂j), for all p̂(x̂) ∈ Rσ(K̂), for which σ =

max(2� − 2, �) if K̂ is a simplicial finite element, or σ = max(2� −
1, �+ 1) if K̂ is a rectangular finite element.

4.3.3. Implementation and numerical illustration
The macro–micro methodology described in Section 4.3 allows easy imple-
mentation and design of a code whose structure follows the classical finite
element implementation at the macro level. In particular, elementwise as-
sembly for each macro element K can be computed to find the additive
contribution from (4.6) to the macroscopic stiffness matrix. Abdulle and
Nonnenmacher (2009b) propose a short (less than 200 lines) and flexible
MATLAB implementation, capable of handling two- and three-dimensional
elliptic and parabolic problems. All the numerical experiments presented
in these subsections have been made with the code presented by Abdulle
and Nonnenmacher (2009b) or a variation of it (e.g., Abdulle and Vilmart
(2011a)). These public-domain codes are available at http://anmc.epfl.ch.
Additional numerical experiments can be found in Abdulle (2009) and Ming
and Yue (2006).

Macro–micro mesh refinement. Some care is needed in the choice of the
macroscopic mesh TH (a triangulation of the physical domain Ω) and the
microscopic mesh Th (a triangulation of the sampling domain Kδj ). Taking
Nmic elements in each space dimension for the discretization of the sampling
domain Kδj , we have h = δ/Nmic and thus ĥ := h/ε = (δ/ε) · (1/Nmic).
Since δ scales with ε, typically δ = Cε (where C is a constant of moderate
size), we have ĥ = C/Nmic. We let Mmic = O(ĥ−d) denote the number of
degrees of freedom for the micro finite element method and let Mmac denote
the number of degrees of freedom for the macro finite element method. For
quasi-uniform macro meshes, the macro mesh size H (sometimes denoted
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Figure 4.2. Error with respect to the homogenized solution u0 for the
FE-HMM applied to a two-dimensional periodic problem: (a) L2 error,
(b) H1 error. The horizontal axis represents the macro mesh size (decreasing
from left to right). Each curve represents the error obtained by macro mesh
refinement for fixed micro meshes h/ε = 1/2, 1/4, 1/10, 1/22, 1/46, 1/94.
Horizontal curves indicate a dominant micro error.

H = 1/Nmac) and the micro mesh size ĥ are related to Mmac and Mmic by

H = O(M−1/d
mac ), ĥ = O(M

−1/d
mic ).

A priori error analysis for the fully discrete method (4.5), first given in
Abdulle (2005b), provides an insight into this meshing problem, and reveals
that the optimal refinement of the micro mesh is given by

ĥ :=
h

ε
� H

�
2q (H1 norm), ĥ :=

h

ε
� H

�+1
2q (L2 norm).

The corresponding complexity, in terms of macro degrees of freedom, satisfies

H−d︸︷︷︸
Mmac

·H
−d�
2q︸ ︷︷ ︸

Mmic

·ns = (Mmac)
1+ �

2q · ns for the H1 norm,

H−d︸︷︷︸
Mmac

·H
−d(�+1)

2q︸ ︷︷ ︸
Mmic

·ns = (Mmac)
1+ �+1

2q · ns for the L2 norm,

where ns denotes the number of sampling domains per macro element K ∈
TH .3 For example, using piecewise linear polynomials on simplicial finite
elements, assuming quasi-uniform macro and micro meshes, and that the

3 Notice that as the micro problems are solved independently, the method is well suited
to parallel implementation, which can reduce significantly the complexity of the FE-
HMM.
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complexity is proportional to the total degrees of freedom, we obtain a cost
of O(M

3/2
mac) (H1 norm) and O(M2

mac) (L2 norm). These convergence rates
are illustrated in Figure 4.2 on a very simple multiscale problem, for which
reference solutions can easily be computed to high precision (see Abdulle
(2005b)). In contrast, the memory demand is proportional to only Mmac +
Mmic, as the micro problems, being independent, can be solved one at a
time. Finally, we note that by using spectral methods or high-order finite
element methods for the micro solvers, it is possible to reduce the total cost
of the FE-HMM to log-linear complexity in the macro degrees of freedom.
This was investigated by Abdulle and Engquist (2007). Such an approach,
however, requires high regularity of the oscillating tensor aε, which may not
hold for some applications, for example in materials science.

Example 1: Homogenization problem with non-periodic tensor.
We consider problem (4.1), with a log-normal conductivity tensor aε (taken
from Abdulle and Nonnenmacher (2009b)). The domain Ω consists of a
semicircle and a rectangle, meshed with 1137 nodes using 576 triangles and
784 quadrilaterals, respectively: see Figure 4.3(a). We use the moving el-
lipse average method (Wallstrom et al. 1999, Section 4.1) to generate the
realization of the log-normal stochastic field with mean zero and variance
σ = 1. The correlation lengths of the stochastic field are set to be ε1 = 0.01
and ε2 = 0.02 in the x, y direction, respectively. A snapshot of this tensor
is shown in Figure 4.3(a).

As this problem does not have an explicit analytical solution, we compute
a fine-scale solution using a standard finite element method with a fine mesh
of about 106 degrees of freedom in order to resolve the microscale for a given
realization: see Figure 4.3(b). We compare this reference solution with the
FE-HMM on the coarse macro grid with about 1100 degrees of freedom for
the same realization. For the FE-HMM we present results for various sizes of
the sampling domains (δ = 0.02 and δ = 0.06). We can see in Figures 4.3(c)
and 4.3(d) that the FE-HMM solution is closer to the reference solution, as
the sampling domain contains more correlation lengths of the random field.

Table 4.1. Energy norms of the FE-HMM and fine-scale solutions of
the problem described in Example 1 with a random tensor. FE-HMM
results are given for various micro sampling-domain sizes δ × δ and
degrees of freedom N2

mic of the micro problems (Nmic = 1/ĥ).

Nmic 4 8 16 32 64 Fine-scale

δ = 0.02 0.2352 0.2415 0.2439 0.2449 0.2454 0.2583
δ = 0.06 0.2313 0.2454 0.2520 0.2551 0.2567 0.2583

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492912000025
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:42:10, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492912000025
https:/www.cambridge.org/core


46 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

−0.5 0 0.5−1

−0.5

0

0.5

(a) (b)

−0.5

0

0.5

−1−0.500.5
0

0.02

0.04

0.06

0.08

0.1

x
y

z

(c)

−0.5

0

0.5

−1−0.500.5
0

0.02

0.04

0.06

0.08

0.1

x
y

z

(d)

Figure 4.3. FE-HMM and fine-scale solution of the random problem
described in Example 1. (a) Snapshot of the random tensor and
computational domain. (b) Fine-scale solution computed with a standard
finite element method on grid with 106 degrees of freedom. (c) FE-HMM
with Nmic = 64 and micro domain size δ = 0.02 on a macro grid with
1100 degrees of freedom. (d) FE-HMM with Nmic = 64 and micro domain
size δ = 0.06 on a macro grid with 1100 degrees of freedom.

This observation can also be seen in Table 4.1 when comparing the energy
norm of the various solutions obtained with the FE-HMM to the energy
norm of the reference solution.

Example 2: A non-linear problem, the Richards equation. We con-
sider the steady-state Richards equation, which describes the fluid pressure
u(x, t) in an unsaturated porous medium,

−∇ ·
(
aε(uε(x))∇(uε(x)− x2)

)
= f(x) in Ω = (0, 1)2, (4.11)

where x2 is the vertical coordinate, and f corresponds to possible sources
or sinks. Here aε is a multiscale permeability tensor that depends on the
pressure uε, hence equation (4.11) is a non-linear non-monotone problem.
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(a) FE-HMM 64 macro DOF (b) FE-HMM macro 256 DOF (c) FE-HMM macro 1024 DOF

(d) FEM 1024 DOF (e) resolved FEM 1.5× 106 DOF

Figure 4.4. The Richards problem (4.11) with mixed boundary
conditions (Dirichlet and Neumann). (a–c) Level curves of the
FE-HMM solutions with Nmic = Nmac. The macro degrees of freedom
are indicated. (d, e) Level curves of a standard finite element method
with respectively unresolved (1024 degrees of freedom) and resolved
(1.5× 106 degrees of freedom) meshes for the given microscale.

The application of the FE-HMM to such problems was first considered by E
et al. (2005b). A complete analysis has recently been given by Abdulle and
Vilmart (2011b, 2011a), and is summarized in Section 4.4.2. The FE-HMM
for this problem reads as follows. Find uH ∈ S�0(Ω, TH) such that

BH(uH ;uH , wH) = FH(wH), ∀wH ∈ S�0(Ω, TH), (4.12)

where

BH(uH ; vH , wH) (4.13)

:=
∑
K∈TH

J∑
j=1

ωKj

|Kδj |

ˆ
Kδj

aε(x, uH(xKj ))∇v
uH(xKj

)

h,Kj
(x) · ∇w

uH(xKj
)

h,Kj
(x) dx,

and v
uH(xKj

)

h,Kj
(and similarly w

uH(xKj
)

h,Kj
) is a solution of a linear micro problem

similar to (4.10). For the parameter s = uH(xKj ) it reads: find vsh,Kj
such

that (vsh,Kj
− vH,lin) ∈ Sq(Kδj , Th) and

ˆ
Kδj

aε(x, s)∇vsh,Kj
(x) · ∇zh(x) dx = 0, ∀zh ∈ Sq(Kδj , Th). (4.14)
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We observe that while the macro problem (4.12) is non-linear, the micro
problems (4.14) are linear. Indeed, in the implementation s = uH(xKj ) is
given by the current (available) state of the macro solution (e.g., using a
Newton method to solve the macro problem). For the numerical simulation
of (4.11) we set f(x) ≡ 0 for simplicity, and consider the boundary conditions

uε(x) = −1.9x21 on ∂ΩD = [0, 1]× {1},
n · (aε(uε(x))∇(uε(x)− x2)) = 0 on ∂ΩN = {0, 1} × [0, 1] ∪ [0, 1]× {0},

and an exponential model for the permeability tensor aε, similar to that in
Chen, Deng and Ye (2005b, Section 5.1),

aε(x, s) = αε(x) eα
ε(x)s where αε(x) =

1/117.4

2 + 1.8 sin(2π(2x2/ε− x1/ε))
.

(4.15)
Numerical solutions are shown in Figure 4.4. Figures 4.4(a)–4.4(c) are so-
lutions of the FE-HMM with P1-triangular finite elements and a decreasing
macro mesh size (uniform macro meshes with H = 1/8, 1/16, 1/32). The
meshes of the micro solver are refined according to the ‘optimal L2 refine-
ment strategy’ h/ε � H. The numerical results obtained with the FE-HMM
are compared to a reference solution of the problem (4.11) (obtained by
a resolved standard finite element method) plotted in Figure 4.4(e) (for
ε = 10−2, ∼ 106 degrees of freedom are used). For comparison, we also plot
in Figure 4.4(d) the result obtained by a standard finite element method on
a coarse 32×32 mesh that does not resolve the fine oscillations. We observe
that this unresolved finite element method does not give a correct qualita-
tive result. In contrast, the FE-HMM captures the correct behaviour of the
problem at a much lower computational cost.

Example 3: A crack problem and adaptive FE-HMM. In our next
experiment we consider a crack problem in a heterogeneous medium, char-
acterized by a highly oscillating conductivity tensor,

−∇ · (aε(x)∇uε) = 1 in Ω, (4.16)
uε = gD on ΓD = ∂Ω, (4.17)

on a domain Ω = {|x|+ |y| < 1}\{0 ≤ x ≤ 1, y = 0} with a crack along the
positive x-axis (see Figure 4.5). As the solution of the homogenized problem
is not in H2(Ω), it is well known that a standard piecewise linear finite
element method for the effective problem will give sub-optimal convergence
rates. In this situation, adaptive mesh refinement is needed. By using
local error indicators, one identifies, marks and refines those elements that
contribute the most to the global error in order to better equidistribute
the error in the finite element mesh. Overall, the procedure consists of the
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Figure 4.5. (a, b) FE-HMM solution and mesh after 10 iterations for the
crack problem described in Example 3, using highly oscillating locally
periodic coefficients. (c) Rate of decay for various errors and for the error
indicator in the H1 norm.

following cycle:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

An energy-based a posteriori error analysis for a standard finite element
method usually relies on local error indicators ηh comprising two compo-
nents: the jump residual, which measures the discontinuity of the normal
flux across elements interfaces, and the element residual, which measures
the accuracy of the solution inside each element. Both quantities depend on
the (conductivity) tensor of the elliptic problem. Residual-based adaptive
FE-HMMs for the energy norm were proposed and analysed by Abdulle and
Nonnenmacher (2009a, 2011a) and also by Ohlberger (2005), who derived
an a posteriori error estimate in a ‘two-scale norm’. For the FE-HMM, data
involved in the usual error indicator are not available beforehand but com-
puted during the integration process. An important ingredient for adaptive
FE-HMM is an effective jump based on ‘multiscale fluxes’, first defined by
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Figure 4.6. Sketch of the ingredients for the
multiscale flux jump defined in (4.18).

Abdulle (2008, 2012). Let TH denote a conformal mesh and let EH be the
set of interfaces. Two elements sharing an interface e ∈ EH are labelled K+

and K−. Consider the micro functions uh,K+ and uh,K− satisfying (4.10)
in the two sampling domains K+

δ and K−
δ of the elements K+ and K−,

respectively, constrained by the macro solution uH of (4.5). The multiscale
flux jump is then defined by

�aε(x)∇uh�e := (4.18)(
1

|K+
δ |

ˆ
K+

δ

aε(x)∇uh,K+ dx− 1

|K−
δ |

ˆ
K−

δ

aε(x)∇uh,K− dx

)
· ne,

where the unit outward normal ne is chosen to be ne = n+ (see Figure 4.6).
We omit the index Kδ for the micro solutions uh in �aε(x)∇uh�e, as the
jump over e involves two sampling domains in adjacent elements. We also
assume for simplicity that (4.5) is solved using a piecewise linear macro finite
element space (see Abdulle and Nonnenmacher (2011b) and Nonnenmacher
(2011) for a generalization of the ‘multiscale flux jump’ and the a posteriori
error analysis for higher-order macro finite elements). Then, the local error
indicator ηH(K) on an element K is defined by (Abdulle and Nonnenmacher
2009a, 2011a)

ηH(K)2 := H2
K‖fH‖2L2(K) +

1

2

∑
e⊂∂K

He

∥∥ �aε∇uh�e
∥∥2
L2(e)

, (4.19)

where fH is a piecewise constant approximation of f . The quantity ηH(K)2

is a measure of the local error ‖u0 − uH‖2H1(K), and is used to identify
the elements that contribute most to the error. These elements are then
marked for refinement. In order to prove the reliability and the efficiency of
an a posteriori error estimate, Abdulle and Nonnenmacher (2009a, 2011a)
have derived rigorous upper and lower bounds of the error in terms of the
residual. For such bounds, one needs to introduce the data approximation
error ξH(K) on an element K by

ξH(K)2 := H2
K‖fH − f‖2L2(K) + ‖(a0K − a0(x))∇uH‖2L2(K), (4.20)

where a0(x) is the unknown homogenized tensor of problem (4.3) and a0K
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Table 4.2. Number of micro problems with various ĥ = h/ε resolutions to obtain
an error of ‖eH‖H1(Ω) ≤ 0.07 for the crack problem described in Example 3
(computation with a periodic tensor).

ĥ 1/8 1/16 1/24 1/32 1/40 1/48

adaptive FE-HMM, 10th iteration 278 218 60 24 28 40
uniform FE-HMM, 4th iteration – – – 16384 – –

is the effective macro tensor (in the macro element K) that is recovered by
the FE-HMM (see Lemma 4.3). In order to control the data approximation
error, the quantity ‖(a0K − a0(x))∇uH‖2L2(K) needs to be quantified. Under
suitable assumptions (Abdulle and Nonnenmacher 2009a, 2011a) (e.g., (H1),
(H2) in Section 4.4), one can prove that

sup
x∈K

‖(a0K − a0(x))∇uH‖L2(K) ≤ C

(
HK +

(
h

ε

)2)
+ eMOD, (4.21)

where eMOD is a quantity independent of H,h. This shows that the micro–
macro mesh refinement described at the beginning of Section 4.3.3 should
now be performed locally. In turn, this local refinement has an important
consequence on the complexity of the FE-HMM. For uniform refinement
one needs to refine every sampling domain of each macro element, but in an
adaptive mesh refinement strategy the micro mesh will be refined only in the
sampling domains of a macro element marked for refinement (at the above
rate h

ε =
√
HK). All other computations in the sampling domains, that is, all

the micro functions computed in a previous iteration, can be re-used in the
next iteration in unrefined macro elements. The savings in computational
complexity are illustrated in Table 4.2, where we observe that only a small
fraction of the micro problems computed via uniform refinement needs to
be computed using adaptive and local refinement as described above.

We present in Figure 4.5 the decay of the error after several iterations of
the adaptive FE-HMM applied to the crack problem of Example 3. In order
to have an exact homogenized solution for comparison purposes, we choose
a periodic tensor in our computation (details can be found in Abdulle and
Nonnenmacher (2011a, Section 6.2)). An example with random tensors can
also be found in Abdulle and Nonnenmacher (2011a) and Nonnenmacher
(2011). The rate of convergence of the error and the error indicator, re-
ported in Figure 4.5, confirm the theoretical rate of O(M

−1/d
mac ), where we

recall that Mmac denotes the macro degrees of freedom. We also see that
the local error indicator ηH decays with the right slope and the effectiv-
ity index ηH(Ω)/‖u0 − uH‖H1(Ω) is comparable to the effectivity index for
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Figure 4.7. Illustration of the goal-oriented FE-HMM, which allows us to
specify a confidence interval, the shaded area, where the exact quantity
of interest (here a regularized pointwise derivative) is expected to be.

a single-scale residual-based adaptive finite element method (Eriksson, Es-
tep, Hansbo and Johnson 1995). We also illustrate in Figure 4.5 the use of
uniform refinement and adaptive FE-HMM without micro refinement. Both
strategies give the wrong convergence rate for this problem.

Finally, we briefly mention another type of adaptivity, often more inter-
esting for engineers, namely adaptivity in quantities of interest. Suppose we
are interested in a quantity of interest of the exact solution J(u0), where J
denotes a linear bounded functional and u0 is the homogenized solution of
a given multiscale problem (e.g., (4.1)). The question now becomes: Is it
possible to refine the numerical solution of a multiscale method, say the FE-
HMM, to have an approximation of the quantity of interest J(uH) � J(u0)?

For single-scale problems, such ‘goal-oriented adaptivity’ has been stud-
ied in Prudhomme and Oden (1999), Oden and Prudhomme (2001), Becker
and Rannacher (2001), Nochetto, Veeser and Verani (2009) and Ainsworth
and Rankin (2012). We also mention the related work of Oden, Prudhomme,
Romkes and Bauman (2006) on adaptive control of the model. In the context
of numerical homogenization, the numerical analysis literature on the topic
seems rather scarce. Abdulle and Nonnenmacher (2011b) discuss a posteri-
ori error estimates in quantities of interest for the FE-HMM. The quantity
J(u0−uH) is shown to have an exact representation in terms of the local error
estimator and the data approximation error. Provided that certain higher-
order approximation terms can be neglected (see Nochetto et al. (2009) or
Ainsworth and Rankin (2012) for a discussion of this issue), it is possible
to find a ‘confidence interval’ for the estimation of the error in the given
quantity of interest. This is illustrated in Figure 4.7, where the quantity of
interest is a regularized pointwise derivative of an effective solution corre-
sponding to a multiscale elliptic problem. The solution uH is obtained from
the FE-HMM with goal-oriented adaptive refinement. We refer to Abdulle
and Nonnenmacher (2011b) for details.
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Figure 4.8. Microprocessor model used for
the numerical computation of Example 4.

Example 4: Three-dimensional problems. In our last example, we con-
sider the heat distribution in a microprocessor. The model considered in our
computations, depicted in Figure 4.8, consists of a silicon IC chip, a lead
frame, which acts as a heat spreader, and a moulded resin encapsulation
(the packaging covering the IC chip for protection). Due to the increasing
packaging density in such devices and the resulting temperature growth, the
use of composite materials with high thermal conductivity is crucial. The
micro structure of the composite materials, whose representative size is de-
noted by ε, is responsible for the multiscale behaviour of the associated heat
conductivity problem. The application of the FE-HMM to this example was
first considered by Abdulle and Nonnenmacher (2009b), who also discuss
additional three-dimensional examples (see also Nonnenmacher (2011)).

Geometry and mesh. The volume of the full processor model is 12.2×12.2×
1 mm3. We use a macro mesh generated by CUBIT Sandia National Lab-
oratories (1997-2010) that consists of 81 000 grid points with a maximum
tetrahedron volume of 1.4× 10−3 mm3 (see Figure 4.9). Scale resolution for
a composite with ε = 10−6 m as used below, with about 10 grid points per
oscillation (in each spatial direction), would result in a mesh with 1012 grid
points and is thus computationally unfeasible with a standard finite element
method. In contrast, numerical experiments with realistic values of ε can
be computed without difficulty with the FE-HMM. For numerical compar-
isons, we also present numerical experiments with a relatively large value of
ε, ε = 5× 10−4 m. For this value we compute a reference fine-scale solution
that involves 3.9 million grid points and about 22 million tetrahedra. The
heat transfer by conduction is modelled by (4.1). Convective heat transfer
with the surrounding air is modelled by the Robin and Neumann boundary
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(a) (b)

Figure 4.9. (a) Macro mesh of the three-dimensional microprocessor
problem of Example 4: 81 000 grid points and 430 000 tetrahedra.
(b) Close-up of the macro mesh used for the lead frame.

conditions:

n · (aε∇uε) + αuε = gR on ∂ΩR, (4.22)
n · (aε∇uε) = gN on ∂ΩN , (4.23)

where Ω is the domain of the object considered, and ∂ΩR and ∂ΩN are the
surfaces of the three-dimensional object with Robin and Neumann bound-
ary conditions, respectively. The right-hand side of the Robin boundary
condition is given by gR = q0 + αuamb.

In practice, conductivity tensors for realistic materials could be obtained
via imaging techniques (our computational strategy could accommodate
such data). Here we use simplified tensors (one for each material). The
tensor corresponding to the lead frame aεleadframe is chosen to have a non-
periodic slow variation, to mimic a change in the material structure from the
centre of the lead frame to the periphery. For the resin, we chose aεresin to
be oscillating and anisotropic with a larger conductivity in the z-direction,
while the tensor corresponding to the chip aεchip is assumed to be constant
(see Abdulle and Nonnenmacher (2009b) for details). Other data are defined
as follows: the power of the chip is Pchip = 0.125 W and the chip size is cho-
sen to be V = 2×2×0.2 mm3. This yields an external heat flux f in (4.1) of
f = P/V = 1.875× 108 W m−3. The room temperature is uamb = 293.15 K
and the heat transfer coefficient is α = 20 W m−2 K−1, a rough estimate
for the effect of air cooling.

In Figure 4.10 we compare (for ε = 5 × 10−4 m) the results obtained
by the FE-HMM with a fine-scale (resolved) solution. For the FE-HMM,
two different resolutions of the micro finite element method are used. Good
qualitative agreement between the FE-HMM and the fine-scale solutions is
observed. For comparison we also plot a solution obtained on the same
macro grid as the FE-HMM, but with a standard finite element method
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(a) (b) (c)

Figure 4.10. Steady-state heat distribution in the three-dimensional
microprocessor problem of Example 4, with ε = 5× 10−4 m, 81 000
degrees of freedom in the macro mesh. Comparison of various solutions.
(a) Averaged tensor (arithmetic mean), 81 000 degrees of freedom, (b)
FE-HMM solution, 81 000 macro degrees of freedom, (c) fine-scale
solution, 3.9× 106 degrees of freedom. The bar indicates the
temperature in Kelvin (K).

(a) (b) (c)

Figure 4.11. Steady-state heat distribution in the three-dimensional
microprocessor problem of Example 4, with ε = 10−6 m, 81 000 degrees
of freedom in the macro mesh. Comparison of FE-HMM solutions with
different resolutions of the micro problems: (a) Nmic = 4, (b) Nmic = 8,
(c) Nmic = 16. The bar indicates the temperature in Kelvin (K).

using a naive averaging procedure for the micro structure (here the arith-
metic average). We observe that the conductivity is overestimated in this
situation, leading to incorrect qualitative behaviour for the heat distribution
in the microprocessor. To get a rough estimate of the quality of the various
experiments performed in this section, we provide the value of the energy
norm of the FE-HMM calculation in Table 4.3, for various resolutions of the
micro structure, and the energy norm of the resolved solution.

Finally, in Figure 4.11 we present computations with the realistic value
ε = 10−6 m. We notice that a computation with this ε is no more expensive
than previous computations with a coarser value of ε (recall that the FE-
HMM captures the effective solution). The computational cost, however,
depends on the resolution of the micro structure in the sampling domains,
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Table 4.3. Energy norm of various solutions of the heat transfer problem in a
microprocessor (FE-HMM solution, resolved solution, solution obtained using
arithmetic average for the various tensors). Here micro degrees of freedom on
the sampling domains are given by Nd

mic.

Nmic = 4 Nmic = 8 Nmic = 16 Fine-scale Average

ε = 5× 10−4 ‖u‖A 0.3906 0.4961 0.5514 0.5189 0.3122
ε = 10−6 ‖u‖A 0.3894 0.4963 0.5512 – 0.3122

that is, the number of points per wavelength. Indeed, as can be seen in
Figure 4.11, the effect of the micro error at the macroscale is not negligible
(see again Abdulle (2005b) and Section 4.4 for an analysis of this behaviour).

4.3.4. More sophisticated coupling
In all of the above examples, we used a standard finite element method at
the micro and macro levels. The structure of the FE-HMM algorithm, which
couples the macro and micro solvers only via constraints, allows us to use
other types of method.

For many problems, local conservation properties in the numerical approx-
imation and flexibility in meshing (e.g., hanging nodes, local refinements) are
desirable. For single-scale problems, these requirements have triggered the
development of discontinuous Galerkin (DG) finite element methods. Such
methods have been extensively studied for hyperbolic problems, advection–
diffusion and diffusion problems (see Arnold, Brezzi, Cockburn and Marini
(2001/2002) for a review). While a large body of literature is available for
DG methods applied to single-scale problems, the construction and analy-
sis of multiscale DG methods have rarely been addressed. In the context
of the HMM, a DG method for hyperbolic and parabolic one-dimensional
scalar problems was proposed in Chen, E and Shu (2005a). For multiscale
elliptic problems, a DG method based on HMM was proposed in Abdulle
(2008, 2012).

Another issue, as seen in Section 4.3.3, is the cost of the repeated micro
solutions in sampling domains in the FE-HMM. If the micro structure is reg-
ular enough, one can take advantage of fast micro solvers (based on spectral
methods, for example) to speed up the computation time considerably. The
simultaneous refinement of macro and micro meshes can be avoided in this
situation (see Abdulle and Engquist (2007)).

If, in contrast, there is only low regularity of the micro solutions, one can
try to avoid repeated micro problems by suitable interpolation of the micro
solutions in a few representative sampling domains. Provided that there is
some smoothness in the micro solution with respect to the macro variables,
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this strategy can be successful. The use of reduced basis techniques for
numerical homogenization was first explored by Boyaval (2008) and recently
integrated into the HMM methodology of Abdulle and Bai (2012), who have
proposed and analysed a reduced basis FE-HMM.

4.4. Error estimates

In this subsection we discuss a priori and a posteriori error analysis for
the FE-HMM. We present the main steps of the a priori error analysis for
linear elliptic problems in Section 4.4.1. We only discuss the analysis for
the FE-HMM based on macro and micro finite element methods, and we
refer to papers by Abdulle and Engquist (2007) for an analysis using micro
pseudo-spectral methods, Abdulle (2012) for an analysis using discontinu-
ous Galerkin macro methods, and Abdulle and Bai (2012) for an analysis
incorporating reduced basis methods at the micro level. In Section 4.4.2 we
briefly mention how the results obtained in the linear case can be general-
ized to a class of non-linear problems. For details on the analysis of such
problems, we refer to Abdulle and Vilmart (2011b, 2011a). Finally we also
discuss a posteriori error analysis for the FE-HMM in Section 4.4.3, follow-
ing Abdulle and Nonnenmacher (2009a, 2011a). Unless otherwise specified,
we shall assume that the macroscopic triangulation TH is conformal and
shape-regular.

4.4.1. A priori error analysis
We collect here a few preliminary results that are useful for the analysis of
the FE-HMM.

Energy equivalence and coercivity (Abdulle 2005b, E et al. 2005b, Abdulle
2009). As an application of the following lemma, we deduce the coercivity of
the bilinear form (4.6), hence the existence and uniqueness of problem (4.5).

Lemma 4.2. Let vH ∈ S�0(Ω, TH), and let vh,Kj be the corresponding so-
lution of (4.10) in Sq(Kδj , Th), with boundary conditions given by (4.8) or
(4.9). Assume that (4.2) holds. Then we have

‖∇vH,lin‖L2(Kδj
) ≤ ‖∇vh,Kj‖L2(Kδj

) ≤ C‖∇vH,lin‖L2(Kδj
), (4.24)

where vH,lin is defined in Section 4.3.2.

Reformulation of the FE-HMM (Abdulle 2009, Abdulle 2012, E et al. 2005b).
The bilinear form (4.6) has the reformulation

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
K(xKj )∇vH(xKj ) · ∇wH(xKj ). (4.25)
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In order for the expression (4.6) to be equal to the expression (4.25), we see
that the following identity must hold:

1

|Kδj |

ˆ
Kδj

aε(x)∇vh,Kj · ∇wh,Kj dx =
1

|K|

ˆ
K
a0K(xKj )∇vH,lin · ∇wH,lin dx,

(4.26)
for all vH , wH ∈ S�0(Ω, TH) and for all vh,Kj (resp. wh,Kj ) solutions of prob-
lem (4.10). The following lemma gives an appropriate definition for a0K(xKj ),
so that the above equation is valid (see Abdulle (2012)).

Lemma 4.3. For ei, i = 1, . . . , d (the canonical basis of Rd) consider the
following problem. Find ψih,Kj

∈ Sq(Kδj , Th) such that
ˆ
Kδj

aε(x)∇ψih,Kj
· ∇zh dx = −

ˆ
Kδj

aε(x)ei · ∇zh dx, ∀zh ∈ Sq(Kδj , Th),

(4.27)
where Sq(Kδj , Th) is defined in (4.7) with either periodic or Dirichlet bound-
ary conditions. If a0K(xKj ) is defined by

a0K(xKj ) =
1

|Kδj |

ˆ
Kδj

aε(x)
(
I + JTψh,Kj

(x)
)
dx, (4.28)

where Jψh,Kj
(x) is the d× d matrix with entries

(
Jψh,Kj

(x)
)
i�
=
∂ψih,Kj

∂x�
(x),

then (4.26) holds.

Remark 4.4. We observe that a standard finite element method with nu-
merical quadrature for the effective problem (4.3) reads as follows (see Cia-
rlet and Raviart (1972)). Find u0,H ∈ S�0(Ω, TH) such that

B0,H(u0,H , vH) =

ˆ
Ω
fvH dx, ∀vH ∈ S�0(Ω, TH), (4.29)

where

B0,H(vH , wH) =
∑
K∈TH

J∑
j=1

ωj,Ka
0(xKj )∇vH(xKj ) · ∇wH(xKj ). (4.30)

Thus, (4.6) can be seen as a finite element method with numerical quadrature
for a modified effective problem. We expect (4.25) to be close to (4.30) and
hence uH to be close to u0,H , if the procedure to recover the macro data
from the microscale computation is accurate enough. This will be seen in
the error analysis presented below.
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The first theorem gives the macroscopic error of the FE-HMM (Abdulle
2005a, Abdulle 2011, E et al. 2005b). It does not rely on structure assump-
tion (e.g., periodicity) of the multiscale problem (4.1), but requires sufficient
smoothness of the data and the solution of the effective problem (4.3). For
a given natural number � and µ = 0 or 1, we assume that the solution u0

and the tensor a0 of (4.3) satisfy:

(H1) u0 ∈ H�+1(Ω), a0ij ∈W �+µ,∞(Ω) for i, j = 1, . . . , d.

We notice that hypothesis (H1) is the usual assumption for a finite element
method with numerical quadrature to converge with optimal rate H� and
H�+1 in the H1 and L2 norms, respectively.

Theorem 4.5. (Macro error) Let u0, uH be the solutions of problems
(4.3) and (4.5), respectively. Suppose that (4.2), (Q1), (Q2) and (H1)
hold.4 Then we have the following estimates:

‖u0 − uH‖H1(Ω) ≤ C
(
H l + e(HMM)

)
, (4.31)

‖u0 − uH‖L2(Ω) ≤ C
(
H l+1 + e(HMM)

)
, (4.32)

where C is independent of H and h and

e(HMM) = sup
K∈TH ,xKj

∈K
‖a0(xKj )− a0K(xKj )‖F , (4.33)

where a0K(xKj ) is defined in (4.28) and ‖ · ‖F is the Frobenius norm.

Proof. Let u0,H be the solution of (4.29). It is proved in Ciarlet and Raviart
(1972) that provided (4.2), (Q1), (Q2) and (H1) hold, we have

‖u0 − u0,H‖H1(Ω) ≤ CH l, (4.34)

‖u0 − u0,H‖L2(Ω) ≤ CH l+1, (4.35)

where C is independent of H. Using the coercivity of the bilinear form (4.30)
(which follows from (Q1)), we obtain

‖u0,H − uH‖H1(Ω) ≤ C sup
wH∈S�

0(Ω,TH)

|B0,H(uH , wH)−BH(uH , wH)|
‖wH‖H1(Ω)

.

In view of (4.30), (4.25) and (Q2), using the Cauchy–Schwarz inequality we
see that

|B0,H(uH , wH)−BH(uH , wH)|
≤ C sup

K∈TH ,xKj
∈K

‖a0(xKj )− a0K(xKj )‖F ‖uH‖H1(Ω)‖wH‖H1(Ω).

The above estimates together with (4.34) and (4.35) give the claimed result.

4 In hypothesis (H1), µ = 0 for the estimate (4.31) and µ = 1 for the estimate (4.32).
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The next task is to estimate the quantity e(HMM). It is convenient to
decompose this quantity further. We therefore consider, for each macro
element K ∈ TH and each sampling domain Kδj ⊂ K,

ā0K(xj,K) =
1

|Kδj |

ˆ
Kδj

aε(x)
(
I + JTψKj

(x)
)
dx, (4.36)

a tensor defined as in (4.28), but here

(
JψKj

(x)
)
i�
=
∂ψiKj

∂x�
(x),

and ψiKj
is the (exact) solution of (4.27) in (4.8) or (4.9). Then, obviously,

e(HMM) ≤ eMIC + eMOD,

where

eMIC := sup
K∈TH ,xKj

∈K
‖ā0K(xKj )− a0K(xKj )‖F , (4.37)

eMOD := sup
K∈TH ,xKj

∈K
‖a0(xKj )− ā0K(xKj )‖F . (4.38)

For symmetric tensors, the quantity eMIC was first analysed in Abdulle
(2005a) and the quantity eMOD in E et al. (2005b). To analyse eMIC, ap-
propriate regularity of the oscillating tensor is required. As we use standard
a priori results of finite element methods in the sampling domain, we also
need appropriate regularity of ψiKj

. However, the coefficient aε is allowed to
be discontinuous (at the macroscopic level) through smooth interfaces. We
therefore make the following assumption:

(H2) for q ∈ N we assume that |ψiKj
|Hq+1(Kδj

) ≤ C ε−q
√
|Kδj |, with C

independent of ε, of the quadrature points xKj and the domain Kδj .

Remark 4.6. If one assumes aε ∈W 1,∞(Ω) and that |aεij |W 1,∞(Ω) ≤ Cε−1

for i, j = 1, . . . , d, then (H2) can be proved for q = 1 and W (Kδj ) =

H1
0 (Kδj ), using classical H2 regularity results (Ladyzhenskaya 1985, Chap-

ter 2.6) (in fact we only need local regularity for aεij). If aε = a(x, x/ε) =

a(x, y), which is Y -periodic in y, if δ/ε ∈ N, and W (Kδj ) = W 1
per(Kδj ),

then (H2) can be established for a given q, provided that the tensor aε is
sufficiently smooth (this follows classical regularity results for solutions of
periodic boundary value problems: see, e.g., Bers, John and Schechter (1957,
Chapter 3)).

The following theorem was first obtained in Abdulle (2005a) for elliptic
problems and in Abdulle (2006) for problems in elasticity (see also Abdulle
(2009, 2012) for generalizations). Du and Ming (2010) extended the estimate
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to non-symmetric tensors (see also Abdulle and Vilmart (2011a, Lemma 4.6)
for a short alternative proof).

Theorem 4.7. (Micro error) Assume that (4.2) and (H2) hold. Then

eMIC ≤ C

(
h

ε

)2q

, (4.39)

where C is independent of H,h and ε.

As first observed in Abdulle (2005a, 2009), we see that a fixed number of
grid points per wavelength of the smallest oscillation of the problem does not
ensure robust convergence of the FE-HMM. Indeed, the above theorem shows
that for fixed micro meshes, the errors due to the micro solver are dominant
for sufficiently fine macro meshes. Comparing the rate of convergence of
the macro solver (Theorem 4.5) with the rate of convergence of the micro
solver (see Theorem 4.7) gives a criterion to obtain the optimal (macro)
convergence rate with minimal computational cost. Indeed, if the macro
problem (4.5) is solved in S�0(Ω, TH), with micro problems (4.10) solved in
Sq(Kδj , Th), then, assuming uniform macro and micro meshes, we have

ĥ � H
�
2q (optimal refinement in H1 norm), (4.40)

ĥ � H
�+1
2q (optimal refinement in L2 norm), (4.41)

and we recall that ĥ = h/ε is independent of ε (see Section 4.3.3).
The last task is to estimate the modelling error. Here we require structure

assumptions on the tensor such as local periodicity or random stationarity.
For deterministic tensors we make the following assumption:

(H3) aε(x) = a(x, x/ε) = a(x, y) is Y -periodic in y, and

aij(x, y) ∈ C
(
Ω̄;W 1,∞

per (Y )
)
,

for all i, j = 1, . . . , d,

where we set Y = (0, 1)d for simplicity. For such a tensor the variables x
and y are usually referred to as slow and fast variables, respectively. First
we note the following result, obtained by Abdulle and Schwab (2005).

Lemma 4.8. Assume (H3) and that the micro problems (4.10) are solved
in Sq(Kδj , Th) ⊂ W 1

per(Kδj ), with δ/ε ∈ N. Assume further that the slow
variable tensor a(x, x/ε) is collocated at the quadrature points xKj , that
is, a(xKj , x/ε) is used in the problem (4.10) and in the bilinear form (4.6).
Then eMOD = 0.

A consequence of this result is that the FE-HMM converges with a robust
rate (i.e., independent of ε) to the homogenized solution. In a more general
situation, for example when the size of the period is unknown, a modelling
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error arises due to a mismatch of the sampling domain size and ε (e.g.,
δ/ε /∈ N) and to artificial boundary conditions. This error is often called
cell resonance in the literature (see, e.g., Hou et al. (1999)). The following
result was obtained by E et al. (2005b) (see also Yue and E (2007)).

Theorem 4.9. (Modelling error) Assume (H3) and that the micro prob-
lems (4.10) are solved in Sq(Kδj , Th) ⊂ H1

0 (Kδj ), with δ > ε. Then

eMOD ≤ C

(
ε

δ
+ δ

)
,

where C is independent of H,h and ε.

We conclude this section by mentioning that a new approach to cell res-
onance has recently been proposed by Gloria (2011). By modifying the cell
problem (4.10) and adding a zeroth-order term, we obtain a micro problem
with better error decay due to artificial boundary conditions, because of
the faster decay of the associated Green’s function. The bias introduced by
modifying the cell problem can be controlled by tuning the constant asso-
ciated with the zeroth-order term. Gloria (2011) reports a rate of (ε/δ)p,
p < 4. Numerical experiments, however, show that this asymptotic rate is
only obtained for δ 	 ε. Nevertheless, this constitutes a promising approach
for the issue of cell resonance error.

Elliptic problems with random coefficients. The FE-HMM for elliptic prob-
lems with random conductivity tensors was investigated by E et al. (2005b),
who analysed the modelling error eMOD under a stationarity assumption.
Convergence rates have been derived for dimensions d = 1 and d = 3 under
the additional assumption that the random tensors satisfy a uniform mixing
condition (Yurinskĭı 1986).

4.4.2. Example of a priori analysis for non-linear problems
We consider a class of non-linear non-monotone multiscale problems de-
scribed in Example 2:

−∇ · (aε(x, uε(x)))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω, (4.42)

where aε(x, s) is a d× d tensor satisfying (4.2), with entries aεij(x, s) which
are continuous functions on Ω×R and uniformly Lipschitz-continuous with
respect to s and ε, that is,

∃Λ1 > 0, such that |aεij(x, s1)− aεij(x, s2)| ≤ Λ1|s1 − s2|, (4.43)

∀ε, ∀x ∈ Ω, ∀s1, s2 ∈ R, ∀1 ≤ i, j ≤ d.

For such problems, it is known (see, e.g., Boccardo and Murat (1981)) that
there exists a subsequence of {aε(·, s)} (again indexed by ε) such that the
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corresponding sequence of solutions {uε} converges weakly to u0 in H1(Ω),
where u0 is the solution of the so-called homogenized problem

−∇ · (a0(x, u0(x))∇u0(x)) = f(x) in Ω, u0(x) = 0 on ∂Ω, (4.44)

with a homogenized tensor a0(x, s), which can be shown to have properties
similar to those assumed for aε(x, s). The numerical method for computing
an effective solution of (4.42) was described in (4.12). The coerciveness of the
bilinear form BH(z

H ; ·, ·) can be established similarly as in the linear case.
Then the existence of a solution of problem (4.12) relies on the Brouwer fixed-
point theorem applied to the non-linear map SH : S�0(Ω, TH) → S�0(Ω, TH),
where, for zH ∈ S�0(Ω, TH), SHzH is defined to be the solution of the linear
problem

BH(zH ;SHzH , wH) =

ˆ
Ω
fwH dx, ∀wH ∈ S�0(Ω, TH). (4.45)

For details we refer, for example, to Douglas and Dupont (1975). In contrast,
the uniqueness is much more involved (see below). For deriving a priori error
estimates and rates of convergence for the error ‖u0 − uH‖H1(Ω), we follow
the methodology described in the linear case. There is, however, one main
difference: a priori error analysis for finite element methods with numerical
quadrature such as the results in Ciarlet and Raviart (1972), used in the
linear case, need to be derived. Such results, which are quite technical in
the non-linear non-monotone case, were derived by Abdulle and Vilmart
(2011b, 2012b). Using their results, it is then possible to show the following
(see Abdulle and Vilmart (2012b) for a proof).

Theorem 4.10. Let u0, uH be the solutions of problems (4.44) and (4.12),
respectively. Let � ≥ 1. Let µ = 0 or 1. Assume (Q1), (Q2) and (H1) hold.5
In addition, assume that u0 ∈ W 1,∞(Ω), ∂ua0mn ∈ W 1,∞(Ω × R), and that
the coefficients a0mn(x, s) are twice differentiable with respect to s, with the
first- and second-order derivatives continuous and bounded on Ω×R, for all
m,n = 1, . . . , d.

Then there exist r0 > 0 and H0 > 0 such that, provided

H ≤ H0 and e(HMM) ≤ r0, (4.46)

any solution uH of (4.12) satisfies

‖u0 − uH‖H1(Ω) ≤ C(H� + e(HMM)) if µ = 0, 1, (4.47)

‖u0 − uH‖L2(Ω) ≤ C(H�+1 + e(HMM)) if µ = 1, (4.48)

where e(HMM) is given in (4.49). Here, the constants C are independent of
H and e(HMM).

5 Here a0
ij ∈ W �+µ,∞(Ω× R) for i, j = 1, . . . , d.
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Remark 4.11. Note that the macroscopic family of triangulations {TH}
satisfies the inverse assumption H/HK ≤ C for all K ∈ TH and all TH in
Theorem 4.10; such a condition is often used for the finite element analysis of
non-linear problems (Xu 1996). We also assume, for simplicity, the convexity
of the domain Ω for the L2 bound. Such a condition on the domain allows us
to infer suitable regularity to use an Aubin–Nitsche-type duality argument.
A weaker condition on the adjoint of the linearized problem associated to
(4.44) (see Abdulle and Vilmart (2011b, equation (5))) is sufficient. This
condition is usually assumed for L2 estimates of linear finite element methods
with numerical quadrature (see Raviart (1973, equation (2.11))).

The proof of Theorem 4.10 is more involved than the similar theorem
in the linear case. We note that the additional assumptions compared to
the linear case (Theorem 4.5), that is, the W 1,∞ assumption on u0 and
the smoothness of s �→ a(x, s), are already used for the analysis of finite
element methods for single-scale non-linear problems of the type (4.44); see
for example Douglas and Dupont (1975). The inverse assumption is also
used in Douglas and Dupont (1975) to prove the uniqueness of a numerical
solution. The quantity e(HMM) is defined by

e(HMM) := sup
K∈TH ,xKj

∈K,s∈R
‖a0(xKj , s)− a0Kj

(s)‖F , (4.49)

where a0 is the homogenized tensor of (4.44) and a0Kj
is the tensor defined

similarly to (4.28) by replacing aε(x) with the non-linear tensor aε(x, s)
(where s plays the role of a parameter), ψih,Kj

with ψi,sh,Kj
and Jψh,Kj

(x) with
Jψs

h,Kj
(x). A nice feature of the analysis in Abdulle and Vilmart (2011a) is

that micro and macro modelling errors can be analysed, thanks to Theo-
rem 4.10, following the analysis obtained for the linear case (estimates with
a similar rate of convergence can be derived: see Abdulle and Vilmart (2011a,
Theorems 3.6, 3.7)). The proof of the uniqueness of a numerical solution of
problem (4.12) is quite involved, but can be derived without any structure
assumption on the oscillation provided that

s ∈ R �→ aε(·, s) ∈ (W 1,∞(Ω))d×d is of class C2

and |∂kuaε(·, s)|W 1,∞(Ω) ≤ Cε−1, k ≤ 2,
(4.50)

where C is independent of s and ε (see Abdulle and Vilmart (2011a, Theo-
rem 3.3)). Here we present a simpler uniqueness result, which can be stated
solely in terms of the size of the macro and micro meshes (see Abdulle and
Vilmart (2011a, Corollary 3.4)).

Theorem 4.12. In addition to the hypothesis of Theorem 4.10, assume
(H2) and (H3′), and (4.50). Assume W (Kδj ) = W 1

per(Kδj ) (periodic cou-
pling conditions), δ/ε ∈ N and that the slow variable of the tensor a(x, x/ε, s)
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is collocated at the quadrature points xKj in the problem (4.14) and in the
form (4.13). Then there exists a positive constant H0 such that, for all

(h/ε)2q ≤ H ≤ H0,

the solution uH of (4.12) is unique.

Here (H3′) is defined similarly to (H3) for the non-linear tensor aεij(x, s) =
aij(x, x/ε, s), where aij(x, y, s) is Y -periodic in y, and the map (x, s) �→
aij(x, ·, s) is Lipschitz-continuous and bounded from Ω× R into W 1,∞

per (Y ).

4.4.3. A posteriori error analysis
The goal of the residual-based a posteriori analysis is to give upper and
lower bounds for the error eH := u0 − uH in the H1 norm for a given solu-
tion uH of the problem (4.5) in terms of residual and data approximations,
ηH(Ω), ξH(Ω) defined in (4.19) and (4.20), respectively. As mentioned in
Section 4.3.3 (see Example 3), we will concentrate here on piecewise lin-
ear simplicial macro finite elements. Compared to classical residual-based
a posteriori error analysis, we have two additional difficulties:

• the data of the effective problem (4.3) (used in the residual ηH) are not
available beforehand,

• ‘variational crimes’ (see Braess (2007)) are committed by replacing the
true bilinear form with the FE-HMM bilinear form.

The first issue can be dealt with by introducing the multiscale flux jump for
the modelling of (4.19). For the second issue, the following representation
formula derived in Abdulle and Nonnenmacher (2009a, 2011a) is crucial. Let
B0(·, ·) be the bilinear form corresponding to the variational formulation of
(4.3). Then we can relate the bilinear form B0(·, ·) evaluated at eH to the
actual numerical solution uH , the multiscale flux and data approximation as
follows. Here for simplicity we consider piecewise linear macroscopic finite
element functions.

Lemma 4.13. (Error representation formula) For all v ∈ H1
0 (Ω), we

have

B0(eH , v) =

ˆ
Ω
fv dx−

∑
e∈EH

ˆ
e
�aε(x)∇uh�ev ds

+
∑
K∈TH

ˆ
K
(a0K(xK)− a0(x))∇uH · ∇v dx, (4.51)

where EH denotes the set of interfaces of the conformal mesh TH , uH is the
solution of (4.5) and where the multiscale flux jump �aε(x)∇uh�e is defined
in (4.18).
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Using the above formula, we obtain for v = u0 − uH

B0(eH , eH) =

ˆ
Ω
fH(eH − IHeH) dx+

ˆ
Ω
(f − fH)(eH − IHeH) dx

−
∑
e∈EH

ˆ
e
�aε(x)∇uh�e(eH − IHeH) ds

+
∑
K∈TH

ˆ
K
(a0K(xK)− a0(x))∇uH · ∇eH dx,

where a0K(xK) is defined in (4.28), and IH denotes the Clément interpola-
tion operator (see Clément (1975)). It is a linear operator IH : H1(Ω) →
S(Ω, TH) having the property that, for all v ∈ H1(Ω) and K ∈ TH ,

‖v − IHv‖L2(K) ≤ CHK‖∇v‖L2(N(K)) (4.52)

and

‖∇(v − IHv)‖L2(K) ≤ C‖∇v‖L2(N(K)), (4.53)

where N(K) is the neighbourhood of K that consists of all elements of
TH which have a non-empty intersection with K. Using the properties of
the Clément interpolation operator, Cauchy–Schwarz and Poincaré inequal-
ities, the coercivity of B0(·, ·) and the finite overlapping property of the
neighbourhoods N(K), we can derive the following result (see Abdulle and
Nonnenmacher (2011a) for a complete proof).

Theorem 4.14. (Upper bound) Let u0, uH be the solutions of problems
(4.3) and (4.5), respectively. Then

‖u0 − uH‖2H1(Ω) ≤ C
(
ηH(Ω)

2 + ξH(Ω)
2
)
,

where C depends only on the shape-regularity constant, the coercivity and
continuity bounds (4.2), the dimension d and the constant of the Poincaré
inequality.

To derive a lower bound, bubble functions can be used, as in the classical
theory (Verfürth 1996). We recall the construction of such functions. Let
T̃H be a refinement of TH such that every K ∈ TH has an interior node
x̃K ∈ K\∂K in T̃H , and every edge e of TH not on the boundary ∂Ω has an
interior node x̃e ∈ e\∂e in T̃H . Based on the triangulation T̃H , we define a
piecewise linear finite element space S1

0(Ω, T̃H) ⊃ S1
0(Ω, TH).

We start by estimating the so-called interior residual. For any K ∈ TH ,
consider an interior bubble function, that is, a function ψK ∈ S1

0(Ω, T̃H)
such that 0 ≤ ψK ≤ 1, ψK(x̃K) = 1 and ψK ≡ 0 on Ω\K. Using the
representation formula (4.51) with a test function given by v := ψKfH ∈
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H1
0 (Ω), one can estimate the so-called interior residual

H2
K‖fH‖2L2(K) ≤ C

(
‖∇eH‖2L2(K) +H2

K‖f − fH‖2L2(K)

+ ‖(a0K(xK)− a0(x))∇uH‖2L2(K)

)
. (4.54)

Next, we estimate the so-called jump residual. Let e ∈ EH be an interior
interface and let K1 ∈ TH and K2 ∈ TH be such that K1 ∩ K2 = e. Fur-
thermore, let x̃e ∈ e be an interior node and let ψe ∈ S1

0(Ω, T̃H) be a bubble
function such that ψe(x̃e) = 1 and ψe ≡ 0 on Ω\(K1 ∪ K2). Using the
representation formula (4.51) with v := ψe, we find

He‖�aε(x)∇uh�e‖2L2(e) ≤ C
(
‖∇eH‖2L2(ωe)

+H2
ωe
‖f − fH‖2L2(ωe)

+ ‖(a0K(xK)− a0(x))∇uH‖2L2(ωe)

)
, (4.55)

where Hωe = maxi=1,2Hi, ωe = K1 ∪ K2. Using the estimates (4.54) and
(4.55) on the interior and jump residuals, respectively, we derive the fol-
lowing lower bound (see Abdulle and Nonnenmacher (2011a) for a complete
proof).

Theorem 4.15. (Lower bound) Let u0, uH be the solutions of problems
(4.3) and (4.5), respectively. Denote by ωK the domain which consists of all
elements sharing at least one side with K. Then

ηH(K)2 ≤ C
(
‖u0 − uH‖2H1(ωK) + ξH(ωK)2

)
,

where C depends only on the shape-regularity constant, the coercivity and
continuity bounds (4.2), the dimension d and the constant of the Poincaré
inequality.

5. Finite volume methods

5.1. The algorithm

In this section we discuss the application of HMM in the setting of finite
volume methods. Finite volume methods are generally preferred when the
macroscopic models are in the form of conservation laws. In fluid and solid
mechanics, the macroscale models are often derived from the conservation
laws of mass, momentum and energy:

∂tρ+∇ · q = 0,

∂tq +∇ · τ = 0,

∂tE +∇ · J = 0.

(5.1)

Here ρ is the mass density of the system, q = ρv is the momentum density,
with v being the velocity, and E is the total energy density; τ and J are
the momentum and energy fluxes, respectively. In conventional continuum
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models, empirical relations are sought to express these fluxes in terms of the
conserved densities. In HMM, the fluxes are computed directly from some
underlying microscopic models.

An example of the microscopic model that one can consider is that of
molecular dynamics, that is, Newton’s equations of motion for the consti-
tuting atoms:

ẋi = vi,

miv̇i =
∑
j 	=i

f
(
xi(t)− xj(t)

)
. (5.2)

Heremi is the mass of the ith particle and f(r) = −∇φ(r) is the force exerted
on the particles with interatomic potential φ(r). Here we have assumed that
the particles interact via a pairwise potential, even though the algorithms
discussed here can be easily adapted to the situation when general inter-
atomic potentials are used.

To see how the microscopic model can be linked with the macroscopic
model, observe that for (5.2) we can also write down the analogues of the
equations (5.1), by defining

ρ̃(x, t) =
∑
i

miδ
(
x− xi(t)

)
,

q̃(x, t) =
∑
i

mivi(t)δ
(
x− xi(t)

)
,

Ẽ(x, t) =
1

2

∑
i

[
mi|vi|2 +

∑
j 	=i

φ
(
xi(t)− xj(t)

)]
δ
(
x− xi(t)

)
,

(5.3)

and

τ̃(x, t) =
∑
i

mivi ⊗ viδ
(
x− xi(t)

)
(5.4a)

+
1

2

∑
i

∑
j 	=i

f
(
xi − xj

)
⊗ (xi − xj)

×
ˆ 1

0
δ
(
x−

(
xj + λ(xi − xj)

))
dλ,

J̃(x, t) =
∑
i

vi

[
1

2
mi|vi|2 +

1

2

∑
j 	=i

φ
(
xi(t)− xj(t)

)]
δ
(
x− xi(t)

)
(5.4b)

+
1

4

∑
j 	=i

(
vj(t) + vi(t)

)
· f
(
xj(t)− xi(t)

)
(xi − xj)

×
ˆ 1

0
δ
(
x−

(
xj + λ(xi − xj)

))
dλ.
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One can easily verify that from (5.2) we have

∂tρ̃+∇x · q̃ = 0,

∂tq̃ +∇x · τ̃ = 0,

∂tẼ +∇x · J̃ = 0.

(5.5)

An important factor to be considered is the scale separation: microscopic
processes usually take place at a length scale of nanometres (10−9 m) and a
time scale of femto- or picoseconds, so one can neglect the variation of the
macroscale variables. Locally, one can then think of the atomistic system
as being constrained by the local macroscopic quantities, namely the local
mass, momentum and energy densities. In addition, the atomistic system
will stay close to local equilibrium since there is sufficient time for relaxation
to take place. Consequently, one may view the models (5.1) as being the
ensemble averages of (5.2). This is the ideal situation for HMM.

An HMM strategy for this setting has been developed by Li and E (2005)
and Ren and E (2005). Our presentation follows that of Li and E.

Macroscale solver. Since the macroscopic model (5.1) is in the form of con-
servation laws, it is natural to choose as the macroscale solver a finite volume
method. Although there are many different finite volume methods that are
available for conservation laws (e.g., LeVeque (1990) and Godlewski and
Raviart (1996)), many involve the computation of the Jacobian for the flux
functions. These are less suited to the present problem since the flux func-
tion is not explicitly given to us. An exception is the Lax–Friedrichs central
scheme (e.g., Nessyahu and Tadmor (1990)), which is formulated over a
staggered grid. As it turns out, this method can easily be coupled with
molecular dynamics.

To be more specific, we first rewrite the conservation laws in a generic
form,

∂tu+ ∂xf = 0. (5.6)

We will confine our discussion to macroscopically one-dimensional problems
since the extension to higher dimensions is straightforward. The first-order
central scheme represents the solutions by piecewise constants, which are
the average values over each cell:

unk =
1

∆x

ˆ xk+1/2

xk−1/2

u(x, tn) dx.

Time integration over [xj , xj+1]× [tn, tn+1) leads to the scheme

un+1
k+1/2 =

unk + unk+1

2
− ∆t

∆x

(
fnk+1 − fnk

)
, (5.7)
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with numerical flux

fnk =
1

∆t

ˆ tn+1

tn
f(xk, t) dt,

which is taken to be fnk = f(xk, t
n) in the central scheme.

Now (5.1) is incomplete since we still do not know the fluxes. Next we
describe how this information can be extracted from molecular dynamics
(MD) or other atomistic models.

Microscale solver. We first discuss the case when the microscopic model is
MD. At each point where numerical fluxes are needed, we perform a local
MD simulation to estimate the fluxes. The atomistic simulation will be
constrained by the local macroscopic variables, which are the local density,
momentum and energy. To initialize the MD simulation, we first arrange a
trial configuration of the atoms according to the local density. From the local
total energy, momentum and potential energy V of the trial configuration,
we can compute the thermal energy Kθ by

Kθ = E − V − 1

2
ρv2.

If Kθ is negative, the trial configuration is rejected and another trial configu-
ration with the same number of atoms is generated. Otherwise it is accepted,
and a local initial temperature is computed from Kθ. The velocities of the
atoms are then given by

vi = v + v′i,

where v′i is thermal velocity given by the Maxwell–Boltzmann distribution
with the given local temperature.

The set of ODEs (5.2) can be solved by a standard finite difference scheme
such as Verlet’s method. For the present analysis, however, we will assume
that the ODEs are solved exactly to avoid unnecessary complication. After
the MD system equilibrates, we obtain the required quantities by averaging.
Specifically, let j̃ be the spatial average over the simulation box of a local
flux whose expression was given in (5.4):

J̃ = J̃(X), X = (x1, x2, . . . , xN , v1, v2, . . . , vN ). (5.8)

Then we obtain the corresponding macroscale quantity by time-averaging,

J =
1

T

ˆ τ+T

τ
J̃
(
X(t)

)
dt, (5.9)

where τ is the starting point when the time-averaging begins, and T is the
duration of the time-averaging. An additional ensemble averaging can also
be used if desired. For detailed discussion of the set-up of the MD as well
as boundary conditions, see Li and E (2005).
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F (Uj)

Uj

xj

Uj+1/2

F (Uj+1)

Uj+1

xj+1

� �Uj F (Uj)
MD

Figure 5.1. A schematic illustration of the numerical procedure. Starting
from piecewise constant solutions unk , one integrates (5.6) in time and in
the cell xk, xk+1. The time step ∆t is chosen in such a way that the
waves coming from xk+1/2 will not reach xk, and thus for t ∈ [tn, tn+1],
u(xk, t) = unk . If f(u) at xk is found to be unknown, we perform an MD
simulation using unk to invoke and restrict the microscopic process. The
required flux is then extracted from the simulation and the integration is
completed. Analogously one can embed the MD simulation in
higher-order macro schemes or higher dimensions.

The overall numerical procedure is shown schematically in Figure 5.1. At
each time step, the scheme (5.7) requires as input the fluxes at grid point
xj to complete the time integration. These flux values are obtained by per-
forming local MD simulations that are consistent with the local macroscale
state (ρ, q, E). Once these values are computed, one can advance to the
next macro time step using (5.7).

One result from such a method is shown in Figure 5.2. Here the set-up
for the macroscale model is a Riemann problem for one-dimensional wave
propagation in solids. The result of HMM is compared with that of a direct
MD simulation. The microscale model is MD with Lennard–Jones potential.

5.2. Error analysis

As we have seen before, error estimates for HMM proceed in two steps. The
first step is to estimate the ‘HMM error’, that is, the error in the estimated
data. The second step is to obtain the overall error estimate.

For the exact solution we will take the solution for the case when the fluxes
are given by the averaged quantities for the equilibrium distribution, with
parameters given by the local values of the macroscale variables (density,
momentum, energy).

First, let us look at the HMM error. Let

e(HMM) = E[|J − J̄ |], (5.10)
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Figure 5.2. Numerical test on shock formation and propagation. 200
macro grid points are used, and each local MD simulation consists of
40× 10 atoms and 104 steps of time integration. The solution is
displayed after 40 steps of integration over macro time steps. Solid line,
computed solution; dashed line, full atom simulation (one realization).
(a) Strain, (b) velocity, (c) displacement.
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where J denotes the value of the flux computed by HMM, and J̄ is the exact
value for the flux:

J̄ =

ˆ
J̃(X) dµ∞, (5.11)

with µ∞ being the local equilibrium distribution.
Let L be the size of the microscale simulation box and let d be the di-

mension of the problem. Let µtL denote the particle distribution for the MD
system at time t, and let µL be the equilibrium particle distribution for a
system of size L. In addition, define two quantities α(L) and τ0(L) by the
following: ∣∣∣∣ˆ f(X) d(µL − µtL)

∣∣∣∣ ≤ C e
− t

τ0(L) ‖f‖w,∞, (A1)

and ∣∣∣∣ˆ f(X) d(µL − µ∞)

∣∣∣∣ ≤ Cα(L)‖f‖w,∞, (A2)

for any continuous function f that satisfies

‖f‖w,∞ ≤ ∞,

where

‖f‖w,∞ = sup
X

(
1 + |X|2)−p/2|f(X)|,

for p ≥ 2. Here τ0(L) can be regarded as the relaxation time for a system
of size L, and α(L) measures the error due to the finite size effect.

Now let

J tL =

ˆ
J̃(X) dµtL, (5.12)

A(t, s) = E
[(
J̃(t)− J tL

)(
J̃(s)− JsL

)]
, (5.13)

where the expectation is with respect to µ0L, the initial distribution. We
further assume that ˆ +∞

0
A(t, s) ds ≤ C0, ∀t ≥ 0. (A3)

This amounts to assuming that the correlation has sufficiently fast time
decay.

With (A1), (A2), we have∣∣∣∣J̄ − 1

T

ˆ τ+T

τ
J tL dt

∣∣∣∣ ≤ C(α(L) + T−1 e
− t

τ0(L) ). (5.14)
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Combined with (A3), we have

E

[(
J − 1

T

ˆ τ+T

τ
J tL dt

)2]
=

1

T 2
E

[ˆ τ+T

τ

ˆ τ+T

τ
(J̃(t)− J tL)(J̃(s)− JsL) dt ds

]
,

≤ C0

T
.

Hence, we have

e(HMM) ≤ C

(
α(L) + T−1 e

− τ
τ0(L) +

1√
T

)
. (5.15)

If ensemble averaging is also used, for example with M independent copies,
the above estimate becomes

e(HMM) ≤ C

(
α(L) + T−1 e

− τ
τ0(L) +

1√
TM

)
. (5.16)

We clearly see that e(HMM) is controlled by the behaviour of α(L) and
τ0(L). In general one expects that

α(L) ∼ L−d/2, (5.17)

from the Central Limit Theorem, and

τ0(L) ∼ Lr, (5.18)

with r > 0.
From (5.17) and (5.18), we see the conflicting effects of choosing the size

of the MD system. When L is increased, the finite size error is reduced
while the relaxation time τ0 is increased. Similarly, when L is decreased, τ0
decreases but α(L) will increase.

The macroscopic models considered in this paper have the following prop-
erties. They are hyperbolic and they have a strictly convex entropy function.
To avoid irrelevant complications, we will further assume that the numeri-
cal solutions at the macroscale level are bounded and the exact solution is
piecewise Lipschitz-continuous.

Assume that (5.6) is solved by the three-point conservative scheme

un+1
j = unj −

∆t

∆x

(
fnj+1/2 − fnj−1/2

)
, (5.19)

where fj+1/2 = F (uj , uj+1), and we have omitted the superscript. For
Lax–Friedrichs-type schemes, which are the ones considered in the following
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analysis, the numerical flux fj+1/2 is given by

F (uj , uj+1) =
1

2

(
f(uj) + f(uj+1)

)
− a

2

(
uj+1 − uj

)
. (5.20)

The constant a is chosen to be larger than the eigenvalues of ∇f ,

a ≥ max |λ(∇f)|,
to ensure stability. Since the time step and the grid size are always propor-
tional in the scheme, we will use ∆x to indicate the discretization error.

The HMM solution can be written as

un+1
j = unj −

∆t

∆x

(
gj+1/2 − gj−1/2

)
, (5.21)

gj+1/2 = G(uj , uj+1), (5.22)

with

G(uj , uj+1) =
1

2

(
g(uj) + g(uj+1)

)
− a

2

(
uj+1 − uj

)
. (5.23)

Define the intermediate variable

wn+1
j = unj −

∆t

∆x

(
B̂j+1/2 − B̂j−1/2

)
, (5.24)

B̂j+1/2 = F (uj , uj+1), (5.25)

and then
‖wn+1 − un+1‖ ≤ Ce(HMM), (5.26)

with some constant C. The distance between {wn+1
j } and {vnj }, however, is

directly related to the stability of the numerical methods.

Theorem 5.1. Let v be the exact solution to the PDEs (5.6) and uHMM =
{unj }. Then we have

∥∥v − uHMM

∥∥
L2

≤ C∆x+

√
C∆x+ C

e(HMM)

∆x
. (5.27)

5.3. Application to spall fractures

Spall fractures, in their simplest form, occur when two strong shock waves
under strain conditions interact to produce a region of tension in the interior
of a material body. The interacting waves arise when the system is subject
to high-velocity impacts, for example. The shock waves lead to deformation
of material at the highest possible rates, and the inertial effects become
extremely important.

Experimental studies on fracture initiation due to rapid loading have been
well documented (Antoun et al. 2003, Davison 2008). However, the compu-
tational approach remains a challenge due to the processes occurring on
multiple physical scales.
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Continuum

Atomistic

Figure 5.3. A coupled model.

This problem was studied by Xiantao Li using HMM, by integrating con-
ventional methods for continuum models of solids, with an atomic level de-
scription: the molecular dynamics model. The coupling is shown in Fig-
ure 5.3. This method treats the crack tip area by explicitly incorporating
the atomic interactions, to describe the interaction with the shock waves.
Meanwhile, the integration with continuum models allows us to capture
shock waves and simulate materials of realistic size.

In the continuum region, we solve the conventional computational model
of the elastodynamics equation,

ρ0
∂u

∂t
= ∇ · σ. (5.28)

Here ρ0 is the initial density and σ is the stress tensor.
The model is often combined with Griffith-type criteria to simulate crack

growth: for example, see Camacho and Ortiz (1996) and Xu and Needle-
man (1994). However, many of the fundamental properties of cracks are
determined by the detailed atomic interactions. Therefore, we introduce an
atomistic region around the crack, where the system is modelled by molec-
ular dynamics.

Xiantao Li (private communication) used Roe’s scheme as the macro solver
away from the crack tip. Around the crack tip, numerical fluxes were eval-
uated with the help of MD. When the finite volume method is applied to
the microscale model, the average momentum in a cell is determined by the
total traction along the cell edges, which can be written as

t =
∑
i,j

fij . (5.29)

Here fij is the force between two atoms that lie on two sides of the interface.
Such a coupling method maintains the continuity of the fluxes across the
interface.
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Figure 5.4. An open crack under mode I shock loading.

Figure 5.5. An open crack subject to face loading.

Another critical issue is the boundary condition for the atomistic region.
This issue has been extensively studied in Li (2008), Li and E (2007) and Li
and E (2006).

Numerical results. As the first application, Xiantao Li studied cracks in pure
iron at low temperatures. The interatomic potential is the EAM model
(Daw and Baskes 1984). The system is a rectangular sample with size
0.78 µm × 0.78 µm. The plane strain condition was assumed. For the
MD model, this is enforced by a periodic boundary condition in the third
direction with period equal to one atomic spacing. In the first experiment,
tensile stress is rapidly applied from the top and bottom boundaries of the
specimen. This generates two shock waves, which later propagate to the
centre of the system to interact with a pre-existing crack. Below a certain
threshold, no crack growth is observed after the two shocks collide. Instead of
shock collisions, reflections off the crack faces are observed behind the crack
tip. Above a certain threshold, one begins to observe crack growth, followed
by a sequence of high-frequency lattice waves, the first two of which are of
elliptical and diamond shapes. Experimental observation shows that spalla-
tion does not occur instantaneously when the tension exceeds the spallation
strength: it occurs after a brief incubation period. This was also observed in
our numerical experiments. A sequence of snapshots is shown in Figure 5.4.

In the second experiment, Li studied the response of a crack to loadings
along the crack faces. These results are shown in Figure 5.5. In this case,
the shocks are no longer of longitudinal type, and they propagate with a
much slower speed. The magnitude required to produce fractures is much
higher.
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Figure 5.6. The onset of crack initiation.

Figure 5.6 summarizes the results under the impact of shocks of different
magnitude. The goal is to investigate the strength of the material under
various types of extreme loading conditions. The curve in the figure indicates
the onset of the crack growth. In particular, for a given impact duration,
the point on the curve indicates the magnitude for which the shock impact
leads to fracture. For instantaneous shock loads, only very strong shocks
are able to produce a growing crack. For continuing (slow) impacts, the
threshold is much lower, and the curve approaches a plateau, which agrees
with linear elasticity analysis. The results can be compared to the classical
experimental results (Ravi-Chandar and Knauss 1984).

6. Conclusion

When designing multiscale methods, there are two important factors to con-
sider.

1 From a modelling viewpoint, we would like to eliminate ad hoc modelling
assumptions as much as possible.

2 From a numerical viewpoint, the algorithms have to be practical and
must satisfy the standard requirements for numerical algorithms, such
as stability and accuracy.
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These two aims are not always compatible. Therefore compromises have to
be made. This is one lesson we have learned over the past decade in multi-
scale modelling. HMM provides a general framework that allows us to make
such compromises and make progress.

Although HMM has shown great promise, much work remains to be done
in order to fully realize its potential. One should note, however, that serious
obstacles remain before HMM can be applied to more challenging problems.
For type A problems, namely problems involving local defects or singular-
ities, the macrostates around the defects or singularities have to be inho-
mogeneous, and there are difficulties in formulating constrained microscopic
models so that they are consistent with inhomogeneous macrostates. In ad-
dition, near defects or singularities, the local macroscale solutions are often
singular too. Therefore, for numerical efficiency, local mesh refinements are
needed. This is a technical problem that needs to be addressed. For type B
problems, namely problems for which microscopic models are needed to sup-
plement constitutive relations, the main obstacle is still the cost associated
with running the microscopic models.

A major issue for multiscale methods is the effect of fluctuations. This
is manifested in several ways. Fluctuation effects are almost always present
in microscopic models, such as molecular dynamics or Monte Carlo models.
They are also present in detailed models of random media. However, they
are absent from most effective macroscale models. In cases when fluctuation
effects are important, these effective macroscale models have to be remedied
to include the fluctuations (Donev, Bell, Garcia and Alder 2010). How
to do this is still very much an open question. In particular, in HMM,
to reduce costs, we would like to perform the microscopic simulations on
domains as small as possible. But the Central Limit Theorem tells us that
fluctuations are inversely proportional to the square root of the volume.
Hence computational savings might come at the cost of artificially enlarging
the size of the fluctuations (Bal and Jing 2011). These are all issues that
will need to be carefully addressed.
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