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Hash function requirements for Schnorr signatures
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Abstract. We provide two necessary conditions on hash functions for the Schnorr signature scheme
to be secure, assuming compact group representations such as those which occur in elliptic curve
groups. We also show, via an argument in the generic group model, that these conditions are suffi-
cient. Our hash function security requirements are variants of the standard notions of preimage and
second preimage resistance. One of them is in fact equivalent to the Nostradamus attack by Kelsey
and Kohno (Eurocrypt 2006), and, when considering keyed compression functions, both are closely
related to the ePre and eSec notions by Rogaway and Shrimpton (FSE 2004).

Our results have a number of interesting implications in practice. First, since security does not
rely on the hash function being collision resistant, Schnorr signatures can still be securely instan-
tiated with SHA-1/SHA-256, unlike DSA signatures. Second, we conjecture that our properties
require O(2n) work to solve for a hash function with n-bit output, thereby allowing the use of
shorter hashes and saving twenty-five percent in signature size. And third, our analysis does not
reveal any significant difference in hardness between forging signatures and computing discrete log-
arithms, which plays down the importance of the loose reductions in existing random-oracle proofs,
and seems to support the use of “normal-size” groups.
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1 Introduction

The Schnorr signature scheme [30, 31] has been particularly influential in the design
of cryptographic protocols. The signature scheme is derived, via the Fiat–Shamir
transform [13], from an identification scheme that is a three-move honest-verifier zero
knowledge proof of knowledge of a discrete logarithm. It is considered highly attrac-
tive from an implementor’s perspective because of its remarkable efficiency when in-
stantiated in elliptic-curve groups. As for its provable security properties, Pointcheval
and Stern [28] used the famous forking lemma to prove the scheme secure under the
hardness of computing discrete logarithms in the random oracle model. This important
result guarantees that, as long as the hash function behaves “ideally”, the only way to
break Schnorr signatures is by solving the discrete logarithm problem.

But what happens if hash functions cease to behave ideally? In particular, how do
the recent collision attacks on practical hash functions like SHA-1 and MD5 [35, 34]
affect the security of Schnorr signatures? At first sight, being able to find collisions in
the underlying hash function does not seem to lead to direct attacks on the signature
scheme, but perhaps there are less straightforward attacks? The best way to answer
these questions would be to analyse the security of the Schnorr signature scheme in the
standard, i.e., non-random-oracle model, as such a proof would surface sufficient real-
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world properties for the hash function. Unfortunately, not only do we currently lack
a proof in the standard model, but Paillier and Vergnaud [27] even provided evidence
that such a proof is unlikely to ever be found at all.

In this paper, we enhance confidence in the instantiation of Schnorr signatures,
or at least its elliptic-curve variant, with hash functions like SHA-1 and MD5 by
analysing its security in another popular idealisation, the generic group model [32]. We
present two real-world hash function properties, called random-prefix preimage (rpp)
and random-prefix second-preimage (rpsp) resistance, and we show that they are at the
same time necessary conditions in the standard model and sufficient conditions in the
generic group model for the security of Schnorr signatures. Both properties are strictly
weaker than collision resistance, meaning that they are implied by collision resistance,
but they do not imply it. The rpp property is in fact equivalent to the Nostradamus
attack of Kelsey and Kohno [18]. When considering a particular implementation of the
hash function based on keyed compression functions, our properties become equivalent
to the ePre and eSec notions in the framework of Rogaway and Shrimpton [29].

What our result means in practice is that, as long as the underlying group behaves
“ideally”, the only way to break Schnorr signatures is by breaking either the rpp prob-
lem or the rpsp problem associated to the hash function. In particular, it warrants the
secure use of Schnorr when implemented with SHA-1/SHA-256 or MD5, as long as the
rpp and rpsp problems are still believed to be hard for the respective hash functions.

Apart from instantiation candidates for the hash function, our results have a number
of other important implications for the efficiency and security of Schnorr signatures.
It was already remarked in Schnorr’s original papers [30, 31] that the hash functions
could be chosen to have smaller output sizes, resulting in shorter signatures, since the
schemes’ security did not appear to be related to finding collisions in the hash function.
In fact, a closer look at the concrete bounds in the random oracle model as obtained
through the forking lemma [28, 3] shows that these proofs already supported shorter
hashes too.

We observe that for a hash function with an output length of n bits, one expects
that both the rpp and rpsp problems require an amount of work of O(2n) to solve,
as opposed to the O(2n/2) work needed to find collisions. This warrants using 128-
bit hashes instead of the 256-bit hashes in use today (for a security level of 128 bits),
and, since Schnorr signatures consist of one group element and one hash value, this
immediately cuts down signature size by twenty-five percent to 384 bits instead of
512 bits, compared to DSA signatures.

One oddity about our analysis is that the concrete bound in our generic-group proof
is not tight. In principle, this advises against using short hashes, as the loss in security
needs to be compensated for by increasing the security parameter, i.e., the hash output
length. Interestingly, this situation exactly mirrors the debate around the group size for
Schnorr signatures, where the random-oracle analysis via the forking lemma yields a
notoriously loose security reduction, while our generic-group analysis does not reflect
such a loss. In principle the forking-lemma loss should be compensated for by inflating
the size of a group element, but this is rarely done in practice. If one continues this
reasoning and considers tightness as a second-order issue, then one can safely use
short hash values as well. If on the other hand one takes tightness seriously, then one
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should inflate both the group and the hash output size. A more detailed discussion is
provided in Section 7.

It is worth comparing our results for Schnorr signatures with what is known for the
highly similar and ubiquitous DSA scheme [25]. Unlike the Schnorr scheme, in DSA
finding a collision in the hash function does result, via a known-message attack, in
a break on the signature scheme. DSA therefore cannot profit from the reduced hash
output and signature size that Schnorr enjoys. For DSA no security proof in the random
oracle model is known, but Brown [8, 9] did provide a proof in the generic group model
for the elliptic-curve variant EC-DSA [17]. The proof is quite involved and reduces the
security of EC-DSA to a set of non-standard properties of the hash function and the
“conversion function”. We feel our result for Schnorr is cleaner, and the associated
hash function properties are more natural. Combining our result in the generic group
model with the advantage of additionally having a security proof in the random oracle
model, we feel that Schnorr signatures are to be preferred over EC-DSA.

In [7] other variants of DSA are presented, of particular interest to us is what they
term Type-II DSA signatures, since in these signatures the hash function H is applied
to both the message and the “commitment” as is done in Schnorr signatures. However,
there are many differences between the work in [7] and our work. Firstly [7] is in the
random oracle model, i.e. they assume that H is a random oracle. Our purpose is to
show what properties are required of H , and so we do not model H as a random oracle.
Secondly, and more importantly, they model what we call the conversion function as
a hash function G and then show various conditions on G for the resulting signature
scheme to be secure. This is important in DSA-like applications where the function
k −→

(
gk (mod p)

)
(mod q) is hard to analyse, but for elliptic curve based signatures

the equivalent function k −→ (x(kP )) (mod q) is much easier to understand and
so modelling G as a hash function does not make sense. Thirdly, the authors of [7]
mention that one can obtain a saving of 25 percent in the length of the signature since
they use the output of G as a component of the signature, as opposed to using the output
of H as a component of the signature, as is done in the Schnorr scheme. Hence, our
work can be considered an analogue to the work in [7] in that we perform an analysis
for the function H as opposed to the function G. Indeed in our analysis we require very
little of the conversion function at all.

As a word of warning about security proofs in the random oracle and generic group
models, we mention that for both idealizations counterexamples have been found that
are secure in the idealized model, but completely insecure for any real-world instanti-
ation [10, 12]. These are clearly contrived counterexamples however, and the fact that
no more natural ones have been found until today has led some researchers to con-
clude that perhaps they are realistic models after all [19]. Fischlin [14] pointed out that
anomalies can arise in the combined generic group and random oracle model, which
was previously used to prove the security of Schnorr signatures [30, 31]. We stress that
these anomalies do not affect our results, as we consider two separate proofs, one in
each model, rather than a single proof in a combined model.

Finally, we hope that our security definitions for hash functions provide further mo-
tivation for the hash function community to study in more detail new security notions,
including those of [29, 18] and ours.
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2 The generic group model

Let G be an abstract group of prime order q, which we shall write additively; one can
think of G as the group of integers modulo q under addition. In particular we do not
make any assumption as to whether discrete logarithms are hard to compute in G. We
let s = dlog2 qe.

In a cryptographic scheme elements of G are encoded by bit strings of length `.
Solving the discrete logarithm problem is essentially equivalent to discovering the pre-
cise encoding used, it is this intuition which sits behind the generic group model.

We let G be the set of bit strings of length `, and we let τ : G → G be the “natural
representation” of G in G. We shall represent the induced group operation on the set
τ(G) ⊂ G multiplicatively. Thus we will use additive notation for the representation
in which discrete logarithms might be easy (since we think of this representation as
the additive group of integers modulo q) and we use multiplicative notation for the
representation in which we believe discrete logarithms to be hard.

In a large number of protocols one needs to also map group elements in G to the
smaller set {0, 1}d for d ≤ `, often because ` is too large for practical use, or for
other efficiency reasons. We therefore assume the existence of a “conversion” function
f : G→ {0, 1}d. The conversion function does not necessarily preserve any properties
of the group law in τ(G), nor is it necessarily invertible (see the examples below). An
important quantity in our analysis is the conversion density

δ =
|f(τ(G))|

2d
.

We call the function f “almost-invertible” if there is an efficient randomized algorithm
which given a random bit string R

$← {0, 1}d, with probability δ, computes a preimage
R ∈ τ(G) ⊂ G such that f(R) = R.

The conversion function f plays a crucial role in Brown’s analysis of EC-DSA [8, 9],
and its existence explains the distinct difference between the existence of a proof of
security of EC-DSA in the generic group model and the absence of one for normal
DSA. In [8, 9] a similar definition of “almost-invertible” is given for the conversion
function f , however Brown’s definition is stricter than what we will need. Our analysis
only requires the relatively weak definition given above.

In our analysis the existence of the conversion function and an almost-inverse al-
gorithm will also be crucial, for essentially the same reasons as in Brown’s analysis.
However, since the output of the conversion function is passed to the hash function in
Schnorr signatures one obtains a considerable simplification of the properties required
of the conversion function. Recall in EC-DSA it is the output of the conversion func-
tion which forms a portion of the signature, but in Schnorr signatures it is the output of
the hash function which performs this task.

Before proceeding we present a number of specific instantiations to illustrate the above
setup.
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Finite field based systems:

In this case we let p denote a prime of ` bits in length such that q divides p − 1. We
let g ∈ F∗p ⊂ G = {0, 1}` denote a generator of the subgroup 〈g〉 of order q in F∗p.
The function τ is defined as the group homomorphism from G to F∗p ⊂ G defined by
τ(g) = g, where g is the generator of the cyclic group G = (Zq,+) of order q. Solving
discrete logarithms in the group generated by g is then equivalent to being able to invert
τ .

There are two standard choices for the conversion function in finite field based sys-
tems:

(1) Either one selects d = ` and sets f to be the identity function. In which case f is
always invertible, and we have

δ ≈ 2s−` .

(2) Or one selects d = s and sets f to be the function f(x) = x (mod q), where
one interprets the bit strings as integers. This is the traditional case for DSA-like
systems, as it helps reduce the signature size for DSA. In this case it is believed
that f is hard to invert, and thus our results will not apply.

Elliptic curve based systems:

In this case, assuming we use (as is normally the case) elliptic curves with small cofac-
tor, we therefore have ` = 2s since points are represented by two elements in the finite
field. The map τ is determined by mapping the generator g of G to the generator of the
elliptic curve. Consequently, solving discrete logarithms in the subgroup generated by
this generator is equivalent to inverting τ .

There are again two standard choices for the conversion function f used in elliptic
curve based systems:

(1) Either one selects d = ` and sets f to be the identity function. In which case f is
invertible, and we have

δ ≈ 2s−` = 2−s.

(2) Or one selects d = s and sets f to be the function which returns the x coordinate
of a point. In this case we have

δ ≈ 1/2

and there is a randomized algorithm which given an element in D will return
an element in f(G) with probability δ, or will return ⊥, signalling that f is not
invertible on this element of the codomain D. Hence, f is almost-invertible in this
case with probability δ.

The generic group model captures the idea that an adversary that attacks a primitive
based on some group, does so without exploiting the concrete representation of the
group elements (that is the values in the set G.) In terms of the setup described above,
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attacks in the generic group model are captured by providing the adversary A with in-
direct access to G. More precisely, once the adversary is fixed, we select the represen-
tation function τ at random from the set [G ↪→ G] of all possible injective maps from G
to G. This ensures that the adversary has no a priori knowledge of how group elements
are represented. To perform group computations, the adversary is granted access to an
oracle parametrized by τ . The oracle allows us to “indirectly” compute subtractions
in G (that is, divisions in the multiplicative group τ(G) ⊂ G) as follows. On an input
of the form (g1, g2) ∈ G × G the oracle returns g1/g2 := τ(τ−1(g1) − τ−1(g2)) if
g1, g2 ∈ τ(G). The oracle also returns g = τ(g) on request.

Note that from a division oracle and a generator g one can compute all group oper-
ations as follows:

• The identity can be computed as τ(0) = i = g/g.
• Given an element h, its inverse can then be computed from h−1 = i/h.
• Then given two elements g1 and g2 one can compute their product from g1 · g2 =

g1/g−1
2 .

Shoup’s result [32] on the lower bound of 2−s/2 for solving discrete logarithms in
the generic group model can then be intuitively interpreted as follows. The adversary
against discrete logarithms essentially only obtains information about τ when it calls
the generic group oracle. As this oracle returns random values, information about the
underlying group is only determined when the same value is returned twice, and the
lower bound then follows from the birthday paradox. In the context of Maurer’s model
[21] our function τ represents the handles on the underlying group elements.

3 The Schnorr signature scheme

A digital signature scheme is a tuple of algorithms DS = (Kg, Sign, Vfy), where Kg
generates a public key pk and corresponding secret key sk for security parameter k;
Sign(sk , m) generates a signature σ on message m ∈ {0, 1}∗; and Vfy(pk , m, σ) out-
puts 1 if σ is a valid signature for m under pk and 0 otherwise. Correctness requires
that Vfy(pk , m,Sign(sk , m)) = 1.

We recall the standard security notion from [15] of existential unforgeability under
chosen-message attack (uf-cma). The advantage of an adversary A in breaking signa-
ture scheme DS = (Kg, Sign, Vfy) is given by

Advuf-cma
DS (A) = Pr

[
Vfy(pk , m, σ) = 1 and
A did not query Sign(sk , m)

∣∣∣∣∣ (pk , sk) $← Kg ;
(m, σ) $← ASign(sk ,·)(pk)

]
.

We say that DS is (t, qS, ε) secure if no adversary A running in time at most t and
making at most qS queries to its Sign(sk , ·) oracle has advantage greater than ε. In the
random oracle model [5], the adversary additionally has access to a random oracle that
it can query up to qH times.

To a generic group G as described in Section 2 and a hash function H : {0, 1}∗ →
{0, 1}n (where we interpret the output as an integer in [0, . . . , 2n − 1]), we associate
the Schnorr signature scheme Sch[H] as follows:
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Kg:
sk $← Zq ; pk ← gsk

Return (pk , sk)

Sign(sk , m):
r

$← Zq ; R← f(gr)
h← H(R||m)
s← r + sk · h (mod q)
Return (s, h)

Vfy(pk , m, (s, h)):
R← f(gs · pk−h)
If H(R||m) = h
Then return 1
Else return 0.

We do not explicitly show the dependency of Sch[H] on G, as the group will be clear
from the context.

The Schnorr signature scheme was proved secure in the random oracle model using
the forking lemma by Pointcheval and Stern [28]. It is hard however to extract from
their proof any guidance on the output length of H, because it only considers hash
functions mapping into Zq. The same is true for the concrete treatment by Ohta and
Okamoto [26], and the generalization by Abdalla et al. [1] hides the output length in the
security of an underlying identification scheme. Using the general forking lemma of
Bellare and Neven [3] however, one can obtain the following concrete security bounds
for the Schnorr signature scheme:

Theorem 3.1. If the discrete logarithm problem in G is (tdlog, εdlog)-hard, then the
Schnorr signature scheme is (tuf-cma, qS, qH, εuf-cma)-secure for

εuf-cma =
√

(qH + qS + 1) · εdlog +
qH + qS + 1

2n
+

qS(qH + qS + 1)
q

(3.1)

and tuf-cma = tdlog/2−qStexp+O(qH+qS+1), where texp is the cost of an exponentiation
in the group G.

This bound clearly indicates that a hash function with n = s/2 output bits should
be sufficient to obtain a security level of s/2 bits, conforming to our result that H need
only be rpp and rpsp-secure, and not collision resistant. (A term of the form q2

H/2n

would have advised for an s-bit hash function.) We do not claim the above bound
as a new result of this paper, but its implication to the hash output length, and hence
signature length, seems to have gone mostly unnoticed until now.

4 Hash function requirements

In this section we define the two properties of the hash function that we show in this
paper to be necessary and sufficient for the security of Schnorr signatures in the generic
group model. The properties are variants of the preimage and second preimage prob-
lems, where a random prefix is imposed by the experiment. The following definition
formally captures the experiments that define these two security notions.

Definition 4.1 (Random-prefix (second-)preimage problem). The advantage of an ad-
versary A in solving the random-prefix preimage (rpp) problem, (respectively the
random-prefix second-preimage (rpsp) problem) for prefix in a domain of bitstrings
D and hash function H : {0, 1}∗ → {0, 1}n is given by

Adv
rpp[D]
H (A) = Pr

[
H(R‖m) = h

∣∣ (h,St) $← A ; R
$← D ; m

$← A(R,St)
]

,
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Adv
rpsp[D]
H (A) = Pr

[
H(R‖m) = H(R‖m′)

∣∣∣∣ (m,St) $← A ; R
$← D

m′ $← A(R,St)

]
,

where the probability is taken over the coins of A and the choice of R. We say that
the random-prefix (second-)preimage problem for H is (t, ε) hard if no adversary A
running in time t has advantage greater than ε in solving it.

Both of the above assumptions are directly implied by the collision resistance of H,
a result which we leave to the reader. The fact that collisions can be found in time
O(2n/2) using a birthday attack does not mandate shorter hashes. For an ideal hash
function and sufficiently large d though, one expects both of the above problems to
take time O(2n) to solve, so that an n-bit output hash should be sufficient to provide n
bits of security. The rpp problem appeared earlier in work by Kelsey and Kohno [18] as
the chosen target forced prefix preimage problem. They present the so-called “herding”
attack that essentially solves it in time O(23n/4), for a diamond structure of width 2n/4,
if the hash function follows the Merkle–Damgård iteration [22, 11]. The attack is
easily adapted to break rpsp resistance as well. What this means for practice is that one
should not instantiate the hash function with a Merkle–Damgård iteration of an n-bit
compression function. Instead, one should probably simply truncate the output of a
2n-bit hash function to n bits. (Such a method would in our situation be reminiscent
of Lucks’ wide-pipe hash [20].) Therefore, using for example the first 128 bits of the
SHA-256 hash should in practice provide a security level of 128 bits.

A connection arises between our new notions and the seven-notion framework of
Rogaway–Shrimpton [29] when H is the particular instantiation in the dedicated key
setting [4], of H(R‖m) = G(R,m) where G : G × {0, 1}∗ → {0, 1}n and the key R
of the hash function G comes from the codomain of f . Namely, it is easy to see that
H is rpp resistant if and only if G is everywhere preimage (ePre) resistant, and H is
rpsp resistant if and only if G is everywhere second-preimage (eSec) resistant, a notion
that is sometimes better known as universal one-way hashing [24] or target-collision
resistance [6]. Unfortunately, to support arbitrary-length messages, we would need a
Merkle–Damgård like iteration that preserves ePre and eSec resistance. Such iterations
typically require much more random key material [23] than the 256 bits provided by
R, and this key material would have to be included in the signatures, as in [16], thereby
blowing up the signature size. Alternatively, one could derive the keys from R using a
small-input random oracle as done in [2].

5 Necessary security properties on the hash function

We now show that if either of our two assumptions on the hash function does not hold,
then an algorithm can be constructed which breaks the Schnorr signature scheme. Our
proofs only work for values of δ which are not negligible small, and so our necessary
conditions essentially only have an effect in the real world for specific choices of f .
Our necessary conditions however do not require f to be almost-invertible.

Proposition 5.1. Let A be an adversary against the rpp[D] problem for the hash func-
tion H, with domain D = f(τ(G)) ⊂ {0, 1}d. Then there exists an adversary B against
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the Schnorr signature scheme such that

Advuf-cma
Sch[H] (B) = Adv

rpp[D]
H (A).

Proof. Let A be an adversary against the rpp[D] problem. We construct algorithm B
that on input public key pk runs A’s first stage to obtain (h,St), chooses s

$← Zq,
computes R = f(gs · pk−h), and then runs A’s second stage to obtain m

$← A(R,St).
Algorithm B outputs (s, h) as a forgery for message m. If A is successful then B’s
attempted forgery satisfies the verification equation since:

H(R‖m) = h and R = f(gs · pk−h).

The desired result follows. 2

A similar result holds for the random-prefix second-preimage resistance property,
except now the algorithm B is no longer a passive adversary against the signature
scheme.

Proposition 5.2. Let A be an adversary against the rpsp[D] problem for the hash
function H, with domain D = f(τ(G)) ⊂ {0, 1}d. Then there exists an adversary B
against the Schnorr signature scheme such that

Advuf-cma
Sch[H] (B) = δ · Adv

rpsp[D]
H (A) .

Proof. Let A be an adversary for the rpsp[D] problem. Consider the algorithm B that
on input pk runs A’s first stage to obtain (m,St). Algorithm B then makes a signature
query (s, h) ← Sign(sk , m). It then computes R = f(gs · pk−h) and runs A’s second
stage to obtain m′ $← A(R,St). Algorithm B outputs (s, h) as its forgery on message
m′. If A is successful then B’s attempted forgery satisfies the verification equation
since:

H(R‖m) = H(R‖m′) and R = f(gs · pk−h).

The desired result follows. 2

6 Sufficient security properties in the generic group model

We now adapt the security definition for signature schemes to take into account the
generic group model. In the particular case of the Schnorr signature scheme we define
its security via the following game between an adversary A and a challenger C. In the
game, both parties have access to a generic group oracle Gτ with τ selected at random
(as described earlier in the paper). The challenger generates a signature key sk =
x

$← Zq and computes, using its access to the generic group oracle, the corresponding
verification key pk = gx = τ(x · g) which it passes as input to A.

Besides queries to the generic group oracle, the adversary A can also request signa-
tures from C: the adversary sends m to C and obtains (s, h) $← Sign(sk, m), computed
by C using the generic group oracle.
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At some point the adversary outputs a tentative forgery (m∗, (s∗, h∗)). Let A wins
be the event that (s∗, h∗) is a valid signature on m∗, and m∗ had not been queried prior
to the challenger. We define the advantage of A in breaking the security of signature
scheme Sch[H] in the generic group model by:

Advuf-cma
Sch[H] (A) = Pr

A,C,τ
[A wins] ,

where the probability is taken over the coins of A and C, as well as over the choice
of τ . We say that the Schnorr signature scheme is (t, ε) secure (in the generic group
model) if for any adversary that runs in time t we have Advuf-cma

Sch[H] (A) < ε.
Notice that both the challenger and the adversary access the group via the generic

group oracle. In our proofs, the challenger has control over the generic group oracle
(in particular the selection of τ ), in much the same way that a challenger in the random
oracle model may have control over the random oracle (the so-called “programmable
random oracle”). The following theorem, which formalizes our main result, says that
the Schnorr signature scheme is secure as long as the hash function used in its con-
struction satisfies the security notions that we put forth in this paper.

Theorem 6.1. Let H : {0, 1}∗ → {0, 1}n ↪→ Zq be some hash function, and let G
be some fixed group modelled as a generic group over the set of bit strings G. Let
f : G → {0, 1}d be an almost-invertible conversion function. If both the rpp[D] and
the rpsp[D] are hard for H, with respect to the domain D = {0, 1}d, then the Schnorr
signature scheme Sch[H] is secure in the generic group model.

Proof. Fix some adversary A against the Schnorr signature scheme, and let qG and qS

be upper bounds on the number of queries that A makes to its generic group oracle,
and to its signing oracle, respectively. Assume that the rpp and rpsp problems are,
respectively, (εrpp, trpp) and (εrpsp, trpsp)-hard over {0, 1}d. We show that

Advuf-cma
Sch[H] (A) ≤ qG

δ
· εrpp +

qS + 2
δ
· εrpsp + O

(
(qS + qG)2

q

)
(6.1)

for all adversaries A running in time tA. We will determine the relation between tA,
trpp and trpsp as we progress.

A particularly useful way of describing the execution of some generic group ad-
versary A against the Schnorr signature scheme is through a list L that records what
the adversary learns during the interaction. Each entry in the list is a tuple of the form
(g, k, l) ∈ G×Zq×Zq which indicates that the adversary had learned the representation
g of the group element (k−x · l) ·g. In particular L contains (gg, 1, 0) and (ggx

, 0, q−1)
(the group generator, and the verification key of the scheme), where gg, ggx ∈ G are
randomly chosen, and are deemed to represent gg = τ(g), ggx

= τ(x · g). New
tuples are added to the list, following the queries of the adversary. When A makes
a query (g1, g2) to its generic group oracle L is modified as follows. If there ex-
ists tuples (g1, ki, li) and (g2, kj , lj) in L, but L does not contain a tuple of the form
(g, ki − kj , li − lj) then the tuple (g, ki − kj , li − lj) is added to the list. Here, g is
the representation, under specific map G → G chosen in the generic group oracle,
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of the group element obtained from the ((ki − kj)− (li − lj) · x mod q) · g. If either
of the tuples (g1, ki, li) or (g2, kj , lj) does not exist in L then we abort. We remark
that it is possible to make modifications to the model, and to what follows, so that the
queries above can always be answered. However, the changes would only complicate
the discussion while adding no additional insight. For each signature query m that the
adversary makes to its signing oracle, the tuple (gR, s, h) is added to the list where:
gR is the representation of the group element R = r · g (for some randomly chosen
r ∈ Zq), h = H(f(gR)||m), and s = r + x · h mod q.

Conversely (and this is one key technique in our proof, as is in other works on the
generic group model), one can simulate the environment of the adversary by construct-
ing and maintaining the function τ : G → G on the fly: each time a new tuple (·, k, l)
needs to be inserted in the list, the adversary selects a random value g ∈ G and inserts
(g, k, l) in L, such that g is distinct from the first component of all other tuples in L.
Provided that during the real execution of the algorithm no two entries in L correspond
to the same group element, that is, ki− li ·x 6= kj − lj ·x mod p, the simulation carried
out this way is perfect (otherwise the first component of entries i and j in L should be
equal, whereas in the simulation they are chosen independently at random). We write
NoEqual for the event that during the execution of A no two entries i, j in L satisfy the
property that ki − x · li = kj − x · lj mod p.

We have:

Advuf-cma
Sch[H] (A) = Pr [A wins ∧ NoEqual] + Pr

[
A wins ∧ NoEqual

]
≤ Pr [A wins | NoEqual] + Pr

[
NoEqual

]
.

We obtain the desired result by the two terms on the right hand side. Via the union
bound we get:

Pr
[
NoEqual

]
≤

∑
i,j≤|L|,i6=j

Pr
x

[ki − x · li = kj − x · lj mod p]

=
∑

i,j≤|L|,i6=j

Pr
x

[
x = (ki − kj)(lj − li)−1 mod p

]
= O

( |L|2
q

)
.

To upper bound Pr [A wins ∧ NoEqual] we proceed as follows. We assume that prior
to outputting its attempted forgery, the adversary actually verifies its validity using
the verification algorithm of the signature scheme. Our assumption is without loss
of generality. For any adversary A who does not fulfill this property, one can easily
construct an adversary B which does, and which has the same advantage in breaking
the signature scheme. The assumption implies that for a valid forgery (m∗, (s∗, h∗))
output by A a tuple of the form (g, s∗, h∗) necessarily occurs in L. We distinguish
several possible relations between the forgery (m∗, (s∗, h∗)) output by adversary A
and the entries in list L that describes its execution. For each of the possibilities we
describe an event whose probability we then bound. There are four types of entries in
L:



80 Gregory Neven, Nigel P. Smart, and Bogdan Warinschi

(1) The entries triggered by generic group oracle queries.
(2) The entries triggered by signature queries.
(3) The entry used to initialise the generator (i.e. (gg, 1, 0)).
(4) The entry used to initialise the public key (i.e. (ggx , 0, q − 1)).

(1) We define MatchGG to be the event that the forgery output by A is valid and a
tuple of the form (gi∗0

, s∗, h∗) has been added to L following the i∗0 query of A to
its generic group oracle.

(2) We define MatchSig to be the event that the forgery output by A is valid and that
a tuple of the form (gi∗0

, s∗, h∗) has been added to L following the i∗0 signature
request of A (on message mi∗0

).
(3) Let Matchg be the event that the forgery output by A is successful, and is of the

form (m∗, (1, 0)).
(4) Let Matchgx

be the event that the forgery output by A is successful, and is of the
form (m∗, (0, q − 1)).

Next we bound the probability of the above events, conditioned on the event NoEqual,
and use the bounds to also bound the advantage of the adversary. More precisely, we
construct adversaries B and C such that:

δ

qG
· Pr [MatchGG | NoEqual] ≤ Adv

rpp[D]
B,G (B)

and

δ

(qS + 2)
· Pr [MatchSig ∨Matchg ∨Matchgx

| NoEqual] ≤ Advrpsp
H (C).

Bounding the probability of event MatchGG. We construct an adversary B which
runsA as a subroutine and simulates its environment. The adversary is such that when-
ever event MatchGG occurs (and B does not abort), then adversary B wins in the game
that defines the rpp game.

Adversary B works as follows. It selects uniformly at random an integer i0 ∈
{1, 2, . . ., qG} (representing the index of one of the generic group queries thatAmakes),
then selects x

$← Zq, and initialises the list L with (gg, 1, 0) and (ggx
, 0, q − 1), with

gg, ggx
selected uniformly at random from G. Then B passes ggx

toA and then answers
its queries as follows:

• For each query (g1, g2) (except the i0th query) that A makes to its generic group
oracle, adversary B proceeds as follows: it looks up in the list L two tuples of the
form (g1, k1, l1) and (g2, k2, l2). If such tuples cannot be found, then B returns ⊥
to A. Otherwise, B computes (k, h) = (k1 − k2 mod q, l1 − l2 mod q) and checks
if k − x · l = ki − x · li mod q for some tuple (gi, si, hi) ∈ L. If such a tuple can
be found, then B returns gi to A. Else, B selects random g

$← G, adds the tuple
(g, s, h) to L, and returns g to A.
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• When A makes its i0’s query to its generic group oracle, (g1, g2), adversary B
searches L for two tuples (g1, k1, l1) and (g2, k2, l2). If these are not found, the B
returns ⊥ to A. Otherwise, B computes (ki0 , li0) = (k1− k2 mod q, l1− l2 mod q)
and sends li0 to its environment (recall that B is against the rpp of H, and so we
are using li0 = l1 − l2 mod q as the h required as the challenge to the simulator
in the rpp game). It then receives an element ξi0 selected at random from {0, 1}d.
Adversary B now tries to invert f on the element ξi0 to obtain gi0 ∈ G, which it
can do with probability δ. If this does not work then B aborts, otherwise B adds
(g, ki0 , li0) to L, and returns g to A.

• For each query m that A makes to its signing oracle adversary B computes a
signature on the m as follows. First B selects random r ∈ Zq, computes R = r · g,
selects gR

$← G, computes h = H(f(gR)||m), and s = r + x · h mod q. It then
returns (s, h) to A, and adds (gR, s, h) to L.

WhenA outputs its attempted forgery (m∗, (s∗, h∗)), adversary B checks whether h∗ =
ki0 . If this is not the case, then B aborts. Otherwise, B outputs m∗ to its environment.
Notice that if (m∗, (s∗, h∗)) is a valid forgery, then we have that H(f(gRi0

)||m∗) = ki0 ,
and therefore B wins in the rpp game.

It is immediate that the simulation that B offers to A is perfect, provided that event
NoEqual occurs.

Then whenever event MatchGG occurs, B guesses successfully i0, and B does not
abort its execution, (which happens with probability δ, the probability that B can invert
f on ξi0 ), adversary B wins in the game for random-prefix preimage resistance. That
is:

δ

qG
· Pr [MatchGG | NoEqual] ≤ Adv

rpp[D]
H (B). (6.2)

Furthermore, ifA runs in time tA then B runs in time tA+ t′, where t′ is the time spent
in maintaining the environment of A.

Bounding the probability of event MatchSig ∨ Matchg ∨ Matchgx
. We construct

an adversary C which runs A as a subroutine and simulates its environment. The ad-
versary is such that whenever one of the events MatchSig, Matchg, or Matchgx

occurs
in the simulated execution of A, then C wins in the rpsp game.

The precise details of how C works are as follows. Adversary C selects uniformly at
random

i0
$← {−1, 0, 1, 2, . . . , qS}, g

$← G, and x
$← Zq.

The adversary maintains the list L associated to the execution of adversary A. The list
is initialised as follows:

• If i0 = −1 then C sends 0 to its environment and receives a string ξ selected
uniformly at random from {0, 1}d. It computes g = f−1(ξ) and initialises the list
L with tuples (gg = g, 1, 0), (ggx

, 0, q − 1), where ggx
is selected at random from

G.
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• If i0 = 0 then C sends q−1 to its environment and receives a string ξ selected uni-
formly at random from {0, 1}d. It computes g = f−1(ξ). The list L is initialised
with (gg, 1, 0), (ggx

= g, 0, q − 1), where gg is selected at random from G.

• If i0 ∈ {1, 2, . . . , qS} then L is initialised with (gg, 1, 0) and (ggx
, 0, q − 1), with

gg and ggx selected at random from G.

Then C executes A as a subroutine, and answers its queries as follows:

• For each query (g1, g2) to the generic group oracle, C searches L for two tuples
(g1, l1, k1) and (g2, l2, k2). If such pairs are not found, then C returns ⊥ to A.
Otherwise, C computes (l, k) = (l1 − l2 mod q, k1 − k2 mod q) and for each entry
(gi, li, ki) in L algorithm C verifies if ki−x · li = k−kl mod q. If this is the case,
then it returns gi to A. Else, it selects a random g ∈ G, adds (g, k, l) to L and
returns g to A.

• For all i 6= i0, when A makes the i’th signing query mi, adversary C responds as
follows. It selects random r

$← Zq, computes R ← r · g, gR
$← G, ξR = f(gR),

h = H(ξR||mi), and s ← r + x · h mod q. Adversary C then adds (gR, s, h) to L
and returns (s, h) to the adversary.

• For the i0’th signing query of A, mi0 (here i0 ∈ {1, 2, . . . , qS}), C outputs mi0 to
its own environment, and receives a random ξ ∈ {0, 1}d (recall that C is against
rpsp). Algorithm C computes g = f−1(ξ), if g = ⊥ then algorithm C terminates.
Then, C selects random a ri0 ∈ Zq, and computes Ri0 = ri0 · g, hi0 ← H(ξ||m)
and si0 = ri0 + x · h mod q. It adds (g, si0 , hi0) to L, and returns (s, h) to A.

At some point A outputs its attempted forgery (m∗, (s∗, h∗)). If at this point we have
(s∗, h∗) 6∈ {(1, 0), (0, q−1), (si0 , hi0)} then C aborts its execution. Otherwise, C outputs
m∗.

Analysis of adversary C. It is immediate that the simulation that C offers to A is
perfect, provided that event NoEqual occurs. If event Matchg occurs (i.e. the forgery
output by A is such that (s∗, h∗) = (1, 0)), and i0 = −1 (this happens with probability

1
qS+2 ), then we have that H(ξ||m∗) = 0, so C wins in the game against rpsp. Similarly,
if Matchgx occurs, and i0 = 0 (this happens with probability 1

qS+2 ), then H(ξ||m∗) =
q − 1, so C wins in the game against rpsp. Finally, if MatchSig occurs, (i.e. the forgery
output by A is such that (s∗, h∗) = (si∗0

, hi∗0
) for some i∗0 ∈ {1, 2, . . . , qS} and i0 = i∗0

(this happens with probability 1
qS+2 ), then H(ξR||m∗) = h∗ = h. Provided that C does

not abort its execution (which happens with probability δ, the probability that C can
invert f on the input it receives from its environment), then C wins in its own game.
Formally, we have that:

δ

qS + 2
· Pr [Matchg ∨Match ∨MatchSig | NoEqual] ≤ Adv

rpsp[D]
H (C) (6.3)

Furthermore, if A runs in time tA, then C runs in time tA + t′′, where t′′ is the time
taken to maintain the environment of A.
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Putting the results together. Since the events Matchg, Matchgx
, MatchSig, and

MatchGG form a partition of the event A wins, from Equations (6.2), and (6.3) we
have that:

Pr [A wins | NoEqual] = Pr [Matchg ∨Matchgx
∨MatchSig | NoEqual]

+ Pr [MatchGG | NoEqual]

≤ qG

δ
· Adv

rpp[D]
H (B) +

qS + 2
δ
· Adv

rpsp[D]
H (C),

and therefore:

Advuf-cma
Sch[H] (A) ≤ qG

δ
· εrpp +

qS + 2
δ
· εrpsp + O

(
(qS + qG)2

q

)
provided that tA + t′ ≤ trpsp, and tA + t′′ ≤ trpp. 2

7 About the tightness of the reduction

We end by discussing the tightness of our security reduction and the implications to
the choice of security parameters. First, we note that the factors 1/δ in Equation (6.1)
disappear when security is proved under the rpp[D] and rpsp[D] assumptions for D =
f(τ(G)). More importantly however, Equation (6.1) loses a factor of qG and qS in the
reduction to the rpp and rpsp properties, respectively. If we assume that an evaluation
of H costs one time unit, then εrpp ≤ t/2n and εrpsp ≤ t/2n are reasonable bounds for
hash functions with n output bits. If we additionally assume that qG ≈ qS ≈ t, then we
see that Equation (6.1) takes the form

Advuf-cma
Sch[H] (A) ≤ O

(
t2

2n
+

t2

q

)
.

This implies that to obtain b bits of security, one needs to set n = 2b and s = log2 q =
2b. This is very tight with respect to the size of q, but not with respect to our desired
value of n. The random-oracle analysis via the forking lemma, on the other hand,
comes to the exact opposite conclusion. Taking εdlog ≤ t2/q and qH ≈ qS ≈ t, Equa-
tion (3.1) yields an inequality of the form

Advuf-cma
Sch[H] (A) ≤ O

√
t3

q
+

t

2n
+

t2

q

 ,

which advocates using n = b and s = log2 q = 3b. This is tight with respect to n, but
not with respect to q.

So which values to choose? Well, it depends on how much one cares about tightness.
The fact that in the real world Schnorr signatures rarely come in inflated group sizes
seems to indicate that practitioners see tightness as a second-order problem. In support
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of their view, no attacks have been found that match the poor bounds of the random-
oracle proof. Moreover, the hardness gap between forging signatures and computing
discrete logarithms does not arise in our generic-group analysis, indicating that the
loose reduction in the random-oracle model is just an anomaly of the proof in this
setting, rather than an intrinsic difference in hardness.

The situation for the hash function is the exact mirror image of that for the group
size: it seems hard to come up with an attack that matches the bounds of the generic-
group proof, and the random-oracle proof supports short hashes without any problem.
So if one has been using Schnorr signatures with normal group sizes, then there is no
reason why one shouldn’t use short hash sizes as well.

A more conservative approach would be to take the loose reductions into account
and stick to the worst-case bounds from both proofs, meaning 3b-bit groups in combi-
nation with 2b-bit hashes. We note though that even in this case the Schnorr scheme is
to be preferred over EC-DSA, as the latter lacks a security proof in the random-oracle
model with respect to a standard assumption. There is a proof of EC-DSA in the ran-
dom oracle model with respect to the semi-logarithm assumption [9, Theorem II.10]
however. Whilst in the random oracle model Schnorr signatures are secure with respect
to the discrete logarithm assumption [28].

Another issue with taking short hashes is the vulnerability to so called “duplicate
signatures” [33]. For EC-DSA, duplicate signatures (i.e. one signature which can sign
two messages) can be created by the signer at the point of creation of his public/private
key pair (i.e. the two target messages need to be known at the key generation stage).
When revealing the resulting duplicate signatures the private key is revealed. A similar
result holds for Schnorr signatures.

However, if one uses short hashes in Schnorr signatures then a dishonest signer
can produce duplicate signatures after the key generation stage by creating O(2n/2)
signatures, by essentially finding a collision in the hash function. The revelation of the
two duplicate signatures will not reveal the underlying private key. Such a result does
not contradict the security results above, since the GMR security definition assumes
an attackers against an honest signer, and makes no statement about security in the
presence of dishonest signers.
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