
Systems biology

LBIBCell: a cell-based simulation environment

for morphogenetic problems

Simon Tanaka1,2,*, David Sichau1 and Dagmar Iber1,2,*

1Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland and
2Swiss Institute of Bioinformatics, Basel, Switzerland

*To whom correspondence should be addressed.

Associate Editor: Robert Murphy

Received on June 13, 2014; revised on March 2, 2015; accepted on March 10, 2015

Abstract

Motivation: The simulation of morphogenetic problems requires the simultaneous and coupled

simulation of signalling and tissue dynamics. A cellular resolution of the tissue domain is important

to adequately describe the impact of cell-based events, such as cell division, cell–cell interactions

and spatially restricted signalling events. A tightly coupled cell-based mechano-regulatory simula-

tion tool is therefore required.

Results: We developed an open-source software framework for morphogenetic problems. The en-

vironment offers core functionalities for the tissue and signalling models. In addition, the software

offers great flexibility to add custom extensions and biologically motivated processes. Cells are

represented as highly resolved, massless elastic polygons; the viscous properties of the tissue are

modelled by a Newtonian fluid. The Immersed Boundary method is used to model the interaction

between the viscous and elastic properties of the cells, thus extending on the IBCell model. The

fluid and signalling processes are solved using the Lattice Boltzmann method. As application ex-

amples we simulate signalling-dependent tissue dynamics.

Availability and implementation: The documentation and source code are available on http://tana-

kas.bitbucket.org/lbibcell/index.html

Contact: simon.tanaka@bsse.ethz.ch or dagmar.iber@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During morphogenesis, tissue grows and self-organizes into complex

functional units such as organs. The process is tightly controlled,

both by signalling and by mechanical interactions. Long-range sig-

nalling interactions in the tissues can be mediated by diffusible sub-

stances, called morphogens, and by long-range cell processes

(Restrepo et al., 2014). The dynamics of the diffusible factors

can typically be well described by systems of continuous reaction-

advection-diffusion partial differential equations (PDEs). The appro-

priate tissue representation depends on the relevant time scale. For a

homogeneous isotropic embryonic tissue, experiments show that the

tissue is well approximated by a viscous fluid on long time scales

(equilibration after 30 min to several hours) and by an elastic mater-

ial on short time scales (seconds to minutes) (Forgacs et al., 1998).

However, biological control typically happens on a shorter time

scale, and many cellular processes such as cell migration and ad-

hesion, cell polarity, directed division, monolayer structures and dif-

ferentiation cannot be cast into a continuous formulation in a

straight-forward way. A number of cell-based simulation techniques

at different scales and different level of detail have been developed

to study these processes; here, we discuss main representatives for

each category.

The Cellular Potts model, introduced by Graner and Glazier

(1992), is solved on a lattice, with each lattice point holding a general-

ized spin value denoting cell identity. Similar to the Ising model,

Hamiltonian energy functions are formulated and minimized using a

Metropolis algorithm. It has been applied to a multitude of problems

and is implemented in the software CompuCell3D (Swat et al., 2012).

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2340

Bioinformatics, 31(14), 2015, 2340–2347

doi: 10.1093/bioinformatics/btv147

Advance Access Publication Date: 13 March 2015

Original Paper

http://tanakas.bitbucket.org/lbibcell/index.html
http://tanakas.bitbucket.org/lbibcell/index.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv147/-/DC1
s
)
utes
)
,
)
http://www.oxfordjournals.org/

However, the correspondence between the biological problem and the

Hamiltonian, the temperature and the time step is not always

straightforward.

The subcellular element model divides cells into subcellular

elements, which are represented by computational particles. The

elements interact via interacting potentials which are subject to

modelling. The motion of the elements is governed by overdamped

Langevin dynamics, such that the method is mesh-free. The frame-

work was first introduced by Newman (2005) and later applied by

Sandersius et al. (2011a, b). This approach allows for detailed bio-

physical modelling, both in 2D and 3D.

The spheroid model developed by Drasdo et al. (2007) assumes

that cells in unstructured cell populations are similar to colloidal par-

ticles. The cells are modelled as point particles, hosting interaction

potentials. Their motions consist of a random and a directed move-

ment. Neighbouring cells form adhesive bonds, which are represented

using models borrowed from contact mechanics, such as e.g. the

Johnson–Kendall–Roberts model (Chu et al., 2005). Many cellular

processes such as cell shape change, division, death, lysis, cell–cell

interaction and migration have been successfully translated into the

spheroid model (Drasdo et al., 2007). Intra- and extracellular diffu-

sion has not yet been introduced and implemented. The spheroid

model extends efficiently to 3D, and it has been implemented in the

open-source framework CellSys (Hoehme and Drasdo, 2010).

The vertex model uses polygons (or polyhedra in 3D) to repre-

sent cells in densely packed tissues, e.g. in Drosophila wing disc

epithelia (Farhadifar et al., 2007). For each vertex, forces are

computed—either via a potential or directly. The vertices are moved

subsequently according to overdamped equations of motion or via a

Monte Carlo algorithm. The model is implemented in the open-

source software Chaste (Pitt-Francis et al., 2009).

The viscoelastic cell model (also called IBCell models) presented

in Rejniak et al. (2004) and Rejniak (2007) uses the immersed

boundary (IB) method (Peskin, 2003) to represent individually de-

formable cells as immersed elastic bodies. The cytoplasm and the

extracellular matrix and fluid are represented by a viscous incom-

pressible fluid. In this framework, a vast amount of biological proc-

esses such as cell growth, cell division, apoptosis and polarization has

been realized. The model was applied to study tumour and epithelial

dynamics. Due to the high level of detail, the viscoelastic cell model is

computationally expensive and has not yet been implemented in 3D.

The software framework VirtualLeaf with explicit cell reso-

lution, available in 2D, has been introduced in Merks et al. (2011).

Although the cell representation is similar to vertex cell models, the

dynamics is realized by minimizing a Hamiltonian using a Monte

Carlo algorithm. The model assumes rigid cell walls, which is appro-

priate for plant morphogenesis.

For many morphogenetic phenomena, which arise from a tight

interaction between the biomolecular signalling and the tissue physics,

an explicit computational representation of the cell shapes is required.

Here, we present a flexible software framework based on the IBCell

model, which, as a novelty, permits to tightly couple biomolecular sig-

nalling models to a cell-resolved, physical tissue model. The core com-

ponents and the general approach of the model are described in the

second section. In the third section, the software and the main func-

tionalities are described in detail. Application examples are given in

the fourth chapter to demonstrate the framework’s capabilities.

2 Approach

Our approach permits the coupled simulation of tissue and signal-

ling dynamics. To describe the tissue dynamics, the viscoelastic cell

model needs to represent both the cellular structures and their elastic

properties, as well as the viscous behaviour of the cytoplasm and of

the extracellular space surrounding the cells. The model therefore

rests on three core parts: the representation of cells, the representation

of the fluid and the fluid-structure interaction, and the coupling of

the tissue part to the signalling model. To describe the interaction be-

tween the viscous fluid and the elastic structures, which are immersed

in the fluid, we use Immersed Boundary method (Peskin, 2003) as

previously implemented in the viscoelastic cell model, also called

IBcell model (Rejniak et al., 2004; Rejniak, 2007). To solve the vis-

cous fluid behaviour, we use the Lattice Boltzmann method, which is

an efficient mesoscopic numerical scheme, originally developed to

solve fluid dynamics problems (Chen and Doolen, 1998). The method

has previously been successfully applied to reaction-diffusion equa-

tions, such as Turing systems (Ponce Dawson et al., 1993), as well as

to coupled scalar fields such as temperature (Guo et al., 2002). The

method was for the first time combined with the Immersed Boundary

method (Peskin, 2003) by Feng and Michaelides (2004), and has later

been used to study red blood cells in flow by Zhang et al. (2007). In

the following, we provide an overview of the implemented methods;

the implementation details are given in Section 3.

2.1 Cell representation
Cells are represented as massless, purely elastic structures, which are

described by sets of geometry points forming polygons. The geom-

etry points are connected via forces. In a first approximation, the

elastic structures can be identified to represent the elastic cell mem-

branes. However, more elastic structures can be added to the intra-

and extracellular volume to mimic the viscoelastic properties of the

cytoskeleton or the extracellular matrix. The user can implement

biological mechanisms which operate on the cell representations.

For example, a new junction to a neighbouring cell might be created

when the distance between two neighbouring cell boundaries falls

below a threshold distance. Similarly, a junction might be removed

when overly stretched.

2.2 Fluid and fluid-structure interaction
The viscoelastic cell model represents the content of cells (the cyto-

plasm) as well as the extracellular space (the interstitial fluid and the

extracellular matrix) as a viscous, Newtonian fluid. The intra- and

extracellular fluids interact with the elastic membrane, i.e. the fluids

exert force on the membrane, and the membrane exerts force on the

fluids. Furthermore, the velocity field of the fluid, which is induced by

the forces, moves and deforms the elastic structures. This interaction,

well-known as fluid-structure interaction, lies at the heart of the tissue

model. Forces (e.g. membrane tension or cell–cell forces) acting on

these points are exerted on the fluid by distributing the force to the

surrounding fluid. Due to the local forcing, the fluid moves. At this

step, the membrane point is advected passively by the fluid. As a result

the forces need to be re-evaluated on the points. By repeating the forc-

ing-advection steps, the interaction is realized iteratively.

As a result of this iterative process, the (elastic) structures are

coupled to the (viscous) fluid. Depending on the parameterization,

this model allows to describe either elastic, or viscous, or viscoelastic

material behaviour. The upper part of Figure 1 illustrates the

Immersed Boundary interaction. The implemented Immersed

Boundary kernel function has bounded support, i.e. each geometry

point influences and is influenced only its immediate neighbour-

hood. Here, the dimension of the kernel function is four by four (cf.

Fig. 1). The fluid equations are solved using the Lattice Boltzmann

method (Chen and Doolen, 1998), which is described in detail in the

A cell-based simulation environment for morphogenetic problems 2341

-
-
)
-
)
)
)
 -
,
)
)
very
n
-
the immersed boundary (
)
)
-
)
)
)
)
immersed boundary
)
s
R
-/
-
F
S
I
-
-
are
s
both
-
immersed boundary
)

Supplementary material (Section 6). The Reynolds number is typic-

ally n1; hence, the regime is described by Stokes flow (The

Reynolds number reads Re ¼ UL
� , with U being a characteristic vel-

ocity, L a characteristic length scale and � the kinematic viscosity.

Assuming L ¼ 10�3 ½m�; U ¼ 10�8 ½m=s� and � ¼ 101 . . . 102 ½m2=s�,
then Re ¼ 10�13 . . . 10�12 can be estimated (Forgacs et al., 1998)).

2.3 Signalling
The signalling network is represented as a system of reaction-

advection-diffusion processes. The elastic membranes may act as

no-flux boundaries for compounds which only exist in the extra- or

intracellular volume, respectively. The reaction-advection-diffusion

solvers can be equipped with potentially coupled reaction terms in

order to model signalling interactions of diffusing factors. Depending

on the model, the signalling may impact the tissue dynamics. This can

be done, for instance, by making the mass source of the fluid depend-

ent on the values of the reaction-advection-diffusion solvers such that

the tissue expands locally (cf. Fig. 1). Furthermore, the diffusing

compounds can be individually configured to diffuse freely across the

entire domain, or only inside or outside the cells (e.g. using no-flux

boundary conditions for the cell membranes).

3 Software

3.1 Cell representation
The cell geometries consist of two elements, the GeometryNodes,

which act as the IB points, and the Connections, connecting pairs

of GeometryNodes. A simplified cell is visualized in Figure 2. The

Connections are attributed with a domainID flag, which is an

identifier for the surrounded domain (respecting the counter-

clockwise directionality convention). The domain identifier on the

other side (on the right hand side) is zero by convention, represent-

ing the interstitial space. The domainID of the connections are cop-

ied to the fluid and reaction-advection-diffusion solvers. Moreover,

the domainID’s are associated with a cell type flag, cellType.

By applying custom differentiation rules, the cellType of individ-

ual cells may be changed according to custom criteria; otherwise the

all cells default to cellType¼1 (with cellType¼0 being the

interstitial space, again). In this way, the reaction terms and the

mass sources may be made dependent on specific cells or specific cell

types.

3.2 User-provided solvers
The user can add the following routines: MassSolverXX,

CDESolverXX and BioSolverXX (XX being a name to be chosen).

The MassSolverXX—as described earlier—adds or subtracts mass

from/to the fluid solver. The CDESolverXX is used to implement

the reaction terms of the signalling models. Finally, the

BioSolverXX can be used to execute biologically motivated oper-

ations on the geometry and the forces. Such an operation might be

cell division, which is discussed in more detail in Section 3.5.4.

Figure 3A summarizes the most important classes and their inter-

actions. The classes which are subject to customization are shaded.

In order to add a new customized routine (e.g. a mass modifying

solver MassSolverXX, a reaction-advection-diffusion solver

CDESolverXX or a biologically motivated solver BioSolverXX),

Fig. 2. Elements of the geometry representation. The cells are closed poly-

gons, consisting of geometry nodes (discussed in the top part) and connec-

tions (shaded boxes in the top part) between each two geometry nodes. Each

connection stores two references to its preceding and successive geometry

nodes, and vice versa each geometry node stores two references to its pre-

ceding and successive connection (visualized by aggregation arrows in the

top part). Directionality of the polygon is counter-clockwise by convention.

Each geometry node has a unique, immutable nodeID attribute, which is allo-

cated internally upon creation of a new geometry node. Each connection fea-

tures a domainID attribute, which denotes the domain identifier of the

domain on the left hand side. The domain identifier on the right hand side is

by definition zero, representing the extracellular space. Using the domainID

of the connections, the domainID of the lattice nodes is automatically set

(lower part). Additionally, each domainID is associated with a cellType. The

behaviour of the MassSolverXX, BioSolverXX and CDESolverXX can be

made dependent on the domainID and/or cellType attributes by the user

Fig. 1. Algorithm overview. The algorithm consists of three coupled layers.

The geometry X l; tð Þ (top part, discussed in more detail in Fig. 2) is used to

compute the forces F l; tð Þ acting on each of the geometry nodes. These

forces, which do not necessarily coincide with a lattice point, are scattered to

the fluid lattice (middle part) using the IB method kernel function,

F l; tð Þ ! f tð Þ. After advancing the fluid solver by one time step, the velocity is

interpolated to the geometry node position using the same kernel function,

u x; tð Þ ! U l; tð Þ. The geometry nodes are moved according to their velocity

U l; tð Þ, and the iteration is restarted. The velocity u x; tð Þ of the fluid lattice is

also copied to the reaction-advection-diffusion solvers (PDE), together with

the position X l; tð Þ ! x tð Þ of the geometry. The state of the reaction-advec-

tion-diffusion solvers, which are used to model signalling, may be used to

compute mass sources S x; tð Þ for the fluid solver

2342 S.Tanaka et al.

s
s
,
1
,
)
.
1
R
,
S
,
 -
above
-
s
Subs
,

the user needs to inherit from their respective virtual base classes (cf.

Fig. 3B). Figure 4 visualizes the routines, which are called iteratively

by the SimulationRunner (cf. Fig. 3A).

3.3 Input and output
The communication to the user is achieved via the loading and

dumping of configuration files. A general configuration file contains

the global simulation parameters, such as the simulation time, the

domain size, the fluid viscosity and the diffusion coefficients for the

reaction-advection-diffusion solvers. The geometry points and the

corresponding geometrical connections are stored in a geometry file.

A third file contains the forces, including forces between a pair of

geometry points, freely defined forces or spatially anchored points.

The fluid and reaction-advection-diffusion solver states may be

written either to .txt files or in .vtk format and can be post-

processed with third-party software (e.g. Matlab or ParaView).

Optionally, the solver states can be saved in a loadable format to re-

sume the simulation.

3.4 Physical processes
3.4.1 Viscous and elastic behaviour

The viscous behaviour is implemented using a representation of an

incompressible fluid (solved using the Lattice Boltzmann method,

cf. Supplementary material), which converges to the Navier–Stokes

equation in the hydrodynamic limit. The fluid is solved on a regular

Cartesian and Eulerian grid. The membranes are represented by

sets of points, which are connected to form closed polygons. A

variety of forces may act on the membrane nodes, such as e.g.

membrane tensions (cf. Section 3.4.3). The interaction between the

fluid and the elastic structures is formulated using the Immersed

Boundary method (cf. Supplementary material). The membrane

points move according to the local fluid velocity field in a

Lagrangian manner.

3.4.2 Reaction-diffusion of biochemical compounds

The biochemical signalling can be described by sets of coupled reac-

tion-diffusion PDEs. Similar to the fluid equations, these equations

are solved on a regular Cartesian and Eulerian grid (solved using the

Lattice Boltzmann method, cf. Supplementary material). The con-

centrations of the compounds can be accessed by other solvers, for

example to make other processes such as cell division dependent on

signalling factors. The cell boundaries can be chosen to be either in-

visible to the diffusing compounds or to be no-flux boundaries. To

account for advection, the fluid velocity field is directly transferred

from the fluid solver since the fluid and the reaction-diffusion lat-

tices coincide spatially. The coupling of the solvers is visualized in

Figure 1.

3.4.3 Forces

Forces are an integral part of the simulation environment. A force is

always connected to a membrane point. Any type of conservative

force (which can be derived from a potential) can easily be imple-

mented. Currently, the following types of forces are implemented:

• spring force between two geometrical nodes
• spring force between a geometrical node and a spatial anchor

point
• free force acting on a geometrical node
• horizontally or vertically sliding force (thus enforcing only the y

or x coordinate, respectively)
• constant force between two geometrical nodes

Fig. 3. Simplified UML diagram of important classes. The classes which have

to be provided by the user are shaded. XX refers to an arbitrary solver name.

(A) The SimulationRunner controls the execution of the simulation. The

GeometryHandler has a collection of PhysicalNodes, representing the lat-

tice, a collection of BoundaryNodes which are woven into the lattice, and a

Geometry object. The latter contains the cell’s geometric information, namely

the GeometryNodes and the Connections. The GeometryNodes and the

Connections each have two references of the preceding and successive

elements, as also explained in Figure 2. BioSolverXX obtains references

from the GeometryHandler and the ForceSolver to alter states accordingly.

Similarly, the MassSolverXX obtains a reference to the lattice and adds mass

sources to the fluid. (B) To implement new custom routines, the user must in-

herit from provided base classes (from BioBaseSolver for biologically moti-

vated routines, from BaseCDESolver for reaction-advection-diffusion

processes, and from BaseMassSolver for mass modifying routines)

Fig. 4. Iterative processing in the solver. At initiation, the library loads the

user-provided configuration files (containing global simulation parameters,

initial geometry, initial forces). During each iteration, the library’s class

SimulationRunner (cf. Fig. 3A) successively calls the physical routines (the

Lattice Boltzmann method to solve the fluid and reaction-advection-diffusion

processes, and the Immersed Boundary method to solve the fluid-structure

interaction) and the biological routines (biologically motivated re-arrange-

ment of the geometry, modifications of the forces, etc.). The current configur-

ation and optionally the entire solver states can be saved at a chosen

frequency

A cell-based simulation environment for morphogenetic problems 2343

O
,
P
E
B
s
-
Subs
Immersed Boundary
s
D
B
C
partial differential equation
s
,
•
•
•
•
•

Application examples include constant forces between two geo-

metrical nodes that can be used to model constant membrane ten-

sion, which leads to the minimization of a cells perimeter (discussed

in Section 3.5.2). Moreover, a geometrical point can dynamically

explore its local neighbourhood and establish a force to another geo-

metrical point from another cell, thus, mimicking cell–cell junctions

(discussed in Section 3.5.3).

3.5 Biological processes
The biological solvers (BioSolver) accommodate the functionalities

that are related to biological processes. These processes may be

mostly related to modifications of the forces and the geometry. The

BioSolver has full access to the compound concentrations.

Furthermore, it is aware of the cells, whose geometries are stored in-

dividually. This enables the BioSolver to compute cell areas and

averaged or integrated compound concentrations. Because all cells

are individually tagged, cell behaviour can be made dependent on

cell identity. Additionally to the cell identity, cells also carry a cell

type tag, which can be changed depending on run-time conditions.

This latter functionality can be used to model cell differentiation.

Consider a cell division event as an example. Here, a division

plane has to be chosen. The choice of its position and direction is

subject to the user’s model: the cell division plane might be set per-

pendicular to the cell’s axis of strongest elongation. Next, the cell

has to be divided, which requires the removal of the corresponding

geometrical connections, and the insertion of new geometrical nodes

and connections to close the divided cells.

Note that the concentration fields of the compounds, as well as

the velocity- and pressure fields of the fluid solver are not directly

altered in the biological module.

3.5.1 Control of cell area

Depending on the biological model of the user, the cell area has to

be controlled. By assuming that a cell might change its spatial extent

in the third dimension, the area might shrink or expand as a re-

sponse to forces exerted by its neighbouring cells, which can effect-

ively be modelled as an ‘area elasticity’. In the limiting case, the cell

resists external forces, maintains its area and only reacts with

changes of the hydrostatic pressure. In general, to control the area of

cells, the reference area for each cell needs to be adapted. The refer-

ence area acts as a set point for a simple proportional controller, i.e.

the local mass source Sk in the cell k is proportional to the area dif-

ference between the current cell area Ak tð Þ and the set point area A0
k:

Sk ¼ a A0
k � Ak tð Þ

� �
(1)

where a is a proportional constant. More advanced control meth-

ods, such as e.g. proportional-integral control methods, can be real-

ized easily.

This approach of controlling the cell area can also be used to let

cells grow or shrink in a controlled way, i.e. a cell differentiating into

a hypertrophic cell type may grow in volume. Implementing this pro-

cess would be as simple as setting the new target area as set point

area. The area controller will bring the cell close to its new area.

3.5.2 Membrane tension

The definition of forces acting between pairs of membrane points

allows for simulating the cell’s membrane tension. By default, a con-

stant contracting force Fi with magnitude um is applied to every

pair of neighbouring membrane points. Hence, the resulting force

on membrane point i is composed of a force pointing to its preceding

membrane point i�1, and a force pointing to its successive mem-

brane point iþ1:

Fm
i ¼ um xi�1 � xi

jxi�1 � xij
þ xiþ1 � xi

jxiþ1 � xij

� �
(2)

This approach can be interpreted as an actively remodelled mem-

brane: when stretched, new membrane is synthesized in order to not

increase the membrane tension on longer time scales (hours). On the

other hand, excessive membrane is degraded to abide the membrane

tension. Therefore, the membrane tension minimizes the cell’s per-

imeter. Because the intracellular fluid (and thus the cell area) is con-

served in the absence of neighbouring cells and active mechanisms

(c.f. Section 3.5.1), the cell assumes a circular shape. On short time

scales (seconds), the passive (non-remodelled) elastic membranes

can be modelled by using Hookean spring potentials. The membrane

tension will then be proportional to deviation from the resting mem-

brane perimeter. In both cases, the membrane is flexible (i.e. has no

bending stiffness); if bending stiffness should be required by the

user, this can be easily realized in a custom BioSolver.

The implementation of membrane tension needs to consider

the geometry remeshing. Whenever a new membrane point is in-

serted, it needs to get connected to its neighbours instantly, be-

cause the cell will be overly stretched in the absence of

membrane tensions. A membrane point’s forces need to be

removed upon its removal. Algorithmically, this is realized by

removing and reconstructing all membrane forces at every time

step. At this point, the magnitude of the membrane tension can

be made dependent on signalling factors.

BioSolverMembraneTension is an example of a class man-

aging the membrane tensions with immediate remodeling, and

BioSolverHookeanMembraneTension implements simple

Hookean springs.

3.5.3 Cell junctions

A cell can create cell junctions to neighbouring cells. In the simplest

case, each membrane point i uses the function getGeometry

NodesWithinRadiusWithAvoidanceClosest to get the closest

membrane point j of another cell, which is within a predefined cut-

off radius lmax, or zero if there is no such membrane point. Once a

candidate membrane point fulfils the criteria, a new Hookean force

Fi with a spring constant kj and resting length l0 is created:

F
cj
i ¼

kj xj � xi

jxj � xij
jxj � xij � l0
� �

if jxj � xij < lmax

0 else

8<
: (3)

The cell junction forces are regularly (potentially not at every

time step) deleted and renewed, where the frequency of cell junction

renewal might reflect the cell junction synthesis rate.

The function getGeometryNodesWithinRadiusWith-

Avoidance returns all membrane points of another cell, which are

within a predefined cut-off radius; the returned list might be empty.

This opens up the possibility to introduce randomness by choosing

the membrane point randomly from the candidate list. The probabil-

ity to create a junction might depend on the junction length: the

shorter, the higher the probability to form a new junction. Also the

removal of membrane points might be randomized, and the prob-

ability made dependent on the junction length, i.e. overly stretched

junctions are removed with higher probability. Even the membrane

point whose junctions shall be updated might be chosen randomly.

Again, the number of updated membrane nodes per time reflects the

cell’s limited cell junction synthesis activity.

2344 S.Tanaka et al.

Subs
-
Subs
P
Since
C
A
'
,
n
T
–
Since
Subs
s

J
(3)

The membrane points are internally stored in a fast neighbour

list data structure, which is well suited for spatial range queries.

BioSolverCellJunction is an example of a class responsible for

cell junctions.

3.5.4 Cell division

The cell division functionality requires several steps. First, criteria will

have to be defined which cells shall be divided. Criteria might be max-

imal cell area, maximal spatial expansion or biochemical signals.

Once a cell committed for division, the cell division plane will have to

be chosen. Again, how to chose the plane is subject to biological mod-

elling. A frequently used rule is to use a plane defined by a random

direction vector and the center of mass of the cell. However, different

rules can be readily implemented, such as random directions drawn

from non-uniform probability distributions (which, in turn, can be

controlled, e.g. by signalling factor gradients) or division planes per-

pendicular to the longest axis (Minc et al., 2011). In a next step, the

two membrane segments are determined which intersect with the div-

ision plane; this is implemented in getTwoConnections

RandomDirection or getTwoConnectionsLongestAxis.

These two membrane segments are subsequently removed, and two

new membrane segments across the cell are introduced, leading to a

cut through the mother cell. Finally, a new domain identity number

has to be given to one of the daughter cells; the other daughter cell in-

herits the domain identity number from the mother cell. The new

domain identity number is set to the largest domain identity number

plus one, and it is automatically copied to the physical grid. Both

daughter cells by default inherit the cell type flag from the mother cell,

which is also automatically copied to the physical grid.

The basic cell division functionality is implemented in the class

BioSolverCellDivision.

3.5.5 Differentiation

Differentiation changes the cell type flag of the cells according to

user-defined, biologically motivated rules. These rules might be based

on the cell area, or on a signalling factor concentration, possibly inte-

grated over the cell area. Once being committed for differentiation,

the cell changes its cell type flag according to the rule. The new cell

type flag will be automatically copied to the physical grid. The cell

type flag can be used to make signalling dynamics, but also other bio-

logically motivated processes dependent on the cell type.

The association between the domain identifier flags and the cell

type flags is stored in the cellTypeTrackerMap_, which is a

member of the GeometryHandler. This makes sure that all

BioSolverXX classes have easy access to this information. A basic

implementation of the differentiation control can be found in

BioSolverDifferentiation.

3.6 Accuracy and performance
The Lattice Boltzmann schemes are second order accurate, and the

explicit Immersed Boundary method is first order accurate in space

and time. The internal data structure uses a fast neighbour list (cell

list) implementation to optimize for range queries (e.g. searching for

other cells in the local neighbourhood), which exhibits a search com-

plexity of O Nð Þ, with N being the number of membrane points to

represent the cells. Many iterative computations (Lattice Boltzmann

and Immersed Boundary routines such as particle streaming and col-

lision, gathering of velocity and scattering of force) are parallelized

using the shared memory paradigm. However, a few computational

steps cannot be parallelized. This is typically the case when write-

operations occur on shared data structures, such as the data

structures storing the geometry nodes and the force structs (e.g. in

ForceSolver::delete ForceType() and GeometryHandler

::computeAreas()). Moreover, the geometry remeshing (refin-

ing and coarsening) functions as well as the data I/O are not parallel-

ized, but are assumed to occur much less frequently than the actual

fluid and reaction-advection-diffusion solvers. Therefore, since the

fraction of sequential code is not negligible, the software should best

be run on fast multi-core processors.

3.7 Tools, dependencies and documentation
A compiler with Cþþ0x support (such as GCC 4.7 or higher) is

required. The software depends on Boost (http://www.boost.org;

1.54.0 or higher), OpenMP, CMake (http://www.cmake.org) and

vtk (http://www.vtk.org/; 5.8 or higher). The source code is exten-

sively documented using Doxygen (http://www.stack.nl/dimitri/

doxygen). Git (http://git-scm.com) is used for version control. The

software has only been tested on linux operating systems.

3.8 Availability
The documentation and source code are available on http://tanakas.

bitbucket.org/lbibcell/index.html.

4 Application examples

4.1 Cell division, differentiation and signalling
To demonstrate the capabilities of the software, we first consider a tis-

sue model with cell-type specific cell division and signalling-dependent

differentiation (Fig. 5). In the beginning, a circular cell with radius

R¼10 is placed in the middle of a quadratic 400 by 400 domain

(Fig. 5A). Iso-pressure boundary conditions are set at the border of the

domain. The initial cell is of red cell type, which is proliferating at a

high rate. When considering a single layer epithelium, mass uptake,

which is needed for modelling cell growth and finally proliferation, is

assumed to occur from the apical cavity through the apical membrane.

Additionally, the initial cell secretes a signalling factor I which inhibits

differentiation of the red cell type into the green cell type. Once the cell

area doubled, the cell is divided in a random direction (cf. Fig. 5B). The

daughter cells inherit the cell type, but only the mother cell continues to

express the signalling molecule I . All cells of red type integrate the con-

centration of I over their area. For low signalling levels, the red cell

type differentiates into the green cell type. The green cell type does not

grow and only divides if external forces stretch the cell. In Figure 5C,

the daughter cell’s signalling level dropped after cell division, and differ-

entiation occurred. After several rounds of cell division, a tissue starts to

form (cf. Fig. 5D). The cells close to the secreting initial cell remain pro-

tected from differentiation, whereas more distant cells differentiate irre-

versibly. Due to the randomly chosen cell division axis, it might happen

that the proliferating red cells get trapped (cf. Fig. 5E). The expression

of I is switched off at time t¼5000, thus leading to complete differenti-

ation shortly after (cf. Fig. 5F). After proliferation stopped, the cells

slowly rearrange because cell–cell junctions are broken if overly

stretched, and new junctions are formed [according to Equation (3)]. At

the boundary of the tissue, the cells try to reach a spherical shape, while

in the middle mainly characteristic penta- and hexagonal shapes emerge

(cf. Fig. 5F and Supplementary file S6.4).

4.2 Turing patterning on growing cellular domains
To demonstrate the importance to investigate morphogenic signalling

hypotheses on dynamically growing domains with cellular resolution,

we solved a reaction-diffusion system, featuring the well-known diffu-

sion-driven Turing instability (Turing, 1952), on a proliferating tissue.

A cell-based simulation environment for morphogenetic problems 2345

n
D
,
)
P
immersed boundary
(
()).
e
D
D
http://www.boost.org
http://www.cmake.org
http://www.vtk.org/
http://www.stack.nl/
http://git-scm.com

http://tanakas.bitbucket.org/lbibcell/index.html
http://tanakas.bitbucket.org/lbibcell/index.html
E
D
D
S
-
(
.
P
G
C
D

Figure 6A illustrates the interaction between a ligand L and its receptor

R. Here, we assume that one ligand dimer molecule L binds to two re-

ceptors R, forming the complex R2L which induces upregulation of the

receptor on the membrane (e.g. Bellusci et al., 1997). Unbound receptor

is turned over at a linear rate. The ligand can diffuse freely across the tis-

sue and the entire domain, whereas the diffusion of the receptor is lim-

ited to a single cell’s apical surface and is much slower. The dynamics

can be formulated as a system of non-dimensional PDEs:

@tR ¼ DRþ c a�Rþ R2L
� �

(4)

@tL¼dDLþc b�R2L
� �

(5)

where c is a reactivity constant, a and b production constants and d

the relative diffusion coefficient of ligand and receptor. We note that

the equations correspond to the classical Schnakenberg-type Turing

mechanism (Gierer and Meinhardt, 1972; Schnakenberg, 1979). It

has previously been shown that such a receptor-ligand interaction

can explain symmetry breaking in various morphogenetic systems

(Badugu et al., 2012; Cellière et al., 2012; Menshykau and Iber,

2013; Menshykau et al., 2012; Menshykau et al., 2014; Tanaka and

Iber, 2013).

Depending on the type of domain we observe different patterns.

On a continuous domain, we obtain the well-known regular spot pat-

tern (Fig. 6B). On an idealized static cellular domain an overall regular

pattern with irregular internal structure (Fig. 6C) can be observed.

Decreasing the simulation parameter c, which inversely controls the

distance between the spots, leads to even more unexpected patterns:

for c¼100, the local regularity is completely lost (Fig. 6D). Finally,

on a dynamically growing cellular domain, where the local prolifer-

ation rate was set proportional to the R2L signal, we obtain irregular

patterns (Fig. 6E). For a lower value c¼100, clusters of cells with

Fig. 5. Cell division, differentiation and signalling. (A) The initial configuration

consists of a single, circular cell of type red. The red cell type proliferates at a

high rate. The initial cell is tagged and expresses a signalling molecule I
which inhibits differentiation. (B) The first cell division occurs. The division

axis is chosen randomly. The daughter cell inherits the cell type from the

mother cell, but only the mother cell keeps expressing the signalling mol-

ecule I . (C) The signalling level (the spatially integrated concentration of the

signalling molecule) drops in cells far away from the initial cell and differenti-

ation into the green cell type occurs. The green cell type does not grow intrin-

sically, and only divides if overly stretched by external forces. (D) The highly

proliferating red cells are trapped in the forming tissue due to the randomly

chosen cell division axis. At t¼ 5000, the expression of the differentiation in-

hibiting molecule I is switched off, which leads to the differentiation of the re-

maining red cells. (E) In the absence of high proliferation, the cells rearrange

to maximize the perimeter/area ratio. Characteristic penta- and hexagonal cell

shapes emerge (cf. Supplementary file S6.4). Cells close to the boundary try

to take a circular shape

Fig. 6. Turing patterning on growing cellular domains. (A) Turing instability

can be achieved by Schnakenberg-type reactions, involving a slowly diffusing

compound R, here interpreted as a receptor, and a fast diffusing compound L,

here interpreted as a freely diffusing ligand. One ligand molecule binds to

two receptors, leading to the complex R2L. The complex can be interpreted

as a biological signal. (B) The model is solved on a continuous square lattice

(using d¼ 1, c¼800, a¼0.1, b¼ 0.9), resulting in the classical regular spot-

pattern. The biological signal R2L is shown. (C) The same system as in B is

solved on an idealized static cellular domain, i.e. the diffusion of the receptor

R is restricted to a cell. The emerging biological signal R2L is now distributed

irregularly. (D) The same system as in C, but with c¼ 100, is solved on an

idealized static cellular domain. Fewer cells show significant levels of signal

R2L and no regular pattern can be found (salt-and-pepper pattern). (E) The

same system as in C is solved on a growing cellular domain. The proliferation

rate of a cell is set proportional to its signal R2L. The resulting pattern fea-

tures regularity on a larger scale, but the local patterning significantly differs

from the behaviour on continuous (B) and static cellular (C) domains. (F) The

same system as in D is solved on growing cellular domain. The proliferation

rate of a cell is set proportional to the local intensity of the signal R2L.

Clusters of active cells with high levels of R2L emerge

2346 S.Tanaka et al.

)
partial differential equation
(4)
(5)
,
)
)
very

high R2L signalling levels emerge (Fig. 6F). In conclusion, even rela-

tively simple signalling mechanisms can lead to significantly different

results, depending on how the tissue is represented.

5 Discussion

We developed an extendible and open-source cell-based simulation

environment, which is tailored to study morphogenetic problems. The

novel framework permits the coupled simulation of a physically moti-

vated viscoelastic cell model with regulatory signalling models.

Processes such as viscous dissipation, elasticity, advection, diffusion,

local reactions, local mass sources and sinks, cell division and cell dif-

ferentiation are implemented. By applying our framework to Turing

signalling systems, we show that the signalling systems may behave

differently on dynamic tissues than on simple continuous tissue repre-

sentations. We therefore advocate to test continuous morphogenetic

signalling models on dynamically growing cellular domains.

The presented framework permits to study a variety of mechano-

regulatory mechanisms. By making the cell division orientation

dependent on signalling cues, the effect on the macroscopic tissue

geometry may be studied. Cell migration can be modelled by introduc-

ing gradient-dependent forces on specific cell types. Cell sorting may

be achieved by specifying multiple cell types with differential cell–cell

junction strengths. The framework is specifically designed to study the

mutual effects of signalling and biophysical cell properties.

The viscoelastic cell model represents cell shapes at high resolution

and is thus, unlike the vertex model, not restricted to densely packed

tissues. Furthermore, hydrodynamic interaction, membrane tension

and hydrostatic pressure are integral components of the model. The

fact that a velocity field is available on the entire domain is a critical

advantage to account for advection of the signalling components, thus

allowing for a spatial description of intracellular concentrations. The

model is, however, not easily extendable to the third dimension.

Because a meshing of the surface will be required, the algorithmic and

computational complexity are expected to be significant and subject

to future work. The presented framework is, however, ideal to study

intrinsically 2D morphogenetic problems, such as apical surface

dynamics of epithelia as studied previously also by Farhadifar et al.

(2007) and Ishihara and Sugimura (2012) in 2D.

Funding

The authors acknowledge funding from the SNF Sinergia grant

‘Developmental engineering of endochondral ossification from mesenchymal

stem cells’ and the SNF SystemsX RTD NeurostemX.

Conflict of Interest: none declared.

References

Badugu,A. et al. (2012) Digit patterning during limb development as a result

of the BMP-receptor interaction. Sci. Rep., 2, 991.

Bellusci,S. et al. (1997) Involvement of sonic hedgehog (Shh) in mouse embry-

onic lung growth and morphogenesis. Development, 124, 53–63.

Cellière,G. et al. (2012) Simulations demonstrate a simple network to be

sufficient to control branch point selection, smooth muscle and vascula-

ture formation during lung branching morphogenesis. Biol. Open, 1,

775–788.

Chen,S. and Doolen,G.D. (1998) Lattice Boltzmann methods for fluid flows.

Annu. Rev. Fluid Mech., 30, 329–364.

Chu,Y.-S. et al. (2005) Johnson-Kendall-Roberts theory applied to living cells.

Phys. Rev. Lett., 94, 028102.

Drasdo,D. et al. (2007) On the role of physics in the growth and pattern for-

mation of multi-cellular systems: what can we learn from individual-cell

Based Models? J. Stat. Phys., 128, 287–345.

Farhadifar,R. et al. (2007) The influence of cell mechanics, cell-cell inter-

actions, and proliferation on epithelial packing. Curr. Biol., 17, 2095–2104.

Feng,Z.-G. and Michaelides,E.E. (2004) The immersed boundary-lattice

Boltzmann method for solving fluid particles interaction problems.

J. Comput. Phys., 195, 602–628.

Forgacs,G. et al. (1998) Viscoelastic properties of living embryonic tissues: a

quantitative study. Biophys. J., 74, 2227–2234.

Gierer,A. and Meinhardt,H. (1972) A theory of biological pattern formation.

Kybernetik, 12, 30–39.

Graner,F. and Glazier,J. (1992) Simulation of biological cell sorting using a

two-dimensional extended Potts model. Phys. Rev. Lett., 69, 2013–2016.

Guo,Z. et al. (2002) A coupled lattice BGK model for the Boussinesq equa-

tions. Int. J. Numer. Methods Fluids, 39, 325–342.

Hoehme,S. and Drasdo,D. (2010) A cell-based simulation software for multi-

cellular systems. Bioinformatics, 26, 2641–2642.

Ishihara,S. and Sugimura,K. (2012) Bayesian inference of force dynamics dur-

ing morphogenesis. J. Theor. Biol., 313, 201–211.

Menshykau,D. and Iber,D. (2013) Kidney branching morphogenesis under the

control of a ligand-receptor-based Turing mechanism. Phys. Biol., 10, 46003.

Menshykau,D. et al. (2012) Branch mode selection during early lung develop-

ment. PLoS Comput. Biol., 8, e1002377.

Menshykau,D. et al. (2014) An interplay of geometry and signaling enables

robust lung branching morphogenesis. Development, 141, 4526–4536.

Merks,R.M.H. et al. (2011) VirtualLeaf: an open-source framework for cell-

based modeling of plant tissue growth and development. Plant Physiol.,

155, 656–666.

Minc,N. et al. (2011) Influence of cell geometry on division-plane positioning.

Cell, 144, 414–426.

Newman,T.J. (2005) Modeling Multicellular Systems Using Subcellular

Elements. Math. Biosci. Eng., 2, 613–624.

Peskin,C.S. (2003) The immersed boundary method. Acta Numerica, 11,

479–517.

Pitt-Francis,J. et al. (2009) Chaste: a test-driven approach to software devel-

opment for biological modelling. Comput. Phys. Commun., 180, 2452–2471.

Ponce Dawson,S. et al. (1993) Lattice Boltzmann computations for reaction-

diffusion equations. J. Chem. Phys., 98, 1514.

Rejniak,K.A. (2007) An immersed boundary framework for modelling the

growth of individual cells: an application to the early tumour development.

J. Theor. Biol., 247, 186–204.

Rejniak,K.A. et al. (2004) A computational model of the mechanics of growth

of the villous trophoblast bilayer. Bull. Math. Biol., 66, 199–232.

Restrepo,S. et al. (2014) Coordination of patterning and growth by the mor-

phogen DPP. Curr. Biol., 24, R245–R255.

Sandersius,S.A. et al. (2011a) A’chemotactic dipole’ mechanism for large-scale

vortex motion during primitive streak formation in the chick embryo. Phys.

Biol., 8, 045008.

Sandersius,S.A. et al. (2011b) Emergent cell and tissue dynamics from

subcellular modeling of active biomechanical processes. Phys. Biol., 8,

045007.

Schnakenberg,J. (1979) Simple chemical reaction systems with limit cycle be-

haviour. J. Theor. Biol., 81, 389–400.

Swat,M.H. et al. (2012) Multi-Scale Modeling of Tissues Using

CompuCell3D. Methods Cell Biol., 325–366.

Tanaka,S. and Iber,D. (2013) Inter-dependent tissue growth and Turing pat-

terning in a model for long bone development. Phys. Biol., 10, 56009.

Turing,A.M. (1952) The chemical basis of morphogenesis. Phil. Trans. R. Soc.

B Biol. Sci., 237, 37–72.

Zhang,J. et al. (2007). An immersed boundary lattice Boltzmann approach to

simulate deformable liquid capsules and its application to microscopic

blood flows. Phys. Biol., 4, 285–295.

A cell-based simulation environment for morphogenetic problems 2347

-
very
-
-
very
Since
two-dimensional

	btv147-M1
	btv147-M2
	btv147-M3
	btv147-M4
	btv147-M5

