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ABSTRACT

Considering accessibility of the 30UTR is believed to
increase the precision of microRNA target predic-
tions. We show that, contrary to common belief,
ranking by the hybridization energy or by the sum
of the opening and hybridization energies, used in
currently available algorithms, is not an efficient way
to rank predictions. Instead, we describe an algo-
rithm which also considers only the accessible
binding sites but which ranks predictions according
to over-representation. When compared with
experimentally validated and refuted targets in the
fruit fly and human, our algorithm shows a remark-
able improvement in precision while significantly
reducing the computational cost in comparison
with other free energy based methods. In the
human genome, our algorithm has at least twice
higher precision than other methods with their
default parameters. In the fruit fly, we find five
times more validated targets among the top 500 pre-
dictions than other methods with their default par-
ameters. Furthermore, using a common statistical
framework we demonstrate explicitly the advan-
tages of using the canonical ensemble instead of
using the minimum free energy structure alone. We
also find that ‘naı̈ve’ global folding sometimes out-
performs the local folding approach.

INTRODUCTION

MicroRNAs (miRNAs) are small single-stranded RNAs
of �22 nucleotides (nt) that bind to the 30-untranslated
region (30UTR) of mRNA transcripts, usually
downregulating the expression of the corresponding
protein (1). Due to the important role that miRNAs
play in cell differentiation, development, cancer and
other biological processes in species ranging from viruses
to humans (1), the identification of miRNA targets is es-
sential. Although indirect experimental approaches to

identify targets in large genomes exist (2–4), they are
highly demanding in terms of resources and time.
Accurate computational methods for predicting function-
al miRNA-30UTR pairs are therefore necessary to guide
experiments. In plants, an almost perfect base pair com-
plementarity of the whole miRNA to the messenger is
required, making target identification a simple task for
standard bioinformatic tools (5). In animals, on the
other hand, only a partial complementarity is necessary
(6), making target prediction non-trivial (7).
Different approaches to model the miRNA-30UTR rec-

ognition have led to several miRNA target prediction
methods in animals (8–10). Existing methods have
motivated successful experiments, but their reliability is
still far from perfect. Most methods require a full comple-
mentarity to the so-called ‘seed’ region (at least six con-
secutive nts in positions 2–7 in the miRNA). Various
authors have attempted to increase the precision of
target predictions in several ways.
First, the free energy of pairing between the miRNA

and the 30UTR (so-called duplex or ‘hybridization
energy’) was implemented to select the miRNA-30UTR
pairs with the strongest interaction, i.e. only sites with
the hybridization energy below a certain cutoff (11–17).
Some algorithms use such energies to rank the final set of
predictions. However, this procedure assumes implicitly
that the stronger the physical interaction, the more
likely it is that such a pair will be functional. Several ar-
guments have been raised against this assumption
(6,18,19). In this work we show clearly that once a
perfect complementarity to the seed is required (positions
2–8), ranking according to hybridization energy does not
gain much. We find that such a ranking performs similarly
to random ordering.
Another filter, the conservation among 30UTRs, was

implemented in most methods (12,13,15,17,20), due to
the observation that functional binding sites tend to be
in conserved regions of the 30UTRs (21,22). Although con-
servation is probably the most powerful criterion for
target prediction, increasing the precision in this way
may sometimes be inconvenient because certain miRNAs
have evolved to act on non-conserved 30UTRs (18,21).
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The third approach to increase the precision of predic-
tions is considering the accessibility of the binding sites
(18,23–29). To facilitate interaction, both the miRNA
and the 30UTR should be accessible, at least in the
region corresponding to the seed. However, it is only the
accessibility of the 30UTR that needs to be assessed
because, in their active state, miRNAs are assembled
into the RNA-induced silencing complex (RISC) that
guarantees the accessibility of the miRNA seed (30).
Two important factors must be considered when using
accessibility: first, a criterion for selecting accessible
binding sites; and second, the way final predictions are
ranked. To the best of our knowledge, two general
strategies have been used: (i) Some methods select only
those binding sites that are ‘partially accessible’, i.e. sites
containing stretches of three or four unpaired nucleotides,
thereby enabling a more complete pairing along the whole
miRNA. The predicted targets are then ranked according
to an ad hoc score (18) or free energies (23). (ii) Other
methods consider the sum of two energetic contributions:
the free energy required to make the complementary site
accessible (the so-called ‘opening energy’) and the hybrid-
ization energy (24–26). The sum (which we will refer to as
the ‘total free energy’) is used not only to decide which
binding sites are accessible but also to rank the predic-
tions. However, as the currently available folding algo-
rithms cannot account for RNA–protein interactions,
ranking by total free energy is expected to fail if such
interactions make a significant contribution to the final
energy balance. In this work we show that it is not suffi-
cient just to ‘consider’ accessibility; in order to obtain
meaningful results, the accessibility information must be
used efficiently. For instance, although we find that the
total free energy is a good criterion for selecting candidate
binding sites, we show that it is not the best ranking
criterion.
Despite many successful applications of existing target

prediction algorithms (11–15,17,18,20,23–28), their speci-
ficity and precision remain far below 100%. This is espe-
cially due to the fact that the detailed molecular
mechanism remains unknown. Initially, this lack of know-
ledge justified the development of empirical rules and
scores such as those used in miRanda (11). Now that
more complete knowledge has been accumulated (thanks
to both experiments and successful earlier algorithms), it is
possible to develop systematic approaches based on fewer
empirical assumptions but invoking a careful statistical
analysis that circumvents the ignorance of the detailed
mechanism.
With the goal of increasing the precision of target pre-

dictions, especially when conservation information is not
available, we introduce a new accessibility-based algo-
rithm. This algorithm ranks predictions according to the
over-representation of accessible complementary sites, and
not according to the hybridization or total free energies.
Whereas the free energy is only one of many contributing
factors, the over-representation reflects directly the selec-
tion pressure on the coevolution of the 30UTR and the
miRNA, and therefore takes implicitly into account even
the unknown factors affecting target selection. For two
very different organisms (the fruit fly Drosophila

melanogaster and the human) with large available data
sets, the new method has a significantly higher precision
than more elaborate standard methods while preserving
the same sensitivity. Among the top 100 predictions in
the fruit fly, our algorithm finds more than twice as
many validated targets as do other accessibility-based
target prediction methods (if their parameters are
optimized), and at least five times as many if default par-
ameters are used. In the human data set, our algorithm is
the only one that outperforms the simple algorithm based
on the seed 2–8 requirement. Interestingly, we found that
the main reason for the success of the new method is not
the folding algorithm used in our calculations; instead, the
success is due to the efficient combination of secondary
structure calculations to select accessible sites, and
over-representation to rank the targets. In particular,
our approach to include accessibility shows how to
overcome the inherent limitations of algorithms that
rank predictions according to free energy differences.
Due to its features we called this method ‘Prediction of
Accessible MicroRNA Targets (PACMIT)’.

MATERIALS AND METHODS

Review of the statistical method

The full details of the molecular mechanism of miRNA
target selection are still unknown. Instead of designing
various empirical rules and scores, Robins and Press
(31) and Murphy et al. (32) circumvent the ignorance of
the detailed mechanism by a careful statistical analysis.
The basic assumption is that biologically functional
miRNA-target interactions arose by coevolution of the
miRNA and its target. Therefore, complementary sites
in real targets should correspond to over-represented
oligomers. In addition, since functional miRNA-30UTR
pairs can arise either by a single strong binding site or
by multiple weak binding sites (21,33), the whole of
30UTR, rather than a single complementary site, is con-
sidered as a potential target. To compare the two
possibilities fairly, this algorithm assesses the level of
over-representation of one or more complementary sites,
by computing a single hypothesis P-value (PSH) for each
miRNA-30UTR pair. This gives an approximate probabil-
ity that a given oligomer (or n-mer), complementary to the
miRNA seed, is found by chance at least c times in the
corresponding 30UTR. The lower the PSH is, the higher the
chances that the 30UTR is a functional target. Thus, for a
particular miRNA-30UTR pair, if l is the length of the
30UTR and n the number of nucleotides in the seed, PSH

can be computed as

PSH ¼
Xl�n+1

i¼c

l� n+1
i

� �
Pi 1� Pð Þ

l�n+1�i, ð1Þ

where P is the probability to find the given n-mer by
chance at any particular position in the 30UTR. P is
computed using a Markov Model (MM) based on the
composition of the 30UTR. The MM can be of order
k=0, 1, . . . , n�1, depending on the amount of data avail-
able to compute the corresponding frequencies. (All our
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predictions used n=7, k=1, and a separate MM model
for each 30UTR.) The general procedure is to compute
PSH for all possible miRNA-30UTR pairs obtained from
a set of miRNAs and a set of 30UTRs, to produce a final
list of predictions (i.e. miRNA-30UTR pairs) ranked ac-
cording to PSH.

We included the accessibility of the 30UTRs via the
partial accessibility approach. Instead of looking for the
number c of all complementary sites in the full 30UTR of
length l, we look for the number caccess of complementary
sites in the 30UTR that are also partially accessible.
Additionally, instead of the full 30UTR length l, the ex-
pression for PSH must use the total number of partially
accessible sites in the 30UTR denoted by taccess. Altogether,
the accessibility restriction is considered in the PSH as

PSH ¼
Xtaccess

i¼caccess

taccess
i

� �
Pi 1� Pð Þ

taccess�i ð2Þ

30UTR and miRNA databases

The 30UTR sequences for the fruit fly (release dm3 from
2006) were downloaded from the UCSC Table Browser
(34) available at: http://genome.ucsc.edu. 30UTRs for the
human were obtained from the release 48 of Ensemble (35)
available at: http://dec2007.archive.ensembl.org/index.
html. After removing redundant 30UTRs, we obtained
databases of 10 803 and 19 447 unique 30UTRs for the
fruit fly and the human, respectively. The miRNA se-
quences (153 for the fruit fly and 885 for the human)
were downloaded from miRbase v13.0 (http://microrna.
sanger.ac.uk/sequences) (36).

Computing precision and sensitivity

In order to assess the precision (PR) and sensitivity (SE) of
various methods, for the predictions in the fruit fly we
used a set of 220 experimentally tested miRNA-30UTR
pairs, labeled as ‘functional’ or ‘not functional’
(Supplementary Table S1). This data set is based on the
data set compiled by Kertesz et al. (24) and complemented
with additional validated targets reported in miRecords
(37). In the human we used the experimental results
reported by Selbach et al. (4) in which protein levels
were monitored under the expression of five different
miRNAs. From these results, a data set of 15 806
miRNA-30UTR was defined according to the fold
change in protein expression: 2406 of these pairs were
considered as functional and 13 400 as non-functional
(8). We have used this data set to assess the precision
and sensitivity of the predictions in the human.

Once the experimentally tested pairs are ranked accord-
ing to the ranked list of predictions produced by a par-
ticular method, PR and SE of that method are computed
according to the following formulas:

PR ¼
TP

TP+FP
, ð3Þ

SE ¼
TP

TP+FN
: ð4Þ

Here TP, FP and FN denote the numbers of true positives
(functional pairs predicted as functional), false positives
(non-functional pairs predicted as functional) and false
negatives (functional pairs predicted as non-functional),
respectively.
It is important to note that the data set used for the fruit

fly is derived from the so-called ‘direct validation’ in which
time-consuming experiments, usually motivated by com-
putational predictions, are carried out to prove the func-
tionality of each miRNA-30UTR. Unfortunately, many
negative results are not published. In contrast, the data
set for the human (which was not inspired by computation-
al predictions) comes from high-throughput measurements
(known as ‘indirect validation’) in which several secondary
effects might be involved in the up/down-regulation of
proteins (8). All negative results are available.

Calculations with other methods

Our predictions were compared with the results of
miRanda (11), PITA (24), IntaRNA (26) and
RNAhybrid (14) with their default parameters and also
with the following sets of parameters that were found to
increase the precision. (i) miRanda: score cutoff � 140,
energy cutoff ��20 kcal/mol, gap opening=�9.0 and
gap extension=�4.0; target score (i.e. the overall score
of a miRNA-30UTRs pair in case that multiple bind-
ing sites occur)= sum of scores for all binding sites. (ii)
PITA: we only considered sites with ��G��10 kcal/mol,
with seeds of length 7–8, not allowing mismatches or G:U
wobble pairs; target score=PITA score for multiple
binding sites. (iii) IntaRNA: we considered sites with
��G��10 kcal/mol, with seed 2–8 allowing G:U base
pairs; 30UTRs were folded with RNAplfold (38) with a
window size W=80 and a maximum distance between
paired bases L=40 as recommended in ref. (19); target
score= lowest total free energy. (iv) RNAhybrid: we con-
sidered sites with �G��20 kcal/mol, with seed 2–8
allowing G:U wobble pairs; target score= lowest hybrid-
ization energy. In all cases the ranking of the predicted
targets was made according to the so-called ‘target score’
defined above. We emphasize that we did not limit our-
selves to using only the default parameters preselected in
each program, but instead tested various parameters. The
parameters that had performed the best for a given algo-
rithm were used in the second comparison with our
method. Wobble G:U pairs were allowed in miRanda,
IntaRNA and RNAhybrid because perfect seed matches
are not supported by the programs. We strongly recom-
mend using the optimized parameters listed above instead
of the default parameters.

Ranking predictions according to the hybridization energy,
total free energy, total accessibility and random ordering

In order to compare different ranking criteria, four differ-
ent quantities were used to order the miRNA-30UTR pairs
containing at least one perfect match in the seed 2–8
region: (i) over-representation (PACMIT), (ii) the hybrid-
ization energy [with the program RNAplex (16)], (iii) the
total free energy (with IntaRNA) and (iv) the total acces-
sibility (with RNAplfold). By total accessibility we mean

Nucleic Acids Research, 2011, Vol. 39, No. 1 21



the sum of Pfree’s over all accessible 4-mers contained in all
complementary sites. As for the hybridization and total
free energies, if multiple binding sites are found in a
given 30UTR for the same miRNA, we considered the
site with the lowest appropriate energy. For reference we
also show the expected behavior for a random ordering of
the seed-containing pairs.

Significance of predictions

A distinguishing feature of our algorithm is that besides
a ‘score’ (PSH in our case), determining a rank of a
given prediction, it also estimates the statistical signifi-
cance of the top N predictions when more than one
miRNA-30UTR pair is tested by computing the multiple
hypothesis P-value PMH (32). PMH is computed from the
number Nt of random genomes (with the same length and
average dinucleotide composition) that produce lower PSH

values for their rank-t prediction than the real genome.
Thus, for position t in the ranking,

PMH ¼
Nt

N
, ð5Þ

where N is total of random genomes analyzed (typically
100).
An alternative measure of the reliability of the different

methods is the false discovery rate (FDR), defined by

FDR ¼
FP

FP+TP
: ð6Þ

Since our algorithm provides single hypothesis P-values,
FDR can be estimated following the procedure introduced
by Benjamini and Hochberg (39). In particular, assuming
independent or positively correlated hypotheses, the FDR
up to the kth prediction can be estimated as

FDRðkÞ ¼
m � PSHðkÞ

k
, ð7Þ

where m is the total number of predictions and PSH(k) is
the single hypothesis P-value for the kth prediction.
The statistical framework of the method also allows

estimating the total number of targets, by computing the
difference between the total actual and total Markov-
model-predicted numbers of complementary accessible
sites (where the totals are over all microRNA-30UTR
pairs) (31). E.g. for the 153 miRNAs tested in the fruit
fly, our algorithm predicts that there are �1900 tar-
gets with perfect complementarity to the seed at positions
2–8.
Thus, if one is interested only in ‘strong predictions,’

one should choose predictions with PMH or FDR below
a certain cutoff, e.g. 0.05, or only the top 1900 in the
example of the fruit fly. However, for sake of comparison
with other methods which predict a very large number of
targets, we also considered ‘weaker’ predictions.
Supplementary Figure S1 shows the FDR computed

from Equation (6) for several methods applied to the
fruit fly genome. Also shown are FDR(k) for our algo-
rithm (denoted Theor.) and the FDR [denoted Accessible
seed 2–8 (random order)] obtained if the predictions of
our method were randomly ordered instead of being

ordered according to PSH. By definition, the FDR for
Accessible seed 2–8 (random order) is constant. We
stress that unlike other methods, ours allows a theoretical
estimate of the FDR, which may be useful in future
applications.

RESULTS

Whereas over-representation is an excellent ranking
criterion, hybridization energy is a poor one

Our algorithm ranks its predictions according to the
over-representation of complementary binding sites
among those which are partially accessible. In other
words, assuming the coevolution of the miRNA and
30UTR sequences, we expect that functional targets
should contain complementary n-mers that are over-
represented among the partially accessible n-mers (we
use n=7 for the seed length) (31,32). Over-representation
is quantified by a single hypothesis P-value (PSH) for
each miRNA-30UTR pair: the lower the PSH is, the
higher the chances that the 30UTR is a functional target
(see ‘Materials and Methods’ section for details).

Before including accessibility considerations into the
model, we checked the performance of over-representation
as a ranking criterion. For this purpose, we compared the
precisions obtained when all miRNA-30UTR pairs with at
least one seed 2–8 perfect match were ranked by
over-representation (our algorithm), total free energy, hy-
bridization energy and random order (see ‘Materials and
Methods’ section). Both in the fruit fly and in the human,
over-representation performs much better than hybridiza-
tion energy and random ordering. On the other hand, no
significant difference was found between ranking by hy-
bridization energy and randomly (Figure 1a and b). Total
free energy yields higher precision than hybridization
energy and random order, but performs only comparably
(in the fruit fly) or much worse (in the human) than
over-representation.

In addition, in Figure 1c and d, we show that ranking
by over-representation places many more true positives
among the top predictions compared to the rankings by
total free energy, hybridization energy and random
ordering. This is especially notable in the human,
where among the top 5000 predictions, rankings by hy-
bridization or total free energies find no true positives
whatsoever, while ranking by over-representation finds
12 and random ordering finds approximately two true
positives. This corroborates that over-representation is
much more appropriate to rank the predictions than
the more intuitive options like the hybridization or
total free energies.

The observations shown in Figure 1a to d are the first
major result of our work. Contrary to common belief,
ranking predictions according to the hybridization
energy does not gain much. Hybridization energy is only
useful as a cutoff criterion, but not useful to sort predic-
tions. The total free energy performs better, but still quite
poorly for the very top predictions, at least in comparison
with the over-representation. We believe that this is due
to the complex evolutionary information captured by
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over-representation, but hidden from simpler physical
criteria such as hybridization or total free energies. We
note that the results of seed 2–8 (random order) in
Figure 1 are already very good, and as shown below,
much better than the results of algorithms based on
hybridization or total free energy that omit the seed
requirement.

An efficient way to include accessibility in the
prediction algorithm

To simultaneously take into account the accessibility of
the binding site and the possibility of multiple binding
sites in the target 30UTR, we included two modifications
in the calculation of PSH. Denoting by caccess the number
of partially accessible complementary sites in the 30UTR
and by taccess the total number of partially accessible (but
not necessarily complementary) sites in the 30UTR, the
PSH value is given by Equation (2). As we will show
below, this mechanism to include accessibility in miRNA
target predictions is more efficient than currently used
approaches. This is mainly because our algorithm incorp-
orates the secondary structure to filter out false positives
but not explicitly as a score: the ranking is given by
over-representation (i.e. PSH).

Selection of partially accessible sites

As almost no complementary site in the 30UTR would be
accessible at all times, less restrictive approaches based on
partial accessibility have been proposed: only three con-
secutive nucleotides complementary to the seed (18) or
four consecutive nucleotides complementary to any part
of the miRNA (23) are required to be initially unpaired to
allow the initiation of the binding process. Robins et al.
(18) give two biophysical reasons for using a minimum of
three free nucleotides: (i) three is the minimum number of
unpaired nucleotides forming any RNA loop and (ii) base
pair recognition between two strands needs at least three
consecutive matches to form the double helix. We use a
somewhat stronger condition, requiring at least four ac-
cessible nucleotides in the site complementary to the seed,
but in such a way that the degree of accessibility required
for such 4-mers is a flexible parameter.
In order to establish whether a given 4-mer within the

30UTR is accessible or not, it is necessary to obtain the
secondary structure by one of the available folding algo-
rithms. The first attempts considered the minimum free
energy structure (MFES) as a representation of the sec-
ondary structure (18,27). This approach has two
problems: first, it neglects the possibility that the

Figure 1. While over-representation is an excellent ranking criterion, hybridization energy is a poor one. All miRNA-30UTR pairs with at least one
perfect seed 2–8 match are ranked according to over-representation (measured by PSH and labeled as PACMIT-0.0), total free energy, hybridization
energy and random order. Precision versus sensitivity curves are shown for (a) the fruit fly and (b) the human. The number of true positives
(i.e. experimentally validated targets) among the top predictions is also shown for (c) the fruit fly and (d) the human. In panel (d), the bars for
hybridization and total free energies are not visible because the number of true positives for these two methods is always zero.
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microRNA binds to a 30UTR structure with only slightly
higher energy than the MFES. Second, the computed
MFES is very sensitive to inaccuracies in the folding algo-
rithms. Both problems can be avoided by considering the
canonical ensemble of secondary structures (CESS)
instead of the single MFES (23,24). Not only is using
CESS more realistic, but it should also be robust against
errors in the folding algorithms. The comparison of algo-
rithms invoking either of these hypotheses with different
algorithms based only on the hybridization energy and
conservation filters suggests that both assumptions are
reasonable. However, to our knowledge, the actual effect
of either assumption has never been assessed explicitly on
the basis of a common statistical framework. We make
such an assessment here by comparing the results of our
algorithm when the accessibility of the 4-mers is
determined by either the MFES, or the CESS.
In case of the MFES, the 30UTR is folded using the

program RNAfold (from the Vienna RNA package)
(40), and only unpaired 4-mers are considered to
compute caccess and taccess. In case of the CESS, the
question of accessibility becomes a matter of probability.
Instead of asking whether a given 4-mer is free (i.e. fully
unpaired) or not, one must ask for the probability Pfree

that this 4-mer is free. Therefore, we consider as ‘partially
accessible’ any complementary site which contains at least
one 4-mer with Pfree�Pcutoff. The value of Pcutoff can be
changed to obtain a given degree of specificity. We tried
five different cutoffs: 0.1, 0.2, 0.3, 0.4 and 0.5.
Among the main concerns regarding the folding algo-

rithms are worries that these programs cannot guarantee
reliable structures for long sequences (41), and that
proteins involved in the recognition of RNA strands are
expected to hinder the formation of long-range inter-
actions, thus making target accessibility a matter of local
secondary structure (19). Therefore, in this work we used
RNAplfold (also from the Vienna RNA package) to fold
separately all possible subsequences of length W derived
from a long sequence of length l, only allowing base pair
interactions at a maximum distance L (38). For each
4-mer, Pfree is computed as an average over all subse-
quences in which this 4-mer is present. This ‘local
folding’ approach is much faster than folding the whole
sequence at once (‘global folding’), making it suitable for
large 30UTRs such as those of many human genes. In
order to check the performance of the local folding
against the ‘naı̈ve’ global folding, we used Pfree obtained
from two different configurations: (i) global folding:
W=L=l and (ii) local folding: W=80, L=40 as sug-
gested in ref. (19). The values of Pfree are used to evaluate
caccess and taccess, needed in Equation (2) for PSH.

Canonical ensemble gives comparable or better results
than the minimum free energy structure while local
folding is not always better than global folding

To compare the effects of using the MFES or the CESS on
the precision of target predictions, we compared
PACMIT-MFES (PACMIT using only the MFES) with
PACMIT-Pcutoff (PACMIT using the CESS with accessi-
bility cutoff Pcutoff) based on both local and global

folding. Since precision may be increased by simply
sacrificing sensitivity, it is appropriate to compare the pre-
cision (PRmax) obtained with each method for common
reference sensitivity, in this case the sensitivity obtained
by PACMIT-MFES (Table 1). First of all, we observe
(somewhat surprisingly) that for the fruit fly the global
folding provides better results than the local folding (see
column for fruit fly*). Second, we corroborate that the
CESS usually (but not always) gives better results than
the MFES. Third, the highest improvement in precision
over PACMIT-MFES (if any), corresponds in most cases
to Pcutoff=0.2. For these reasons, in further comparisons
we will use Pcutoff=0.2 while we will employ global
folding (labeled with an aterisk, as in PACMIT-0.2*) for
the fruit fly and local folding (labeled without an asterisk
as in PACMIT-0.2) for the human.

Accessibility improves precision

To find out whether the precision of the predictions is
increased by including the partial accessibility require-
ment, we compared results obtained with PACMIT-0.2*
(in the fruit fly) and PACMIT-0.2 (in the human) with the
corresponding results obtained with PACMIT-0.0 (i.e.
when all complementary sites were considered by setting
Pcutoff=0.0).

For all folding approaches the precision of PACMIT
predictions in the fruit fly is always increased by the ac-
cessibility restriction (Figure 2a). Both CESS and MFES
improve the precision of the method. As expected, we also
observe that increasing Pcutoff (from 0.2 to 0.5) increases
precision, albeit at the expense of sensitivity. In the
human, however, considering accessibility does not lead
to an improvement over PACMIT-0.0 (Figure 2b).
While somewhat surprising, this attests to the strength
of PACMIT-0.0 in ranking predictions rather than to
the unimportance of accessibility. Altogether, we can
conclude that accessibility considerations can significantly
improve the precision of the method, and, in the worst
case scenario, lead to similar results as with PACMIT-0.0.

Table 1. Precision obtained with PACMIT using different folding

schemes

Method Precisiona

Fruit fly*,b Fruit flyc Human*,b Humanc

PACMIT-0.0 0.900 0.900 0.483 0.483
PACMIT-0.1 0.923 0.900 0.469 0.486
PACMIT-0.2 0.947 0.923 0.466 0.493

PACMIT-0.3 0.947 0.900 0.414 0.483
PACMIT-0.4 0.923 0.878 N.A. 0.449
PACMIT-0.5 N.A.d 0.860 N.A. 0.424
PACMIT-MFES 0.923 0.923 0.405 0.405

aPrecision obtained for the same sensitivity as that obtained by
PACMIT-MFES, i.e. SE=0.263 for the fruit fly and SE=0.085 for
the human.
bUsing RNAplfold with global folding (W=L=l).
cUsing RNAplfold with local folding (W=80 and L=40).
dNot available for the sensitivity cutoff.
*Used here and in the main text to denote global folding.
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PACMIT shows higher performance than current
methods using accessibility

We compared PACMIT with several currently available
prediction methods. To the best of our knowledge, there
exist three standalone tools using accessibility instead of
conservation to increase the precision of miRNA target
predictions: PITA (24), RNAup (25) and IntaRNA (26).
From these three, we selected PITA and IntaRNA because
IntaRNA and RNAup use a very similar approach and
yield almost equivalent results while IntaRNA proved to
be much faster than RNAup (26). In addition, we made
comparisons with two methods that use neither accessibil-
ity nor conservation, but instead use the hybridization
energy: (i) miRanda (11) because it is one of the
methods most often used by experimentalists and
(ii) RNAhybrid (14), which is only based on the hybrid-
ization energy and hence can serve as a reference to see the
advantages of additional features included in the other
methods. We emphasize that we did not limit ourselves
to using only the default parameters preselected in each
program, but instead tested various parameters. The par-
ameters that had performed the best for a given algorithm
were used in the second comparison with our method. We
call these optimized parameters the ‘high-precision
parameters.’

In the comparisons we also include two reference
curves: (i) as in Figure 1a and b, ‘Seed 2–8’ is the
simplest miRNA target prediction algorithm in which all
30UTRs with at least one perfect match to the seed are
considered to be targets (predictions are randomly
ordered). (ii) In the lines denoted ‘Random’ all possible
miRNA-30UTR pairs are randomly ordered. In other
words, ‘Random’ corresponds to the absence of any algo-
rithm whatsoever.

The precision versus sensitivity curves for the default
parameters of the other methods are displayed in
Figure 3a and b. In both organisms PACMIT shows the
highest precision among all methods. In the human espe-
cially, the results of PACMIT are astonishing: its precision
is about twice higher than the precision of the other
methods (Figure 3b). Note that the other methods
perform on par with the completely random ordering

and much worse than the simplest seed 2–8 method
(Figure 3b). In the fruit fly (Figure 3a) all algorithms
except PACMIT and PITA have lower precision than
the seed 2–8 method; those that neglect accessibility
show precision lower than the completely random
ordering. The results change for the high-precision set of
parameters (Figure 3c and d) although PACMIT still has
the highest precision. In the fruit fly, the other methods
show a considerable improvement (Figure 3c). PITA has a
higher precision than IntaRNA (presumably due to the
requirement of perfect seed matches) and is the only
method with a significant increase in precision also in
the human genome (Figure 3d). As for miRanda, the
apparent limitation of the thermodynamic model is well
compensated by the heuristic score: not only is miRanda
much more precise than RNAhybrid but it also shows a
competitive behavior in comparison with PITA and
IntaRNA. The poor precision of RNAhybrid in compari-
son with miRanda and with the random ordering confirms
that efficient prediction of miRNA targets requires add-
itional features beyond the hybridization energy. We note
that by ignoring the seed requirement and ranking predic-
tions based on the hybridization energy only, one can
achieve higher sensitivity and also detect exceptional
sites not satisfying the seed requirement. However, this
is done only at the expense of a huge number of predic-
tions and a very poor precision.
As the validation of the fruit fly data set has been his-

torically motivated by the top predictions of existing com-
putational methods that involve free energies in their
ranking score (such as PITA), one would expect many
true positives to be located among the top predictions of
such methods. On the other hand, the validation was
never motivated by a method ranking predictions by
over-representation like PACMIT, and so one might
expect fewer true positives among the top predictions of
PACMIT. It is therefore astonishing that among the top
100 predictions, PACMIT-0.2* finds more than four times
as many true positives than all other methods for their
default parameters and more than twice as many for the
high-precision parameters (Figure 4). Moreover,
PACMIT shows the highest numbers of true positives

Figure 2. Considering accessibility can increase the precision of predictions. Precision versus sensitivity curves are shown for (a) the fruit fly and
(b) the human. The different folding procedures used to include accessibility are compared with the case in which accessibility is not considered
i.e. PACMIT-0.0. See the main text for the precise meaning of each label.
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among the top 500 and top 1000 predictions in both situ-
ations (Figure 4). For the high precision parameters
(Figure 4b), PITA shows better results than IntaRNA,
but only comparable results to miRanda, which seems to
capture in its empirical score more information than the
thermodynamic calculations of both IntaRNA and
RNAhybrid. Comparison of PACMIT and PITA in
Figures 3 and 4 shows the advantages of over-
representation as the ranking criterion. Although both
approaches consider only perfect seed matches and
rank the targets according to scores that account for
multiple sites, over-representation enriches the top predic-
tions with more true positives than the energy ranking of
PITA.
Since experimental verification of microRNA targets is

still not routine and since the numbers of validated or
refuted predictions remain very small, experimentalists
might be interested in comparing the number of validated
targets that are predicted by a given method while preci-
sion remains perfect (PR=1), i.e. before predicting
the first target that has been experimentally rejected. In
the fruit fly, the numbers of validated predictions
while PR=1 for default parameters were 21 for
PACMIT-MFES, 17 for PACMIT-0.2*, 12 for
PACMIT-0.2, 3 for RNAhybrid, 2 for PITA, and 0
for miRanda and IntaRNA (Figure 4a). For the
high-precision parameters a great improvement is
observed for PITA, especially due to a strict seed require-
ment (TP=15), and for miRanda (TP=11), but not for
RNAhybrid (TP=2) or IntaRNA (TP=0) (Figure 4b).

Finally, Supplementary Table S2 compares the overall
sensitivity and precision obtained when considering all
predictions produced by each method. Note that this
table completely ignores the ranking of predictions and
hence, e.g. PACMIT-0.0 yields the same numbers as the
simple Seed 2–8 method.

PACMIT is computationally more efficient than other
methods

Besides higher precision, PACMIT also shows the lowest
CPU time consumption. In the case of the fruit fly, using a
single processor, we observed the following CPU times:
IntaRNA (�50 h) >> PITA (�15 h) >> RNAhybrid
(3 h)>miRanda (20min)>PACMIT-0.2*=PACMIT-
0.2 (10min). PACMIT is faster than other methods
because it does not require costly operations, such as the
calculation of the hybridization energy, for each
30UTR-miRNA pair. Besides the reusable ‘fixed cost’ of
O(#30UTRs � l � W2) of folding 30UTRs with RNAplfold,
PACMIT has the computational cost of O(#miRNAs �
#30UTRs � taccess) because the only calculation that must
be repeated for each 30UTR-miRNA pair is the counting
of perfect seed matches among the accessible sites, with
the obvious cost of O(taccess). Another advantage of
PACMIT is that all 30UTRs in the data set are folded
once and for all (without considering the microRNAs)
and the information is saved in a database. One can
then run the actual target prediction calculations varying
Pcutoff, the length of the seed, and (most importantly) even
the miRNA data set without having to rerun the costly

Figure 3. Comparison of PACMIT with other methods. Precision versus sensitivity curves obtained with the default parameters of different methods
are shown for (a) the fruit fly and (b) the human. We also show the curves obtained with the ‘high-precision’ parameters for (c) the fruit fly and (d)
the human. For the description of the ‘Seed 2–8’ and ‘Random’ curves, see the main text.
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folding algorithms. In other words, the amount of folding
that is needed is the same for a single microRNA as for
100 or 1000 microRNAs. This feature is extremely useful
also because the 30UTR sequences are already known for
most interesting organisms, while new microRNAs are
constantly being discovered. Moreover, one might be
interested in testing microRNA regulation across species
boundaries.

As a specific example, folding all 30UTR of the fruit fly
took �450 h (global folding) and 30min (local folding),
but the first calculation (for 153 microRNAs) with
Pcutoff= 0.1 took only 10min, the same time as that
taken by the second calculation, now with Pcutoff=0.2.
This represents a major advantage over all methods in
which thermodynamic calculations must be redone
every time the algorithm runs. Due to this feature, we
can say that PACMIT is a competitive option not
only because of its precision but also because of its
efficiency.

Effects of multiple-site scoring and of seed requirement on
the precision of free energy based methods

We have also explored different ways to account, in a
single target score, for the occurrence of multiple potential
binding sites. While many free energy based methods
ignore this issue altogether, a consensus is still lacking
among the methods that do take multiple sites into
account. Whereas PITA provides an empirical expression
to achieve this, RNAhybrid suggests a formula but does
not offer it in the publicly available program, and
IntaRNA does not suggest any practical solution. To
test the effect on precision of different schemes for
multiple-site scoring, we used energies of all binding sites
in a single 30UTR to compute four different overall scores:
(i) the lowest hybridization (or total free) energy, (ii) a
PITA-like score (24), (iii) the arithmetic average of
energies and (iv) the sum of energies. Surprisingly, we
found that the PITA-like score reproduces almost
exactly the results obtained with the lowest hybridization

(or total free) energy. Additionally, despite the conceptual
differences among the four tested expressions, the result-
ing differences in precision were almost negligible, except
for the case of RNAhybrid in the fruit fly (Supplementary
Figure S2).
Much larger effects on precision were induced by con-

sidering the seed. Requiring at least a partial seed comple-
mentarity (i.e. allowing G:U wobble pairs) considerably
boosts the precision of a hybridization-energy based
RNAhybrid and total-free-energy based IntaRNA
(Figure 3). However, except for several top predictions,
even the partial seed requirement does not lift the preci-
sion of RNAhybrid in the fruit fly above that of the
random algorithm. Requiring perfect matches in the seed
(instead of allowing G:U pairs) increases the precision of
PITA by almost 100% in the case of the human
(Supplementary Figure S3).

DISCUSSION

Using the concept of partial accessibility of the comple-
mentary sites in the 30UTR and a successful statistical
framework (31,32), we have proposed a highly precise
microRNA target prediction method that does not
require conservation information and is capable of con-
sidering multiple binding sites in a single ‘score’. In our
method, only complementary sites containing at least one
accessible 4-mer are considered available for recognition
by the miRNA seed. Two different approaches, the CESS
and the MFES, were employed to determine the accessi-
bility of 4-mers. We have observed that regardless of the
approach used to include the secondary structure, con-
sidering accessibility increases the precision of the
predictions.
Comparing values of precision achieved by various

methods at multiple sensitivity cutoffs showed that:
(i) using the CESS with intermediate Pcutoff values,
instead of the MFES alone, further increases the precision
of our algorithm (Figure 2 and Table 1), and that (ii) the

Figure 4. PACMIT has a higher number of validated targets among the top predictions. Numbers of validated targets among the top 100, 500 and
1000 predictions are shown for the fruit fly predictions by different methods under the (a) default and (b) ‘high-precision’ parameters. Also shown is
the number of validated targets predicted before predicting the first false positive (see the rightmost cluster of bars, labeled ‘While PR=1’).
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algorithm is significantly more precise than currently
available miRNA prediction methods based on accessibil-
ity (Figure 3). Note that even PACMIT-MFES (based on
the MFES only) outperforms PITA and IntaRNA, both
of which use the CESS as well as more elaborate models to
include accessibility (Figure 4). This comparison suggests
that PACMIT uses the secondary-structure information
more efficiently. We have observed that even when the
precision of other algorithms is increased compared to
the default settings by a strict seed requirement (as in
PACMIT), the resulting precision for a given value of
sensitivity is still lower than that of PACMIT. We have
found that the ranking and therefore the quality of various
methods is almost unaffected by the way in which multiple
sites are considered, the lowest hybridization (or total free)
energy being the most simple and efficient way to score the
whole 30UTR.
The thermodynamic approach used by methods like

PITA, IntaRNA and RNAup, although reasonable, has
important limitations: not considering the additional
RNA–protein interactions taking place within the RISC
complex directly affects the energy differences upon which
target predictions rely. Hence, this negligence can not only
change the ranking of predictions but also increase the
rate of false positives. The PACMIT approach avoids
such problems by not using the energy differences at all.
Instead, accessibility information is used mainly to discard
false positives and the ranking itself is done according to
the over-representation of complementary sites among
those that are accessible. Scoring of multiple sites is not
treated empirically but at the core of the algorithm. To
illustrate the advantages of different ranking criteria, we
sorted all the miRNA-30UTR pairs that have at least one
partially accessible site (with Pcutoff=0.2) according to: (i)
over-representation PSH (i.e. our algorithm PACMIT-0.2*
for the fruit fly and PACMIT-0.2 for the human), (ii) total
accessibility (see ‘Materials and Methods’ section for def-
inition), (iii) total free energy, (iv) hybridization energy
and (v) a random order (see ‘Materials and Methods’
section). The precision versus sensitivity plots in
Supplementary Figure S4a and b show that in both
genomes, ranking by over-representation gives the best
results. As expected, ranking by the total free energy
yields better results than ranking by the hybridization
energy. Ranking by hybridization energy, in fact,
performs comparably to a random ranking. In the fruit
fly, only the total accessibility (which is a criterion also
proposed in this work for the first time) performs on par
with over-representation but in the human,
over-representation is clearly the best ranking criterion.
Moreover, in Supplementary Figure S4c and d we show
that the number of true positives found among the top
predictions of PACMIT is never outperformed by any of
the other ranking criteria. Similarly, Figure 4 shows that
PACMIT has the highest number of successful predictions
before making the first mistake (i.e. the first false positive
prediction).
These results show that limitations in modeling

microRNA target selection may be partially circumvented
by alternative statistical methods in which a detailed char-
acterization of the miRNA-30UTR interaction is avoided,

i.e. by considering exclusively the 30UTR length, compos-
ition, and accessibility. We have demonstrated that the
free energy is not the most reliable criterion for ranking
predictions, thus explaining why PACMIT-0.2* and
PACMIT-0.2 showed better performance than PITA and
IntaRNA. The success of PACMIT relies on the combin-
ation of two features: selecting candidates by accessibility
and ranking them by over-representation. The achieve-
ment of PACMIT cannot be reproduced by considering
accessibility alone, be it in the form of the total free energy
or the total accessibility. Even if the total free energy is
used to rank only the predictions with perfect complemen-
tarity to the seed, the precision of PACMIT remains
higher. Similarly, miRanda performs better than
RNAhybrid (and even than IntaRNA in some cases)
because miRanda uses thermodynamics to select potential
targets but relies on a different criterion to rank
predictions.

Recognizing that conservation information (when avail-
able) provides the best filter to increase precision, our
work in progress is focused on combining conservation
and accessibility information. We are encouraged not
only by the results shown in this work, but also by the
performance of the ‘bare’ version of the present method,
PACMIT-0.0, which ignores both conservation and acces-
sibility information, yet, among the top predictions of the
human data set performs comparably or even better than
methods using conservation like PicTar, TargetScan
5.0, DIANA-microT v3.0 and EIMMo (Supplementary
Figure S5).

The algorithm has been implemented in C. If interested
in using PACMIT, please contact us.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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