
Math. Proc. Camb. Phil. Soc. (1981), 90, 495 4 9 5
Printed in Great Britain

The factorization of simple knots
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Abstract. For high-dimensional simple knots we give two theorems concerning
unique factorization into irreducible knots, and provide examples to show that the
hypotheses are necessary in each case.

0. Introduction

The purpose of this paper is to collate and extend the known results on the factori-
zation of high dimensional knots. By an n-knot we mean an oriented smooth or locally
flat PL pair (Sn+2, Sm), where Sn is homeomorphic to the n-sphere Sn. The sum Jc + l
of two n-knots k and I is obtained by excising the interior of a tubular neighbourhood
of a point on each Sn and identifying the boundaries of the resulting knotted ball
pairs so that the orientations match up. A knot k is irreducible if it cannot be written
as the sum of two non-trivial knots. It is a result of H. Schubert (16) that for n = I,
every knot factorizes into finitely many irreducibles, and that factorization is unique
(up to the order of the factors).

Given an n-knot k, the exterior K is the closed complement of a tubular neighbour-
hood of 2™. The knot k is simple if K has the homotopy [(n — l)/2]-type of a circle;
that is TJ^K) ~ n1(S

1) for 1 ^ i < (n— l)/2. For n > 3, this is the most that can be
asked without making k trivial (see (ll, 12)). The knot k is fibred if K is fibred over
the circle, and we let R denote the infinite cyclic cover of K.

In Section 1 we give a short proof that every simple n-knot, n ^ 3, factorizes into
finitely many irreducibles. A more general result was published by A. B. Sosinskii in
(18), but note the assertion of T. Maeda in (14).

Let k be a simple (2q— l)-knot, q ^ 2. There are two ways of classifying such knots
in terms of algebraic invariants. The first of these, due to J. Levine, is in terms of the
S-equivalence class of the Seifert matrix of k; details may be found in (12). The second
method uses the Blanchfield duality pairing, <,>: Hg(R)xHq(R)->A0/A, where
A = l[t, t-1], Ao is the field of fractions of A, and Hq(K) is regarded as a A-module.
Details of this method may be found in (7,8,20,21).

Each such knot k has associated with it a quadratic form, as outlined in Section 2.
If this form is definite, then k is said to be definite. The knot k is fibred if and only if the
leading coefficient of its Alexander polynomial is + 1; this follows easily from the
results of R.H.Crowell(3) and W.Browder and J. Levine(2). In Section 2 we show
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496 E. BAYEB, J . A. HILLMAN AND C. KEARTON

that for q ^ 3, every fibred definite knot factorizes uniquely into irreducibles. Sections
3-6 are devoted to showing that each of the hypotheses q > 3, fibred, and definite are
necessary for this result.

Next we turn our attention to simple 2g-knots, q ^ 4, for which Hq (R) is finite of
odd order. Such knots have been classified by S. Kojima(lO) in terms of a quadratic
pairing [, ]: Hq(R) x Hq (R) -+ Q/Z together with an isometry t; the pair ([, ], t) is called
the Levine pairing of k. In Section 7 we outline a unique factorization theorem for a
certain subclass of these knots, details of which appear in (6), and in Section 8 we
give examples to show that factorization is not in general unique.

1. Finite factorization of simple knots

Let fcbea simple n-knot and define g(k) in the following way. If n = 2q— 1, then
g(k) = dimQ#9(£; Q). If n = 2q, let Tq(R) denote the Z-torsion submodule of HQ(R);
by a result of M. A. Kervaire(9), Tq(R) is finite of order \Tg(R)\. We set

g(k) = dimQHq(R;Q),h(k) = \

THEOREM 1-1. Let k be a simple n-knot, n ^ 3. Then k factorizes into finitely many
irreducible knots.

Proof. Ifn=2q-1, then g{k) = OoHq(R; Q) = OoHq(R;I) = 0, since the latter
is Z-tbrsion-free (see (7)) ok is unknotted (see (7,8)).

If n = 2q, then g(k) = Oand h(k) = loHq(R; Q) = 0 and

Tg(R) = 0oHq(R;I) = 0oHq(R;I) = 0 = Hq+1(R;l)oK

is a homotopy circle ok is unknotted (see (11)).
Furthermore, it is clear that g(k +1) = g(k) + g{l) and h(k +1) = h(k)h(l).
The result follows at once.

2. Unique factorization of fibred definite simple (2q — l)-knots, q > 3

Let k be a simple (2q— l)-knot, and let A be a Seifert matrix of k. By a result of
Trotter (19), A is ̂ -equivalent to a non-singular matrix, and so we may assume that
A is non-singular. Furthermore, any non-singular matrix which is ^-equivalent to A
is congruent to A over the rational numbers. Set S = A + A', T = A~XA', and note
that T'ST = AA'-l(A+A')A-^A' = A' + A = S. Ifvl1 = P'AP, then

Sx = A1 + A[ = P'SP, and Tx = A?A'X = P~lTP.

Thus k determines a quadratic space V together with an isometry T, represented by
the pair (S, T). The knot is definite if V is definite.

If k is fibred, then det A = + 1, since det A is the leading coefficient of the Alexander
polynomial det (tA + (— 1)QA'). If q ^ 3, then the converse is true by the results of
R. H. Crowell (4) and W. Browder and J. Levine (2). Moreover, any non-singular matrix
which is S-equivalent to A is congruent to A over the integers. Thus a fibred knot gives
rise to a quadratic lattice L and isometry T represented by (S, T).
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The factorization of simple knots 497
Note that

so A = S(I + T)-1. Thus given (S, T) we can recover the Seifert matrix A.
By the results of J. Levine(i2), the isotopy class of k determines and is determined

by the ^-equivalence class of A, when q ^ 2. If k is fibred, this reduces to the integral
congruence class of A (where A is non-singular).

THEOREM 2 1 . Let k be a fibred definite simple (2q — l)-knot, q > 3. Then k factorizes
uniquely into irreducible knots.

Proof. Let L be the quadratic lattice of k. Since L is definite, it has a unique orthog-
onal decomposition into indecomposable sublattices by a theorem of Eichler (see
(3), p. 363). Say L = Lx 1 . . . _L Lr. Now L can be regarded as a A-module via the action
of the isometry T. (Recall that A = I[t, t'1].) But L = TL = rLxL ...±rZ/r is another
orthogonal splitting of L into indecomposable sublattices, so the action of t is to permute
the Lt. Thus L splits orthogonally as L = L'1± ... A.L^, where each L\ is a A-module
which is irreducible in the sense that it cannot be written as the orthogonal sum of two
non-trivial A-modules. Moreover, this splitting is unique.

Choosing Z-bases of each L\ we can assume that S, T have block diagonal form:

and hence

also has block diagonal form. Now

and so for each i we see that Ai + (— l ) 9-^ is unimodular. Thus by (12), Ai is a Seifert
matrix of a simple (2q— l)-knot kit and k = &x +. . . +km. Because L\ is unique and
indecomposable, kt is unique and irreducible, and the result is proved. I

3. Non-unique factorization of fibred simple (2q— \)-knots), q ^ 3

We shall reformulate the proof of [ (l); Section 1] using Blanchfield forms instead of
Seifert matrices. There is a bijection between the isotopy classes of simple (2q— 1)-
knots, q ^ 3, and the isometry classes of (— 1 )9+1-Blanchfield forms (see (7,8)). There-
fore it suffices to prove that factorization is not unique for (— 1)9+1-Blanchfield forms.

Let AeZ[<] be such that A(l) = ± 1, A{t) = <des A A^"1). Let R = A/(A) = Z[r, 7-1],
where r is a root of A. Define an involution I = t~x in A, which induces the involution
T = T"1 in R.

Let H be the standard hyperbolic (+ 1)-Blanchfield form:

H:(Re® Rf) x (Re ®Rf)-+R

H(e, e) = H(f,f) = 0, H(e,f) = H(f, e) = 1.
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498 E . B A Y E R , J . A. HILLMAN AND C. K E A R T O N

Let u be a unit of R such that u = u. We denote by (u> j_ < — «) the (+ 1 )-Blanchfield
form

(Rx © Ry) x (Rx ®Ry)-+R

x-x = u, yy = — u, x-y = y-x — Q.

Then we claim that (u) _L < — «) ^ 77.
To see this, note that 1 = oc + a with a = 1/(1 —T)eR; 1 — T is a unit of R because

A(l)= ± 1 .
Le te = x + t/,/ ' = y. Thene-e = 0, e-f = / ' - e = -u,f'-f = - i t . Set/" = / ' - a e ;

we have e-/" = /"-e = - M , and/" - / " = - w + aii + aw = 0. Finally, l e t / = -u-1/";
then e •/ = /• e = 1. So <ii> ± < - it> is isometric to # .

Therefore <1>_L<— 1> is isometric to <«)!< — «> for any unit u of R such that
% = u.

In order to get a counter-example to unique factorization, it suffices to find a unit
u such that <1> ^ (?*>, < - 1> ^ <«>. Such an example is given in [(l); Section 1] for
A = 015, the cyclotomic polynomial corresponding to the 15th roots of unity, and
U = T + T-1.

For the ( —1)-Blanchfield form case, note that in R = A/(^15), v = r — f is a unit.
Therefore (v)L < —1>> is a ( - 1)-Blanchfield form, and we have

— •«> = <aw> _L < — i;w>

with w =
In each case, the Alexander polynomial of the corresponding simple (2q— l)-knot

is 0f5, of which the leading coefficient is 1. Thus, as in Section 2, these knots are
fibred.

4. Non-unique factorization of definite simple (4g>+ l)-knots, q ^ 1

As in Section 3, it will suffice to give an example of a suitable Blanchfield form with
several distinct factorizations. In fact our example will rely upon the possible non-
uniqueness of factorization of the underlying knot module as a direct sum of modules.
(The examples above were a little more subtle in that the underlying modules were all
free as modules over the ring A/((f>15), as this ring is a principal ideal domain.)

Let 6= 13<-25 + 13<-1. The ring R = A/(6) is isomorphic to Z[y,^] where
y = ( _ i + ^ / _ 5 i ) / 2 i s the image of 13(f — 1). Since 0(rx) = 6{t), the involution of A
induces an involution of R, which is just complex conjugation, and which we denote
by an overbar. Since 0(1) = 1, any finitely generated .R-module which supports a non-
singular e-Hermitian pairing may be regarded as a knot module, and an e-Hermitian
pairing on such a module determines an e-Hermitian form via the inclusion

R = A/(d) = d-^A/A <= Ao/A.

Let J be the R-ideal generated by 3 and *J — 51. Then J = J and JJ = J 2 = (3),
so bj(j,k) = jk/3 for all j , k in J determines a (+ 1)-Blanchfield form on the knot
module J.
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The factorization of simple knots 499

Let B = bj±bj, and let

ThenB(e,e) = B{f,f) = landi?(e,/) = 0, so B is isometric to b ±6, where b: RxR^-R
is the ( + 1)-Blanchfield form on the knot module R given by b(r, s) = rs for all r,s
in R. We shall show that J is not a principal ideal, so that it is not isomorphic to R,
and hence that these factorizations of B are distinct.

Suppose that J is principal. Then we may suppose that it is generated by an element
a = A + By of S = Z[y], the ring of integers of Q(*J — 51), and that a is not divisible
in S by y or 7, since they are units in R. Since 3 belongs to J, a divides 3 in R and so
divides 3-13fe in S, for some large k. Similarly a divides *J — 51 • 13' in $, for some large I.
Therefore oca. = A2 + AB+13B* divides 9-132fc and 5 M 3 a in Z, and hence divides
3- 13m in 1 for some large m. If 13 divides aa in Z then either y or y divides a in S, since
13 = 77 and (y) is a prime ideal as S/(y) ^ Z/(13). As we have assumed this is not the
case, aa must divide 3. Since R/J s Z/(3), J is a proper ideal, and so

= aa = 3.

This is clearly impossible and so J cannot be principal. (This example was discussed
in greater detail in (5), where it was indicated how other examples with knot module
annihilated by an irreducible knot polynomial S might be sought whenever S is such
that 8 = H and A/(8) contains a non-principal ideal / such that / / is principal.)

Since any real quadratic space of rank 2 with an isometry whose characteristic
polynomial has complex roots (such as d{t)) must be definite, any simple (4^ + l)-knot
with Blanchfield form B = b _L b = bj j . bj is a definite knot with two distinct factori-
zations into irreducible knots.

5. Non-unique factorization of definite simple (4g— \)-lcnots, q ^ 2

As in Sections 3 and 4, it suffices to show that factorization is not unique for
definite (-1)-Blanchfield forms. Let A(t) = 53^-105^ + 53. Then A is irreducible
over Q (this can be checked by computing the roots of A). Let

K = Qp]/(A) = Q(T), R = l[t, ri]/(A) = Z[T, r - 1] ,

where T is a root of A. Note that R is integrally closed by ((13), Theorem 28-2, p. 93).
We shall follow the same idea as in Section 4. We shall begin by constructing a

non-principal ideal / of R. We have

Therefore 53 is a unit of R. As NK/Q(1-T*) = 1/534, 1 - T 4 is also a unit of R. Let
cj = (1 - T4)"1 6 .R, and let / be the i2-ideal generated by 5 and a> + 1.

Claim 1. / is not principal.

Proo/. Let Zx = Q[<]/(53<2- 105J + 53) = ©(T4), jf?! = Z[T4 ,T-4] . Then u>eRx. Let
/x = (5, o)+ 1). It is straightforward to check that Ix and I\ are not principal (use the
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500 E. BAYER, J. A. HILLMAN AND C. KEARTON

same method as in Section 4), and that if = (« — 9)i?x: therefore Ix is of order 3. (In
fact, it suffices to prove that I± is not principal. The table on p. 101 of (13) implies that
Ix is then of order 3.)

Let K2 = Q[t]/(53t*- 105J2 + 53) = Q(T
2), R2 = Z[T2,T-2] , and let I2 = (5,w+ 1) be

the extension of It to R2. Using ((13), Section 29, p. 95) we see that Rx and R2 are
integrally closed. We have: R n K2 = R2, R2(\K2 = Rv I is the extension of I2 to R.

The following lemma shows that /2 and / are also non-principal, of order 3.

LEMMA 5-1. Let E/F be a quadratic extension of number fields, let A be an integrally
closed subring of E which is sent into itself by Gal (E/F), and letB = A(\F. Let b be an
ideal of B such that a = bA is principal. Then b2 is principal.

Proof: Let cr: E -+ E generate Gal (E/F). We have a = bA, therefore cr(a) = a. But
a is principal by hypothesis, so there exists a,nxeE such that a = xA. Then

a2 = a-o~(a) = x-a(x)A.

Let y = x• a(x). We have o~(y) = y, soysF. Then b2 — a2 n F = yB, so b2 is principal.
Let - denote Q-involution of K which sends T to T- 1 . Then

/ / = (25,5(w+l), 5(w+l),55) = 5i?.

Let fe7: / xI^-R be given by bt(x,y) = xy/5. Then bj is a ( + 1)-Blanchfield form.
Let i> = / © / © / , and define 6Z: LxL^-R to be fe£ = bI±bI±bI.
Le t t : i? x i? -> i? be given by &(£, y) = 53a;?/. As 53 is a unit of R, 6 is a (+ 1)-Blanch-

field form.

Claim 2. b is an orthogonal summand of bL.

Proof. Let e = (10 +(w+ 1), w+ 1, 5)eiv. Direct computation gives bL(e,e) = 53.
Then Re is a submodule of L such that fe^K-Re x Re) ^ 6 is unimodular, therefore 6
is an orthogonal summand of bL.

So bL = bI_LbI±bI'^b_Lb±, and b2 £b because / is not principal by Claim 1.
Thus we have proved that the ( +1)-Blanchfield form bL has at least two non-
equivalent factorizations.

Now we shall change bL in order to get a definite (— 1)-Blanchfield form.

Claim 3. There exists an i?-ideal J and a (— 1)-Blanchfield form B: J xJ-+R such
that B ®R bji JI x JI->R is a definite (— 1)-Blanchfield form.

Claim 3 implies the non-uniqueness of the factorization of definite (— 1)-Blanchfield
forms. Indeed,

B®bL = B®bI±B®b1±B®bI~B®b_LB®b±.

We have seen that / is non-principal, therefore IJ is not isomorphic to J . So we
have B®b1% B®b.

Proof of Claim 3. Let a = (1 -T^eR. Let (f>(t) = ^ ( 1 -t-l)e~l[t]: $ is the minimal
polynomial of a. We have

<p(t) =ts- 4f + 854te - 2548J5 + 3605<4 - 53-56/3 + 53-28t2 - 8-53J + 53.
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The factorization of simple knots 501

Let

S = 0'(a)(l - 2a) = -3388a3(l - a ) 3 + 106-56a2(l -a)2 -53-56a( l - a ) + 8-53.

Let F = {xeK: x = x). F has 4 real embeddings ax, o~2, cr3, cr4. It is straightforward
to check that S is positive at two of these embeddings, say a1 and cr2> and negative at
c3 and cr4.

Let p = ( r -T) 2 e f : notice that K = F{r-f). Denote the Hilbert symbol by
(,)P-

There exists &n aeF such that

, ^ f - i if -P = o-3,0-4(a,p)p = \
I + 1 otherwise (that is, for P = <rlt <r2, or a discrete prime).

To see this, applyTheorem71:19and Corollary 71:19aof (15) with T = {cr3, <r4}. Notice
that fi = — (T — T) (T — T), SO /? is negative at all real embeddings of F.

As (a,f})P = + 1 for P discrete, there exists an R-ideal J such that B'\ J xJ^-R
given by B'(x,y) = ax,yisa(+ 1)-Blanchfield pairing (see ((13), lemma 2-4-3, p. 81)).

Now 1 - 2a is a unit of R. Indeed, 1 - 2a = (T + 1 ) / ( T - 1), and

NK/Q(T+ 1) = NKIQ(T- 1) = 1/53, so NKIQ(l-2a) = 1.

Define B: J x J-> R by £(a;,«/) = (1 - 2a)"1 ax, y. We have seen that 1 - 2a is a unit,
and clearly 1 — 2a = — (1 — 2a), therefore B is a (— 1)-Blanchfield pairing.

It remains to prove that h = B ® bt is definite. To see this, it suffices to show that
the extension hK of h to K is definite. We have

hK:KxK^K, hK(x,y) = (l-2a)~l ax,y/5.

Since K = Q(a), we can write xeK in the form
7

and this expression is unique. Defines: K->Q by s(x) = #7, as in ((21), p. 239). Wehave
s(x) = TrK/Q(x/<f>'(ot)). (See (21), p. 239), and s{hK(x,y)) = S(x,y), where S'1 is the
rational intersection form corresponding to hK (see (21) and (20): Section 2)).

By definition, hK is definite if and only if *S-1 is a definite quadratic form. Clearly
# - 1 is definite if and only if S is definite. We have

S(x,x) = s(hK(x,x)) = TrK/Q(ax,x/58) > 0

if x 4= 0, (recall that $ = <fi'(a)(l — 2a)) because a/S is totally positive by construction,
and xx is also totally positive as the involution becomes complex conjugation at every
C-embedding of K.

Therefore S(x, x) > 0 if x 4= 0, so S is positive definite.

6. Non-unique factorization of Z-knots

Let k be a simple 3-knot, with Seifert matrix ^-equivalent to the non-singular
matrix A. If A is unimodular, then we say that k is algebraically fibred. (If k were a
simple(4g— l)-knot,g > l,then£would be fibred by the Browder-Levine theorem (2).)
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Consider the following matrices.

C =

•1

0
0
0
0
0
0

.0

1

2

3
3
3
2
1

0
1

0
0

0
0
0
0

- 1
1
2

3
3
3
2

- 1
0
1

0
0
0
0
0

- 2
- 1

1
2

3
3
3

0
- 1
- 1

1

0
0
0
0

- 3
- 2
- 1

1
2

3
3

0
0
0

- 1

1

0
0
0

- 3
- 3
- 2
- 1

1
2
3

0
0
0
0

- 1

1

0
0

- 3
- 3
- 3
- 2
- 1

1
2

0
0

0
0
0

- 1
1

0

- 2

- 3
- 3
- 3
- 2
- 1

1

0'
0
0
0
0
0

- 1
1

- 1

- 2

- 3
- 3
- 3
- 2
- 1

0 1 1

Each matrix possesses the following properties:

(i) det{A + A') = 1;
(ii) signature (A + A') = 8.
In addition we have
(iii) det(tB + B') = l+t-P
(iv) det(tC + C') = l-t + P
By (12) there exist unique 3-knots k, I, m with Seifert matrices ^-equivalent to

IB 0\ (C 0\ IB 0\

\o B)' [O C)' [O C)
respectively. By (12), we have k +1 = m + m. Because the signature of a 3-knot must be
divisible by 16 (see (12)), it is clear that each of the knots k, I, m is irreducible. All three
knots are distinguished by their Alexander polynomials, these being 03o(O03o(')>
0i5 (0 0is (0> 030 (0 015 (0 respectively. Finally, the knot k + l is definite and algebraic-
ally fibred. Thus the analogue of Theorem 2-1 fails for 3-knots.

7. Unique factorization of odd semisimple finite 2q-knots, q ^ 4

In this section we shall sketch a proof of the following theorem, given in (6).

THEOREM 7-1. If k is an odd simple 2q-knot, q ^ 4, whose knot module Hq (R; Z) is semi-
simple and such that either q is even ort+l acts invertibly, then k has a unique factoriza-
tion into irreducible knots.

By means of Kojima's classification of odd simple 2gr-knots, q ^ 4, we may reduce
the proof of this theorem to an argument about the factorization of certain e-Levine
pairings (for e = (— 1)9+1). We shall first explain the term 'semisimple'.
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The factorization of simple knots 503

A finite A-module M is the direct sum of its localizations M at the various maximal
ideals m of A. The localization Mm may be regarded as a module over the »?-adic
completion A^ = limA/aw71. Let m = (p,g{t)) where p is a rational prime and g(t) is

a monic polynomial in I\t] whose image in Z/pZ[t] is irreducible. Then the completion
A^ is isomorphic to #[[T]] where S = Z^ [£] is an unramified extension of the p-adic
integers Z$, generated by a root of unity £ such that gr(£) = 0 modulo (p), and where t
has image £(1 — T). (That such an isomorphism exists is a special case of I. S. Cohen's
structure theorem for complete regular local rings ((17): p. V-16).) The localization
M is semisimple if T • Mm = 0; the module M is semisimple if each such localization
is semisimple. Semisimple modules may be recognized by the following criterion.
A finite A-module M is semisimple if and only if AnnJf = IIJ=1 {p\\ gt) where pt is a
rational prime and gt is congruent modulo (p\i) to an irreducible factor of a cyclotomic
polynomial in l/pi![t] for 1 ^ i ^ r, and where the maximal ideals (pitgi) are all
distinct. (This fact is not used in proving the theorem.)

Suppose that the finite knot module M supports an e-Levine pairing

[,]: MxI-

Then the localizations Mm and Mn are orthogonal unless n = m. If *?? =f= m the pairing
on Mm © Mm is determined uniquely by the module structure of Mm . If m = m
then the involution of A induces involutions on A^and 8 mapping £ to Er1 and T to
T/(T — 1), and the pairing [,] determines a pairing

which is non -singular, ^-linear in its first argument, e-conjugate symmetric

({n, m} = e{m, n} for all TO, n in M)
and such that

[Tm, n) = {TO, (T/(T - l))n} for all TO, n in M.

If now M is assumed semisimple each localization Mm is a module over a discrete
valuation ring S = Aj,/(T), and so has an essentially unique factorization as a direct
sum of (irreducible) cyclic modules. By the remarks above we may assume that M is
annihilated by some power of a maximal ideal m such that m = m.

An e-Levine pairing on such a module is equivalent to a non-singular e-conjugate
symmetric pairing into So/S which is »S-linear in its first argument. For brevity, we
shall refer to such a pairing on a finite <S-module as an (e-torsion) form. We recall that
S = 1$ [£] where £ is a root of unity which is not congruent to 1 modulo (p) (since M
is a knot module). The extension S/l$ is unramified, so the unique maximal ideal of S
is generated by p, and 8 has an involution which maps £ to £ = £-1. The involution is
the identity if and only if £ = — 1, and in this case p must be odd.

Let e — S(pk) denote the e-torsion form with underlying module S/(pk), generated
by e = 1 + (pk), and with pairing determined by

{e,e}= \/pk if e= +1

{e, e} = (£ — \)lpk if e = — 1 and the involution is nontrivial.

(If e = — 1, p is odd, and the involution is trivial then there is no cyclic e-torsion form.)
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PROPOSITION 7-2. If the involution on S is nontrivial then any e-torsionformM,{,} is
an orthogonal direct sum of copies of e- S(pj), for various j ^ 1.

COROLLARY 7-3. If the involution on S is nontrivial, then any e-torsionform is determined
up to isometry by its underlying module, and has an essentially unique decomposition into
irreducible forms.

Now let us suppose that the involution on S is trivial, so that £ = — l,S = lfi and
p is odd. Let r be the smallest positive integer which is not congruent to a square
modulo (p). (In fact we could use any non-quadratic residue instead of r.) Let

denote the + 1-torsion form over S whose underlying module is S/(pk), generated by
/ = 1 + (pk), and with pairing determined by {/,/} = r/pk. Let Hk denote the — 1-torsion
form over S whose underlying module is (S/(pk))2, generated by h and h', and with
pairing determined by {h, h'} = l/pk.

PROPOSITION 7-4. / / the involution on S is trivial then any + 1-torsion form M, {,}
is an orthogonal direct sum of copies of + 1 — S/(p') and + 1 — S/(pi) for various ji > 1;
moreover + 1 - S/(pj) and + 1 - S/(pj) are distinct, but (+ 1 - S/(pi)) © (+ 1 - S/(pj))
is isomorphic to ( + 1 — S/(pi)) © ( + 1 —S/(p')) for eachj ^ 1. Any — 1-torsion form is
an orthogonal direct sum of copies of H^ for various j ; moreover H^ is irreducible.

COROLLARY 7-5. If the involution on S is trivial, any — 1-torsion form is determined by
its underlying module, and has an essentially unique decomposition into irreducible
forms. I

Let M, {,} be a + 1-torsion form whose underlying module is freely generated over
S/(pk) by the elements mx, ...,md with d > 1, and suppose that {mi,mi} = S^/p* for
some element Si:j in S (not necessarily a unit). Let DET {,} be the image of det [S{j] in
(Sf(pk))*/((S/(pk))*f = 1/21.

COROLLARY 7-6. There are up to isomorphism two + 1-torsion forms on a non-trivial
free S/(pk)-module M distinguished by the value of DET{,}. Each of these factors is
an orthogonal direct sum of cyclic forms and the number of essentially distinct such factor-
izations is the number of factorizations o/DET {,} as a product of d elements in the group
If 21 {where d is the minimal number of generators of M).

Theorem 7-1 is an immediate consequence of Corollary 7-3 and Corollary 7-5.

8. Non-unique factorization of odd finite 2q-knots, q > 4.

Corollary 7-6 implies that for each odd q ^ 5 there is an odd finite 2^-knot k with
Hq(R;l) semisimple and which has more than one factorization into irreducible
knots. The example given in (l) (for q odd) is of this nature, having knot module
isomorphic to (A/(5, t+ I))2. There is only one maximal ideal to consider, and we may
take p = 5 and £ = — 1. The involution is trivial, and (A/(5,t+ I))2 admits one
(+ l)-torsion form with DET = [± 1], the class of a square, and one with DET = [ + 2],
the class of a nonsquare. The example of (l) is the first of these, and has two factor-
izations as a direct sum of two cyclic forms since [ ± 1] = [ + I]2 = [ + 2]2; the second
has unique factorization since [ + 2] = [ + 1] [ + 2].
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Uniqueness of factorization can also fail for an odd simple 2g-knot for each even
q ^ 4, but no such knot can have semisimple knot module. The example given for this
casein (l)isasfollows.Letebeafixedgeneratorforthecyclicmodule^ = A/(5, (/+ I)2)
and let [, ] and [, ]' be the (— 1 )-Levine pairings on E determined by [e, te] = £mod Z and
[e, te]' = f mod Z respectively. Suppose that <j>: E->E is an isometry from [, ] to ± [, ]',
sending e to 0(e) = ae + bte with a, b in Z. Then, mod Z,

= ± [ae + bte, ate+ bt2e]'

= ±[ae + bte, ate -be- 2bte]'

= ±{[ae,{a-2b)te]' + [bte,-be]')
= ±(a2-2ab + b2)-%,

which implies that + 2 is a perfect square modulo 5, which is false. Therefore [, ] is not
isometric to either [, ]' or —[,]'.

But the map O: E2 -> E2, given in matrix form with respect to the basis {(e, 0), (0, e)}
by

\-2 2

is an isometry between [,]j_ — [,] and [,]'_L —[,]'• Thus there is a ( —1)-Levine
pairing on the finite knot module E2 = (A/(5, (t+ I)2))2 which has more than one
factorization as a sum of irreducible pairings. Of course the underlying knot module is
not semisimple, as T = t+ 1 does not act as the zero endomorphism.
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