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We provide an explicit example of a function that is homogeneous of degree one, rank-one
convex, but not convex.

1. Introduction

Let R2*2 denote the set of 2 x 2 real matrices and let f:R?>*2—>R be a continuous
function that is homogeneous of degree one, i.e. it satisfies the following condition

f(t&)=tf(€), forevery t=0 and £ e R?*2 (1.1)

We would like to discuss the convexity properties of such functions. In addition to
the usual notion of convexity, we need the following definition:

DeFINITION 1.1. f:R2*25R is rank-one convex if

faE+ A —m2tf( )+ (1 —1)f(n)

for every te[0,1], & neR?*2 with det (6 —n)=0 (where det stands for the
determinant of the matrix).

Obviously any convex function is rank-one convex, while there are rank-one
convex functions (such as f(¢)=det &) which are not convex. Surprisingly, if one
imposes condition (1.1), then it is not clear that the two notions are not equivalent.

The first person to produce a counterexample was Miiller [4], but in a very
indirect way. In fact his result gives more than this (see below). Dacorogna [2] then
showed that if, in addition to (1.1), f is assumed to be rotationally invariant (in
particular if f(&) = g(|&|, det &), where || denotes the Euclidean norm of the matrix,
ie. |E]> =%2;_, £2), then any rank-one convex function is necessarily convex. Thus
it remained an open question to find an explicit example of a function that is
homogeneous of degree one and rank-one convex, but not convex. We produce here
a family of such examples. Before describing our results, we should emphasise that

* This research was supported in part by a grant from the Fonds National Suisse pour la Recherche
Scientifique.
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these functions and notions are important in the Calculus of Variations (see [1]).
There, the notion of quasiconvexity plays the central role. It is well known that
convexity implies quasiconvexity and quasiconvexity implies rank-one convexity.
Miiller’s example gives in fact an example of a quasiconvex function that is not
convex. It is not presently known whether our examples are quasiconvex.

We now introduce some notation. It will be more convenient to identify R?*? with
R* and, therefore, a matrix ¢ will be written as a vector (¢;, &,, &5, &,). We then let

&no= Z Eimin 1S =<E O,

é= (é4a _53, —52, 51),
det £ =¢,8,— &8 =3 &>.

Note that & is just the gradient of det &. Consider the matrix E € R*** representing
the quadratic form det. It is defined as

0 0 01
0 0 -1 0
E= .
0 —1 0 0
1 0 0 0

Then
E¢=¢ and det ¢ =4(E& &),
Finally, our counterexample will be of the form

(ME £
ro={""""g
0 if €=0,

where y>0 and MeR*** is a symmetric matrix whose eigenvalues are
= o S g S iy

We will see in the following theorems that choosing M and y appropriately will
produce rank-one convex functions, f, which are not convex.

if £#0,

THEOREM 1.2. Let f, M and y be as above. Then
[ is convex<>y <y,
where
1
N e
+ 00 if pa—2p 0.

if a—2p, >0,

ReEMARK 1.3. It will be obvious from the proof that if y £ 0, then f is convex if and
only if
< 1
— y S
2us— 1y
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Convexity properties of homogeneous functions 949

THEOREM 1.4. Let f, M and vy be as above, and let ¢;, 1 £i £ 4, denote an orthonormal
set of eigenvectors corresponding to the p;’s. Assume further that M commutes with E.
Then two cases can happen:

CasE 1. If det o4, = —det ¢, then
[ is rank-one convex<>f is convex.
CasE 2. If det g, =det ¢,, then

[ is rank-one convex<>y <y,,

where
[ 11
min {—,—¢ if y;>0 and y, >0,
Y1 V2
1
- if y1=0and y,>0,
yr=<‘))2
1
V_ if y1>0andy, <0,
1
\ + o0 ify,£0and y, <0
and
_Hat i

Y1 > 2p1, V2= pa— (g + 1y).

The following corollary is an immediate consequence of the two theorems.

CoROLLARY 1.5. Consider the function

_<ME 6
g(é)”_|§| .

(1) Let M be as in Theorem 1.2. Then
g is convex<2p, — s = 0.

(2) Let M be as in Theorem 1.4 with det ¢, = det ¢,. (If det ¢, = —det ¢,, see the
convex case.) Then
Pty — e 20
and

_ Hat g
2

g is rank-one convex <

2py 20.

REMARK 1.6. It is interesting to compare the corollary with the case of quadratic
forms. It is well known that the function

q(&) =< ME; £ is convex<>pi; = 0.
Under the hypotheses of Theorem 1.4, one can show by a similar but simpler
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argument that

+
“—‘—z—ﬂ >0 if det g, = —det gy,

g is rank-one convex <>
Hi+ Hs

> =20 if det ¢, =det ¢,.

REMARK 1.7. Similar results as in Theorem 1.4 can be derived for y <0. More

precisely,
+
1—1y] <2u4—“‘ ; "2> 20

and
U—1yl(us + ps — 1) 2 0.

ReMARK 1.8. The fact that in Theorem 1.4 we have to add the extra hypothesis on
M just means that y, depends not only on the eigenvalues of M, but also on the
eigenvectors, while y, depends only on the eigenvalues.

f is rank-one convex <>

ReMArk 1.9. With the help of the theorems we may now give an explicit example.
Let

—_ 0 O v
SO N N O
S N NN O
N = R

its eigenvalues are u; =4 < u, = 3 = 8 < u, = 10, with eigenvectors
1 1 1
0= E(O’ 1,-1,0), ¢,= E(O, 1,1,0), ¢3= \/—5(1,0, 0, —1).
and

1,0,0,1).

1
Ya= E (
It commutes with E and
Ye=% =1
Therefore, choosing y € (3, 1] gives the explicit counterexample.

REMARK 1.10. Theorems 1.2 and 1.4 should be compared with [2] when f is
rotationally invariant. In particular, if M = E, i.e.

det &
2 -
r@={"T g

0 if £=0,

if £+#0,
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Convexity properties of homogeneous functions 951
we find (as in [2]) that
Ye="r=1%
since the eigenvalues are yu; =, = —1 and py; =, = 1.

ReMARK 1.11. Of course our results do not settle the quasiconvexity of f. It is easy
to see that f is quasiconvex if and only if y £y, for a certain y,. By the general fact,
we have y. <y, <7,. The question is to decide whether y, =y, or y, <y,. If equality
holds, then we would have an explicit example of a quasiconvex function satisfying
(1.1) which is not convex (as in [4]). Obviously, the second possibility would be
much more interesting and would settle the long-standing question of the equivalence
of quasiconvexity and rank-one convexity (see [5] for a counterexample in higher
dimensions). Our numerical results, presented in a forthcoming paper [3], tend to
show that y,=vy,.

2. Proof of Theorem 1.2
We start by computing the Hessian of f at £ # 0. Observe first that

$a
1) §+ 21E[(ME), — <M €>I5I
&, I¢l 117
S T+ 21EPME), — (M %
Tl 1EP

We then have

PO by &l
08,08 18 1eP

Iflﬁ {[4ME), &y + 218 Myp — (MELDS,5 — 2(ME)sE, N1 EP

—3[E1&p[21EPME), — <ME EEDS,
where 0,; is the Kronecker symbol. Thus, we get that, for any & #0,

Q) . P KGR
D R T

Ifls {SPL2AME A& 2> + 2|EPAMA; 25 — (ME EH1AP]

— 3G D L21EPAME > — KMEEH G HT
AP K& DY

NEREE
|c|5 (21E[8(MA; A — |EPCME; Ay (& A
— [ERIARAME; £ + 3(CE ADRAME; £} (2.1)
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It is clear that f will be convex if and only if the quadratic form in (2.1) is positive
for every £ #0 and A. The fact that f is not differentiable at 0 does not cause any
trouble in this case. Therefore

f is convex < inf inf
E£0 A

2 ()
{a,ﬂz‘él aéaaéﬂ
Since the quadratic form is homogeneous of degree —1 in £, we may assume that
[€] = 1. We may also write

A=té+sny, witht,seR,|g/=1, and <{&n)=0.
We then obtain that
AP=8+s% (&A=t (ME ) =t{MEE+s(MEn)

(MA; Ay =2 ME &) + 2stdME; ) + 52 M ).
So, coming back to the quadratic form, we have for |£]| =|5| =1,

(V2f(&)A; 4y = s* {1+ y[2{Mm; )y — KME EH T
We finally get that

fis conve)(@| | inf {1+ y[2{Mn;n>—<{ME; E>]}=20. (2.2)

¢l =Inl=1
<&n>=0

Ry = (V2 (E)A; A>} >0.

Since y = 0, it is clear that the minimum is attained when {Mp#; ) is minimum and
{(ME; &) is maximum, i.e. when # = ¢, (the eigenvector corresponding to the smallest
eigenvalue p,) and £ = ¢, (the eigenvector corresponding to the largest eigenvalue
ty). Thus

Sfis convex<>1+p(2u; — py) 2 0.

The conclusion of the theorem follows at once. One also notices that if y <0, then
the same argument leads to

fis convex<1+y(2us — p;)=0. [J

3. Proof of Theorem 1.4
We divide the proof into three steps.
Step 1. It is clear that, even though f is not differentiable at 0, we have

f is rank-one convex<inf inf {{VZf(&)4; )} =0.
£#0 detA=0

Writing A =t& + sn with t,s€R, (&3> =0, |£|=|n| =1, we find as in the proof of
Theorem 1.2 that (see (2.2)) f is a rank-one convex if and only if

inf{1+y[2{Mn; 1) — (ME ET:1El=nl=1,{&n) =det (¢& +sm) =0,
t,seR with t> + s2#0} =0.
Since y = 0, we finally deduce that if
m =inf {2{Mn; ny — <ME &5 & =nl=1,<{&n) =det (1€ +sn) =0,
t, s € R with 2 4 5% # 0}, (3.1)
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Convexity properties of homogeneous functions 953
then
f is rank-one convex<>1+ ym = 0. (3.2)

(If y £0, then one has to compute, analogously, the sup in (3.1).) We will show in
the next steps that, in case 1,

m=2u; — g, (3.3)

while in case 2,

. Ha + i
m=min {ﬂ1+ﬂ2—#4,2ﬂ1—’ : 2 4}- (34)
Combining (3.2), (3.3), and (3.4) will then give the claimed result.
Step 2. Since M commutes with E, we necessarily have
@;=Ep;= Lo,
det ;= 3{i; ;> = 3,

for 1 £i<4. Therefore, cases 1 and 2 do cover all possibilities, since two of the det p;
are +3 and two are —1.

We then immediately get the theorem in case 1. Indeed, choose n=¢,, ¢ =g,,
s=t=1, and observe that they are admissible for the minimisation in (3.1). This
choice leads to

m=2p, — Uy
Hence, we get (cf. Theorem 1.2)
f is rank-one convex=-1+y(2u; — ) = 0=>y < y..
Since, by Theorem 1.2, we have
y < y.=f is convex

and, trivially, f convex implies that f is rank-one convex, we have indeed established
the theorem in case 1.

Step 3. From now on, we will assume that det ¢, = det ¢,, so that the choice # = ¢,
and ¢ = ¢, is no longer admissible in (3.1) for any choice of s, t € R with s2 + > # 0.
We will prove that the right choice is either

'IZ%(%"'%), =04 and 1=0,s=1,
or
1
n= 9, ~f:$(¢3+¢4), and t=1,s=0.
Let us write any ¢, n € R* as

4 4
&= Z Sigi, n= Z 4D
i=1 i=1
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and observe that
4
U Mu;y —{MEE> = ) w(2n7 — &)
i=1

If (3.4) holds, this means that for every &, n e R, s, t € R with s + t2 # 0 such that

EP =&+ + G+ =mP=m+m+n+ni=1,
&y =08+ Eana= —(Eany + E3m3),

(3.5)
det (t& +sn) =03 (EF + &3~ E3—E)) +SPi + G —m3 —13)
+ 2ts(Eamy + Eqna — Eany — E3n3) =0,
we have to prove that
4
Y (207 — &) 2 py Aty — s
i=1
or (3.6)
4
pa+
Y w2 = &)z o — =
i=1

So we now have to show that (3.6) holds whenever (3.5) does. We will transform
(3.6) into more amenable inequalities. Using the facts that |&| = || =1, we get that
(3.6) is equivalent to

w3 — 5 — 3 —n3 — &1 + a3 — i —n3 — n3 — &3) + pa(2n3 = &3)
+ i+ E+ G+ 8D 20,
or

p(=2m5 =215 — 205 — &) + 12 (205 — E3) + s (203 — 385 + 385 + 381 + 362)
+ua(2m3 — 35 +3E1 38+ 38D 2 0.

Rewriting the above inequalities, we find that

(2 — 1) 03— 03) + (Qpts — sy — )13 + Qe — g — P23
(g — 1) EF 4 (g — 12)E3 + (s — 13)E3 20,
or

Pat i
22— a3+ 20pta = )3 + 20— o) + (TS —m) i

L+ (B3 ) e+ - D z0

Since 4 = py = p, = py, we find that if u, = p; or u, = s, then one of the above
inequalities is satisfied. So we may assume that pj # pty and py # f,.
We transform the inequalities again and get the following formulation, still
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equivalent to (3.6):

— K Ha— 1
B+ +ni—ni+ &+ (2n4+é2+52)+2 234+ 228320,
Ho— 22— H1 Ha— Hy
or
H3—H —Hu Hs— U
Je+a+a-g2yrm+ 2 ooyl g BT a s
Ha—H3 Ha—H3 Ha— U3

(3.7)

From now on, we proceed by contradiction and assume that there exist &, #,s,t as
in (3.5) but that (3.6) does not hold. This means, using (3.7), that, in addition to
(3.5), & and # satisfy

~

—u o —Ht
B>+ &+ 2 (2 T TN Py e M Y2
HZ HZ—I"I 2"”1
o (g — 12)E5 + (u4 —13)&3
B Ho— Iy
Ha— I
2 =23+ &)
Ho— Iy
T and
Ha— Hs Ha— U3
> 4(u3—u1)n3+(uz—u1)n2
Ha— U3
Ba— M
24— (n} + nd).
~ Ha— U3

We now use the facts that det (t&+sq)=0, (& 1) =0, and the strict inequalities
above, to get

0=+ -8 -8+ +m5—n5—n3) — 4ts(Ean, + Esms)
> 12 l:fz+4 P (712+’13):| l:ﬂ4+l‘ (524‘53)] —d|ts| |E,n, + E3nsl

Pa— W —H
> P B ez o3y das| | Egmy + Eanal +4 2B 202 4 2).
Ha— g Ha— Ua

Hence, using the Cauchy-Schwarz inequality on the middle term, we get

0> [(pa — p3)ISINES+ &3 = 2(pa — p)ltINME + M3 12,

which is absurd. Therefore, if (3.5) holds, then (3.6) does also. This concludes the
proof of the theorem. [
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