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Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has

provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse

model for the peripheral neuropathy Charcot–Marie–Tooth disease type 4H by constitutively disrupting the mouse orthologue of

the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of

Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities

and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing

mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific

manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable

primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this

protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established

that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42

in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient

mice, indicating that Cdc42 and the Frabin/Fgd4–Cdc42 axis are critical for myelin homeostasis. In line with known regulatory
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roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a

relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by

Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this

regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4–

Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may

crucially contribute also to malfunctions in different types of peripheral neuropathies.

Keywords: Charcot–Marie–Tooth disease; hereditary motor and sensory neuropathy; myelination; Rho-GTPase Cdc42; Frabin/Fgd4

Abbreviations: Dlg1 = disc large homologue 1; GEF = guanine nucleotide exchange factor; PTEN = phosphatase and tensin
homologue

Introduction
Charcot–Marie–Tooth disease, also known as hereditary motor

and sensory neuropathy, is one of the most common inherited

neurological disorders (Skre, 1974). Charcot–Marie–Tooth disease

is a clinically and genetically heterogenous disease, usually char-

acterized by distal muscle weakness and atrophy, distal sensory

loss and limb deformities (Shy et al., 2005). Clinically, Charcot–

Marie–Tooth disease is divided based on electrophysiological and

histopathological characteristics into demyelinating or dysmyelinat-

ing (CMT1, CMT3 and CMT4) and axonal forms (CMT2). The

demyelinating or dysmyelinating neuropathies are commonly

assumed to start with damage to Schwann cells and are mainly

associated with reduced nerve conduction velocity. However, as

demyelinating Charcot–Marie–Tooth disease progresses and

axonal degeneration becomes an additional pathological feature,

reduced amplitudes and dispersion of compound muscle action

potentials become the main correlate to clinical disability

(Krajewski et al., 2000; Suter and Scherer, 2003). Axonal forms

of Charcot–Marie–Tooth disease are thought to originate on the

neuronal side and are linked to decreased compound muscle

action potential amplitudes. The distinction with regard to the

initially affected cell type is blurred in intermediate forms of

Charcot–Marie–Tooth disease (Nicholson and Myers, 2006). As

was recently shown, neuron-specific ablation of the prion protein

in mice may cause a demyelinating neuropathy (Bremer et al.,

2010). This observation reiterated that experimental proof is

required to unambiguously determine the originally affected cell

type(s) in peripheral neuropathies, as peripheral nerves are con-

trolled by continuous reciprocal Schwann cell–neuron interactions

(Nave, 2010; Pereira et al., 2012). Such knowledge is critical to

understand the underlying disease mechanisms in the different

forms of Charcot–Marie–Tooth disease and provides a rational

basis for potential treatment strategies.

Mutations in 430 genes are associated with Charcot–Marie–

Tooth disease variants, with autosomal dominant, autosomal reces-

sive or X-linked inheritance patterns (Reilly et al., 2011). The subtype

CMT4H belongs to the autosomal recessive demyelinating forms of

Charcot–Marie–Tooth disease (De Sandre-Giovannoli et al., 2005).

Several different mutations in FRABIN/FGD4, a member of a family

of Cdc42-specific guanine nucleotide exchange factors (GEFs)

(Nakanishi and Takai, 2008), have been associated with CMT4H

(Delague et al., 2007; Stendel et al., 2007; Fabrizi et al., 2009;

Houlden et al., 2009). These include missense, nonsense,

frame-shifting and splice mutations. The relatively small number

of patients does not allow a well-founded genotype–phenotype cor-

relation. Generally, patients with the CMT4H subtype are clinically

affected in early childhood, with disease onset occasionally as early

as the first year of life (Baets et al., 2011). In most cases, CMT4H is

characterized by a slowly progressive neuropathy with increasing

distal sensory loss and distal weakness. Electrophysiological examin-

ations revealed markedly reduced nerve conduction velocity. Nerve

biopsies show redundant myelin and myelin infoldings and out-

foldings as striking pathological hallmarks. Furthermore, severely

hypomyelinated fibres indicate demyelination and remyelination

consistent with the classification of CMT4H as demyelinating

Charcot–Marie–Tooth disease (De Sandre-Giovannoli et al., 2005;

Stendel et al., 2007; Fabrizi et al., 2009). Reduced density of mye-

linated large calibre fibres, likely caused by axonal degeneration,

appears as an additional feature.

The available knowledge from human genetics suggests a strict

dependence of myelinated peripheral nerves on Frabin/Fgd4.

However, the current information concerning Frabin/Fgd4 func-

tion is limited and has been obtained from cell culture studies in

mainly non-neural cells (Nakanishi and Takai, 2008). We wished

to examine Frabin/Fgd4 function in vivo. For this purpose, we

used mouse genetics focusing on nerve development and nerve

homeostasis. We reasoned that these experiments would also be

instrumental for our understanding of the disease mechanism

involved in CMT4H and related neuropathies. Our analysis led

to the establishment of an animal model for CMT4H and revealed

that Schwann cells are the main cell type initially affected by the

loss of Frabin/Fgd4 function. Furthermore, we found that the crit-

ical role of Frabin/Fgd4 in peripheral nerves is linked to its molecu-

lar function as GEF for Cdc42 and most likely involves regulation

of endocytosis.

Materials and methods

Mice
Frabin mutant mice were produced by standard technology (Mouse

Clinical Institute, Strasbourg, France). Cdc42 mutants (Thurnherr et al.,

2006; Wu et al., 2006; Benninger et al., 2007), Hb9-Cre (Arber et al.,

1999) and Dhh-Cre (Jaegle et al., 2003; Pereira et al., 2009) mice
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have been described. In experiments involving the Plp-CreERT2 trans-

gene (Leone et al., 2003), Cre recombinase was activated by repeated

injection of tamoxifen (100 mg/kg, intraperitoneally) in 10-week-old

mice on 5 consecutive days. Genotypes of mice were determined by

PCR on genomic DNA derived from ear biopsies using appropriate

primer pairs (Supplementary material). Mice were kept under standard

housing conditions on Lignocel bedding (Provimi). Experiments fol-

lowed approved protocols (Veterinary Office, Canton Zurich,

Switzerland).

Behavioural analysis
SHIRPA (SmithKline, Harwell, Imperial College, Royal London Hospital,

phenotype assessment) was carried out as described (Rogers et al.,

1997). Sensory and motor tests followed established protocols

(Bremer et al., 2010).

Electrophysiology
Motor nerve conduction in 30- and 60-week-old anaesthetized mice

was measured as described (Zielasek et al., 1996; Bremer et al., 2010).

In brief, upon supramaximal stimulation (i.e. at least 30% above the

current needed to obtain a maximal compound muscle action poten-

tial) of the tibial nerve at the ankle (‘distal’) and stimulation of the

sciatic nerve at the sciatic notch (‘proximal’), compound muscle action

potentials were recorded with a pair of steel needle electrodes in the

foot muscles. Nerve conduction velocities were calculated in metres

per second from distal and proximal latencies. Ten successive

F-waves were recorded, and the shortest latencies were taken upon

stimulation at the ankle (Zielasek et al., 1996).

Electron microscopy and histological
analysis
Tissue embedding and electron microscopy were performed as

described (Pereira et al., 2010; Somandin et al., 2012). Ultrathin sec-

tions were collected on carbon-coated Formvar grids (Electron

Microscopy Sciences) and analysed in a Morgagni 268 transmission

electron microscope. Complete transverse sections of plantaris, quad-

riceps and saphenous nerves were captured at �1000 magnification

and were reconstructed using Adobe� Photoshop�. All affected fibres

carrying aberrant myelin features were quantified per nerve section.

Myelin thickness was measured in Adobe� Photoshop� on electron

microscopy pictures.

RhoGTPase activity assay
Cdc42 activity was measured as described (Sander et al., 1998;

Benninger et al., 2007). The glutathione-S-transferase–p21-activated

kinase–crib (Cdc42–Rac1 interactive binding) domain construct was

provided by Dr J. Collard (The Netherlands Cancer Institute,

Amsterdam). In brief, the material to be analysed (sciatic nerves or

Schwann cells) was homogenized in 10% glycerol, 50 mM Tris–HCl,

pH 7.4, 100 mM NaCl, 1% Nonidet P-40, 2 mM MgCl2 and protease

inhibitor cocktail (Sigma-Aldrich) and was centrifuged for 5 min at

21 000g at 4�C. Aliquots of 10% of the volume were taken from

the supernatant to determine the total protein amount. The remaining

supernatant was incubated with the bait protein bound to

glutathione-coupled SepharoseTM beads (GE Healthcare) at 4�C for

60 min. The beads and protein bound to the fusion protein were

washed three times in an excess of homogenization buffer, eluted in

Laemmli sample buffer and analysed for bound Cdc42 by western

blotting.

Cell culture and expression silencing
RT4 rat schwannoma cells were grown in Dulbecco’s modified Eagle’s

medium containing 10% foetal calf serum (Gibco) and were trans-

fected using Lipofectamine� 2000 (Invitrogen) according to the manu-

facturer’s protocol. Small interfering RNA transfections were carried

out repeatedly at 72, 48 and 24 h before assays were performed.

Frabin/Fgd4 expression silencing: Fgd4 small interfering RNA

(SI01512574; Qiagen) with the targeting sequence 50-CTG AAT

GGA GTA AGA AAC GAA-30. Control small interfering RNA: AllStars

Negative Control siRNA (1027292; Qiagen). For fluorescence-

activated flow cytometry and microscopy analysis, small interfering

RNAs were labelled with Alexa Fluor� 488. Short hairpin RNA trans-

fections were done 48 h before performing the assays, using the

pSicoR vector, carrying a green fluorescent protein expression cassette

and containing the short hairpin RNA sequence of choice. Targeting

sequences for Fgd4: 50-GCA GCA AGC CAT TCT AAT-30 (shRNA1)

and 50-GAA GAA GAG GAT ATT GTA-30 (shRNA2). Control short

hairpin RNA (targeting dsred2): 50-AGT TCC AGT ACG GCT

CCA A-30 (Ozcelik et al., 2010).

Transferrin assays
Transferrin assay for fluorescence-activated flow cytometry was per-

formed as described (Sidiropoulos et al., 2012) using short hairpin or

small interfering RNA-transfected RT4 cells. Fluorescence intensity of

internalized transferrin was measured for 2000 green fluorescent pro-

tein- (short hairpin RNA transfections) or Alexa Fluor� 488-positive

(small interfering RNA transfections) cells. High expressing cells were

subjected to comparative analysis. For fluorescence microscopy, the

identical assay was performed with the exceptions that Alexa Fluor�

555-labelled transferrin (Invitrogen; 20mg/ml in serum-free Dulbecco’s

modified Eagle’s medium) was used and cells were not detached

before fixation. Images were captured with an epifluorescence Zeiss

Axiovert microscope equipped with a Zeiss High Resolution

Monochromatic camera.

Western blotting and antibodies
Sciatic nerves from adult mice were isolated and separated from

the epineurium. Nerves were homogenized with a chilled mortar

and pestle in lysis buffer (0.1% SDS, 10 mM Tris–HCl, 150 mM

NaCl, 50 mM NaF, 1 mM NaVO4, 1 mM EDTA, 0.5% sodium-

deoxycholate, protease inhibitor mixture; Sigma). Extracts were pro-

cessed using standard SDS-PAGE and western blotting procedures. The

following antibodies were used: AKT-P Serine 473 (Cell Signaling

Technology, 1:1000), AKT (Cell Signaling Technology, 1:1000),

ErbB2-P Tyrosine 1248 (Abcam, 1:1000), ErbB2 (Abcam, 1:1000),

disc large homologue 1 (Dlg1) (BD Transduction Laboratories,

1:1000), myelin basic protein (AbD Serotec, 1:1000), JNK-P

Threonine 183/Tyrosine 185 (c-jun-N-terminal kinase) (Cell

Signaling, 1:1000), JNK (Cell Signaling, 1:1000), Cdc42 (Abcam,

1:1000 and Cell Signaling, 1:1000), Frabin/Fgd4 (Pineda, 1:1000; pep-

tide used for rabbit immunization: SKGKHSKVSDLISHFE), Frabin/Fgd4

(Transduction Laboratories, 1:500), �-tubulin (Sigma, 1:1000) and

glyceraldehyde-3-phosphate dehydrogenase (HyTest, 1:10 000).

Secondary antibodies were obtained from Promega and Southern

Biotech. Bands were quantified using Quantity One� software

(Bio-Rad).
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Cryo-embedding and immunostaining
of cryosections
Sciatic nerves were removed from mice, fixed in 4% paraformalde-

hyde for 1 h, incubated overnight in 30% sucrose and frozen in

OCT (Tissue Tek). Sections (10 mm) were cut on a HM560

Cryostat (Microm), post-fixed in 4% paraformaldehyde for 5 min,

blocked in blocking solution (10% goat serum in PBS with 0.3%

Triton� X-100) for 1 h at room temperature and incubated with

primary antibodies against S100b (Sigma, mouse monoclonal,

1:200) and Frabin/Fgd4 (Pineda, rabbit polyclonal, 1:200) overnight

at 4�C in blocking solution. Sections were washed with PBS and

incubated with secondary antibodies against mouse coupled to

Alexa Fluor� 488 (Invitrogen, 1:500) and rabbit coupled to Cy3

(Jackson ImmunoResearch, 1:500) for 1 h at room temperature.

Sections were washed with PBS, incubated for 5 min with

40,6-diamidino-2-phenylindole and mounted with Immu-MountTM

(Thermo Scientific).

Statistical analysis
Data show the mean � standard error of the mean. Two-tailed

Student’s t-test was used with significance set to *P5 0.05,

**P5 0.01 or ***P5 0.001; n = number of independent experiments.

Results

Ubiquitous loss of Frabin/Fgd4 induces
features of a demyelinating peripheral
neuropathy in mice
We have generated a conditional mouse null allele for Frabin/Fgd4

using standard embryonic stem cell technology. To achieve this

goal, exon 4 of Fgd4 was flanked with LoxP sites by homologous

recombination, and mice with this allele were obtained (Fig. 1A).

Figure 1 Loss of Frabin/Fgd4 leads to electrophysiological characteristics of demyelinating peripheral neuropathies. (A) Ablation of exon

4 in the Fgd4 locus generates a premature stop codon in exon 5 because of a frame shift (filled triangles = introduced loxP sites;

START = translational start codon; STOP = conventional translational stop codon; STOP (bold) = premature translational stop codon

generated after Fgd4 exon 4 ablation), resulting in B, loss of Frabin/Fgd4 protein (western blot; asterisk: unspecific signal). (C and D)

At 60 weeks, Fgd4�/� mice show longer distal latency, disperse compound muscle action potentials with mild reduction in amplitude,

longer F-wave latency and reduced nerve conduction velocity in sciatic nerve compared with wild-type mice; in C, a representative

original recording is shown. Arrowhead indicates stimulus artefact; open arrow indicates onset of compound muscle action potential

(distal latency); filled arrow indicates onset of F-wave. Data represent the mean � standard error of the mean. Wild-type mice, n = 7;

Fgd4�/� mice, n = 10. P-values in D: *P5 0.05; ***P50.001; Student’s t-test (two-tailed).
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In our initial experiments, we bred and analysed a mouse line that

lacks Frabin/Fgd4 ubiquitously. This approach mimics the genetic

situation in patients with CMT4H and was aimed to assess

whether FRABIN/FGD4 mutations are definitively responsible for

CMT4H, and mice lacking Frabin/Fgd4 constitute an appropriate

animal model for this disease. In addition, we anticipated that

Frabin/Fgd4-deficient mice would be suitable to study Frabin/

Fgd4 function in vivo. For this purpose, we bred mice carrying

conditional Fgd4 alleles (Fgd4 flox) with mice expressing Cre re-

combinase in the germline. This procedure resulted in offspring

with a constitutively inactivated Fgd4 allele. As expected, mice

homozygous for this deletion allele (Fgd4�/�) are lacking

Frabin/Fgd4 protein expression as verified by western blot analysis

of sciatic nerve lysates (Fig. 1B). Fgd4�/� mice are viable, fertile

and were born at expected Mendelian ratios. We found no major

abnormal behaviour by SHIRPA (SmithKline Beecham, Harwell,

Imperial College, Royal London Hospital, phenotype assessment)

analysis up to the age of 60 weeks. Frabin/Fgd4 mutants dis-

played normal body size and weight and were inconspicuous in

sensory examinations (Supplementary Table S1). In a grip strength

test, 60-week-old Fgd4�/� mice exhibited mildly impaired per-

formance compared with wild-type mice. However, we found

no significant differences in rotarod performance and footprint

analysis (step length, step width and foot angle), collectively indi-

cating a mild phenotype at this age.

As CMT4H belongs to the demyelinating forms of peripheral

neuropathies, we expected characteristic electrophysiological alter-

ations in myelinated nerves of Fgd4�/� mice. Indeed, when ana-

lysing the function of motor fibres, we detected moderately

increased distal latencies and mildly increased F-wave latencies,

reduced nerve conduction velocity and dispersed compound

muscle action potentials with mildly reduced amplitudes in

60-week-old Fgd4�/�mice compared with wild-type mice

(Fig. 1C and D), whereas at 30 weeks of age no abnormalities

were observed (data not shown).

These electrophysiological alterations are consistent with a

demyelinating phenotype caused by loss of Frabin/Fgd4. To cor-

roborate the findings, we performed histological examinations of

distal peripheral nerves with variable motor and sensory contribu-

tions (plantaris, sciatic, quadriceps and saphenous) and of proximal

parts of motor and sensory nerves [lumbar spine nerve roots 4

(L4) ventral and dorsal roots]. An overview revealed aberrant

myelin structures in all analysed nerves of Fgd4�/� mice, albeit

with different frequencies (Fig. 2 and Supplementary Fig. 1). The

predominant irregular features were myelin outfoldings and infold-

ings of various complexities, in combination with redundant myelin

loops, both around nodes of Ranvier and along internodes. In

addition, we found axons in older animals without myelin or

with abnormally thin myelin, indicating demyelination and incom-

plete remyelination. Myelin debris and polyaxonal myelination

were occasionally observed.

Based on this survey, we performed quantitative temporal

examinations in developing and adult mice. Our initial qualitative

investigations in the sciatic nerve provided evidence that aberrant

myelin features might already be increased in early Fgd4�/� nerve

development compared with wild-type mice (Fig. 2A–D). Thus, we

analysed and quantified, at the ultrastructural level by electron

microscopy, the number of fibres that displayed aberrant myelin

structures on complete reconstructions of post-natal Day 5 sciatic

nerves. A subtle, but significant surplus of affected fibres was

found in Fgd4�/� mice compared with wild-type mice (Fig. 3),

confirming an early onset of this characteristic morphological

phenotype. To examine phenotype progression over time, we

tracked alterations in the plantaris nerve, as this distal nerve is a

sensitive indicator of nerve changes in mouse models of hereditary

motor and sensory neuropathies (Frei et al., 1999; our unpub-

lished observations). Fgd4�/� mice displayed significantly more

fibres with aberrant myelin structures compared with wild-type

mice at all time points analysed from post-natal Day 14 to

80 weeks of age (Fig. 4A and B). These alterations became pro-

gressively more severe with �6% of affected fibres at 2 weeks of

age and reaching 40% in 80-week-old Fgd4�/� mice. In parallel,

the complexity and extent of aberrant myelin structures associated

with individual axons increased with age as judged by qualitative

examinations (Fig. 4A). Myelinated axons without overt myelin

aberrations had normal myelin thickness as assessed by growth

ratio (axon diameter/fibre diameter) measurements in 10-week-

old animals (Fig. 4C). In 60-week-old animals, however, we

observed a tendency towards an increased growth ratio, indicating

thinner myelin (Fig. 4D). In line with these findings, the number of

fibres with signs of demyelination and partial remyelination re-

vealed a tendency towards an increase in 60-week-old Fgd4�/�

mice compared with wild-type mice, reaching statistical signifi-

cance in 80-week-old animals (Fig. 4E). Remarkably, we found a

rather steep rise in demyelination/remyelination features between

60- and 80-week-old Fgd4�/� animals, suggesting that demyelin-

ation proceeds rapidly when a threshold of damage is reached. On

the axonal side, quantification of myelinated axons of entire plan-

taris nerves revealed no significant difference between Fgd4�/�

and wild-type mice at all ages examined up to 80 weeks, indicat-

ing no major primary or secondary axonal loss (Fig. 4F). In sum-

mary, our findings show that loss of Frabin/Fgd4 in the mouse

leads to electrophysiological and morphological abnormalities

resembling the hallmarks of CMT4H, thus establishing Fgd4�/�

mice as an animal model for this disorder.

Schwann cells critically depend on
Frabin/Fgd4 function
Intimate and reciprocal Schwann cell–axon interactions are a major

regulatory hallmark of peripheral nerves in health and disease

(Suter and Scherer, 2003; Jessen and Mirsky, 2005; Nave and

Trapp, 2008; Salzer, 2008; Taveggia et al., 2010; Pereira et al.,

2012). Thus, our findings in Fgd4�/� mice may be because of a

primary requirement of Frabin/Fgd4 function in either Schwann

cells or neurons, or both the cell types. The answer to this ques-

tion is important to understand why and how peripheral nerves

rely on Frabin/Fgd4, and this knowledge will provide critical in-

sights into the CMT4H disease mechanism. Thus, we bred mice

carrying the conditional Frabin/Fgd4 null allele (Fig. 1A) with es-

tablished mouse lines that express Cre recombinase specifically in

the Schwann cell lineage Dhh-Cre (Jaegle et al., 2003; Pereira

et al., 2009) or in the motor neuron lineage (Hb9-Cre; Arber
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et al., 1999) (Fig. 5A). Dhh-Cre Fgd4 flox/flox animals (Dhh-Cre;

Fig. 5B) and Hb9-Cre Fgd4 flox/flox animals (Hb9-Cre; Fig. 5C)

displayed loss of Frabin/Fgd4 in the targeted cell type as expected.

Qualitative histological analysis of various adult peripheral

nerves revealed prominent aberrant myelin features in conditional

Fgd4 mutants with Schwann cell-specific Frabin/Fgd4 deletion,

comparable with those observed in Fgd4�/� mice (Fig. 5D). In

contrast, nerves of motor neuron-specific Frabin/Fgd4 deletion

mutants were not different from the wild-type mice. For quanti-

tative analysis, we examined fully reconstructed sections of

Figure 2 Frabin/Fgd4-deficient mice form aberrant PNS myelin. Fgd4�/� mice display aberrant myelin features during early steps of

myelination (A–D: post-natal Day 5; sciatic nerve) and in myelin maintenance (E–G, I and K: 80 weeks old mice; H, J and M–P: 60 weeks

old mice; L: 10 weeks old mice; plantaris nerve), including simple myelin outfoldings (A), redundant myelin (B), complex myelin out-

foldings (E) and highly complex myelin outfoldings (C and D), redundant myelin loops outside (F) and protruding into the axon

(G), degradation of myelin (I), signs of demyelination (K) and remyelination (H and J) and rarely polyaxonal myelination (L). Aberrant

myelin features tend to be located in the vicinity of nodes of Ranvier and Schmidt–Lanterman incisures (M, N and P). (A–L) Cross-sections.

(M–P) Longitudinal sections. Scale bars = 1mm (A–L); 5mm (M–P).
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plantaris- (60-week-old), quadriceps- and saphenous nerves (30

weeks old), derived from mice with Schwann cell-specific or

motor neuron-specific Frabin/Fgd4 deletions, in a comparative

analysis with age-matched nerves of Fgd4�/� animals at the elec-

tron microscopy level. Strikingly, these studies showed that in all

three nerves, Schwann cell-specific Frabin/Fgd4 loss generated a

morphological phenotype (aberrant myelin structures) quantita-

tively indistinguishable from Fgd4�/� animals (Fig. 5E). Overall

numbers of myelinated fibres showed no relevant alterations in

all examined nerves and genotypes. Taken together, our findings

demonstrate that loss of Frabin/Fgd4 function in Schwann cells is

primarily responsible for the observed myelin aberrations in adult

Fgd4�/� mice without detectable contributions from motor

neurons.

Frabin/Fgd4 function in Schwann cells
is required for myelin maintenance
The availability of a conditional Frabin/Fgd4 null allele allowed us

to also address the physiologically and pathophysiologically im-

portant issue whether Frabin/Fgd4 is required for the maintenance

of properly developed myelin, independent from the role of

Frabin/Fgd4 in myelination during development. To answer this

question, we bred mice carrying the conditional Frabin/Fgd4 null

allele with an established Plp-CreERT2 mouse line (Leone et al.,

2003). In the offspring, Cre-mediated recombination in Schwann

cells was induced by tamoxifen injections in young adult

Plp-CreERT2 Fgd4 flox/flox animals (10 weeks old) (Fig. 6A).

Specific loss of Frabin/Fgd4 in Schwann cells was verified by

immunostaining (Fig. 6B). Qualitative analysis of plantaris nerves

derived from such adult-induced Frabin/Fgd4 mutants at the age

of 30 weeks revealed aberrant myelin features similar to

age-matched Fgd4�/� animals (Fig. 6C). Quantifications of

whole-nerve reconstructions at the electron microscopy level

showed that adult-induced Frabin/Fgd4 mutants had slightly

fewer affected plantaris nerve fibres compared with Fgd4�/�

mice (�10 versus 15%). However, there was still a strong increase

in myelin alterations in adult-induced Frabin/Fgd4 mutants com-

pared with wild-type or tamoxifen-injected control mice (�10

versus 2%; Fig. 6D). These data demonstrate a critical function

of Frabin/Fgd4 in myelin maintenance and imply that the

observed phenotype in Fgd4�/� mice reflects both a developmen-

tal and a maintenance component.

Frabin/Fgd4 controls Cdc42 activity in
peripheral nerves
Next, we addressed whether loss of Frabin/Fgd4 alters signalling

pathways known to be critical in peripheral nerve myelination

(Pereira et al., 2012). In particular, alterations in neuregulin signal-

ling and the AKT pathway have been associated with hypermye-

lination, myelin outfoldings and demyelination (Cotter et al., 2010;

Goebbels et al., 2010, 2012). However, we found no significant

differences of total and active levels of AKT and ErbB2 and of the

amounts of the regulatory phosphatase and tensin homologue

(PTEN)-interactor Dlg1 in sciatic nerve lysates derived from

10-week-old Fgd4�/� mice compared with wild-type mice by

western blot analysis (Fig. 7A and B). JNK levels and JNK
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Figure 4 Fgd4�/� mice develop a progressive demyelinating neuropathy with aberrant myelin formation. (A) Transverse sections of

plantaris nerves show a temporally progressive accumulation of aberrant myelin features in Fgd4�/� mice compared with wild-type

(wt/wt) mice aged 2–80 weeks. (B) Quantification of aberrant myelin features on entire transversal nerve reconstructions at electron

microscopy level reveals a significant and progressive increase in the amount of affected fibres in Fgd4�/� mice aged 2–80 weeks. (C and

D) G-ratio is not significantly changed between wild-type and Fgd4�/� mice aged 10 and 60 weeks (at least 100 fibres quantified per

animal). (E) Signs of demyelination and remyelination accumulate significantly between the age of 60 and 80 weeks in Fgd4�/� mice, the

difference to wild-type (wt/wt) mice reaching significance by 80 weeks. (F) No loss in the overall number of myelinated fibres was

detectable up to the age of 80 weeks. Arrows indicate fibres displaying myelin alterations. Arrowhead indicates demyelinated fibre. Scale

bars = 5mm; *P50.05, **P5 0.01, ***P50.001; Student’s t-test (two-tailed). Three animals were analysed for each genotype per time

point.

3574 | Brain 2012: 135; 3567–3583 M. Horn et al.



phosphorylation were also not altered. In addition, the amount of

myelin basic protein that we examined as a representative myelin

protein was unchanged.

On the molecular level, Frabin/Fgd4 has been reported to act as

a Cdc42-specific GEF (Umikawa et al., 1999), and loss of Cdc42 in

Schwann cells is incompatible with proper developmental myelin-

ation (Benninger et al., 2007). Thus, we analysed Cdc42 and

found that its active form Cdc42-GTP was substantially and sig-

nificantly reduced in sciatic nerves of adult Fgd4�/� mice com-

pared with age-matched wild-type mice (Fig. 7C and D). As total

levels of Cdc42 remained unchanged, the ratios of active-Cdc42/

total-Cdc42 and active-Cdc42/glyceraldehyde-3-phosphate de-

hydrogenase (as an indirect measure of active Cdc42 per cellular

unit) were also reduced. These findings support the hypothesis

that Frabin/Fgd4 acts as a GEF for Cdc42 in peripheral nerves

in vivo, as RhoGEFs shift the equilibrium between active and

total amounts of RhoGTPases towards the active forms

(Etienne-Manneville and Hall, 2002).

Cdc42 is required for peripheral nerve
myelin maintenance
Our data indicated that Frabin/Fgd4 in Schwann cells is essential

for maintenance of proper myelin, and the activation of Cdc42 in

Fgd4�/� nerves is strongly decreased. Based on these findings, we

hypothesized that if the critical function of Frabin/Fgd4 in myelin

maintenance involves correct Cdc42 activation, Schwann

cell-specific elimination of Cdc42 at adult stages should also

cause myelin deficiencies. To address this question, we combined

mice carrying floxed Cdc42 alleles, which were previously used to

analyse the role of Cdc42 in Schwann cell development (Benninger

et al., 2007), with mice carrying the Plp-CreERT2 transgenic allele.

The experimental setting used was analogous to that described

earlier for Frabin/Fgd4 deletion in adult myelinating Schwann

cells (Fig. 8A). Cdc42 deletion was induced in 10-week-old ani-

mals, and western blot analysis revealed subsequent loss of Cdc42

as expected (Fig. 8B). Thereafter, we analysed sciatic nerves of

10-month-old animals by standard electron microscopy and

FIB-SEM (serial electron microscopy coupled with in situ focused

ion beam milling; Pereira et al., 2010). Prominent myelin foldings

were present in nerves with adult-onset Cdc42 deletion (Fig. 8C

Figure 5 Cell type-specific gene ablation reveals that Schwann

cells require Frabin/Fgd4 for proper myelination. (A) Schwann

cell- or motor neuron-specific ablation of Fgd4 by Dhh- or

Hb9-gene regulatory elements-driven Cre recombinase (Dhh- or

Hb9-Cre/Fgd4 flox/flox animals) results in B, Schwann cell-

specific (Dhh-Cre) loss of detectable Frabin/Fgd4 on cryosections

of sciatic nerves (white arrows mark Schwann cells, arrowheads

mark axons) or (C) strongly reduced Frabin/Fgd4 expressed by

motor neurons (Hb9-Cre) as shown by western blot analysis of

mutant ventral roots lysates compared with wild-type (wt/wt).

(D) Schwann cell-specific loss of Frabin/Fgd4 (Dhh-Cre) in plan-

taris nerves of 60-week-old mice or quadriceps and saphenous

nerve of 30-week-old mice leads to aberrant myelin formation,

similar to that seen in Fgd4�/� mice (white arrows mark aberrant

myelin features). Motor neuron-specific ablation of Frabin/Fgd4

(Hb9-Cre), however, does not result in a detectable pathological

phenotype at electron microscopy level in plantaris, quadriceps or

saphenous nerves at the corresponding ages. (E) Quantification

of aberrant myelin features shown in D. Note the similar numbers

of fibres with aberrant myelin features (affected fibres) present in

DhhCre/Fgd4 flox/flox mice (Dhh-Cre) compared with Fgd4�/�

mice. Both are significantly increased compared with wild-type

mice (wt/wt). The numbers in Hb9Cre/Fgd4 flox/flox mice (Hb9-

Cre), however, were not different from wild-type mice. Total

numbers of myelinated fibres were not changed in all genotypes.

Three mice were analysed for each genotype, time point and type

of nerve. Scale bars = 5mm; n.s. = not significant. *P4 0.05,

**P50.01, ***P5 0.001; Student’s t-test (two-tailed).

GADPH = glyceraldehyde-3-phosphate dehydrogenase.
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and D; Supplementary Videos 1 and 2) comparable with our pre-

vious findings with adult-onset Frabin/Fgd4 deletions (Fig. 6).

Frabin/Fgd4 regulates endocytosis in
Schwann cells
We then asked which cellular functions of Schwann cells might be

critically dependent on Frabin/Fgd4. Thus, we analysed migration

and process extensions of cultured rat Schwann cells after efficient

short hairpin RNA-mediated Frabin/Fgd4 expression knock-down.

However, both processes were not altered compared with control

cells (data not shown). As myelination depends strongly on endo-

cytosis (Stendel et al., 2010; Sidiropoulos et al., 2012), we also

tested whether Frabin/Fgd4 regulates this crucial cellular process.

First, we examined whether knock-down of Frabin/Fgd4 affects

Cdc42 in cultured Schwann cells. Indeed, reduced Frabin/Fgd4

levels led to lower amounts of active Cdc42 in the rat

schwannoma cell line RT4 (Fig. 9A and B), consistent with our

in vivo data (Fig. 7C). Next, we examined endocytosis efficiency

with an established transferrin uptake assay in Frabin/

Fgd4-silenced RT4 cells (Sidiropoulos et al., 2012). Reduced trans-

ferrin uptake was found in such cells with �20% decrease com-

pared with control cells (Fig. 9C and D). We conclude that

regulation of Schwann cell endocytosis by Frabin/Fgd4 is likely

to contribute to the disease mechanism in CMT4H.

Discussion

Frabin-deficient mice as an animal
model for CMT4H
During the past 15 years, transgenic animal models for inherited

peripheral neuropathies have become essential tools for dissecting

m
ye

lin
at

ed
 f

ib
re

s 
(p

la
n

ta
ri

s)

A

Cre

Plp
Cre-ERT2
 
Recombinase

Plp-CreERT2

B

C
controlPlp-CreERT2 wt/wt  Fgd4 -/-

p
la

n
ta

ri
s

D

ERT2

0

400

800

1200

1600

Frabin S100 merged

2T
R

Eer
C- pl

P
co

nt
ro

l

%
 a

ff
ec

te
d

 f
ib

re
s 

(p
la

n
ta

ri
s)

**
***

0

4

8

12

16

18

Fgd4 -/-

Plp-CreERT2
control

(30 weeks)

wt/wt

Figure 6 Inducible Schwann cell-specific gene ablation reveals that myelin maintenance depends on Frabin/Fgd4. (A)

Tamoxifen-mediated induction of Frabin/Fgd4 ablation in 10-week-old Fgd4 flox/flox mice through activation of Plp promotor-driven Cre

recombinase (Plp-CreERT2) results in (B) Schwann cell-specific loss of Frabin/Fgd4 protein in peripheral nerves of adult mice, shown on

cryosections of sciatic nerve, 4 months after tamoxifen injections (arrow: Schwann cell; arrowhead: axon). (C) Aberrant myelin formation

in plantaris nerves of 30-week-old Plp-CreERT2/Fgd4 flox/flox (Plp-CreERT2) mice, tamoxifen-treated at 10 weeks of age as control mice,

compared with age-matched Fgd4�/� and wild-type (wt/wt) mice. (D) Quantification of myelinated fibres displaying aberrant myelin

features (affected fibres) of identically obtained nerves as shown in C, revealing significantly increased numbers of affected fibres in

Plp-CreERT2/Fgd4 flox/flox mice (Plp-CreERT2) compared with wild-type or tamoxifen-injected control mice. Comparison of

Plp-CreERT2 with Fgd4�/� mice shows only a slight reduction in affected fibres. Total numbers of myelinated fibres were unchanged

between the groups. Three mice were analysed for each group in all experiments. Scale bars = 5 mm. White arrows indicate affected fibres.

**P50.01, ***P50.001; Student’s t-test (two-tailed).

3576 | Brain 2012: 135; 3567–3583 M. Horn et al.

http://brain.oxfordjournals.org/cgi/content/full/aws275/DC1
http://brain.oxfordjournals.org/cgi/content/full/aws275/DC1


pathological mechanisms involved in various subtypes of Charcot–

Marie–Tooth disease (Suter and Nave, 1999; Nave et al., 2007).

Such models also provided the basis for evaluating treatment stra-

tegies (Fledrich et al., 2012a, b) and contributed significantly to

our current understanding of the molecular mechanisms that

govern myelination (Pereira et al., 2012). With the Fgd4�/�

mouse line, we present the generation and analysis of an animal

model for CMT4H because of loss of Frabin/Fgd4. As in CMT4H

patients, Fgd4�/� mice are affected by a recessive, dysmyelinating

and demyelinating peripheral neuropathy with early onset and

progressive course upon histological examination. Mouse nerves

revealed myelin infoldings and outfoldings, redundant myelin

loops and signs of demyelination and remyelination, analogous

to neuropathological features seen in CMT4H biopsies. Taking ad-

vantage of the fact that animal models allow detailed spatial and

temporal analyses, we found that both sensory and motor fibres

are similarly affected if Frabin/Fgd4 is missing. Moreover, nerve

fibres were distally strikingly more affected than proximally, in line

with the distally accentuated neuropathy in CMT4H. The reasons

for this rather generally observed phenomenon in Charcot–Marie–

Tooth disease pose a persisting question, still lacking completely

satisfactory answers. Potential explanations include higher suscep-

tibility to mechanical stress of distal fibre segments or transport

impairments along the axons that are reflected in this manner. Of

major conceptual importance, temporal quantitative analysis of

pathological features revealed significant myelin alterations already

at early stages of myelination (post-natal Day 5), continuously

increasing with age. Thus, loss of Frabin/Fgd4 harms nerves

early in development suggesting that early-onset dysmyelination

contributes to CMT4H. Furthermore, the observed increase in

pathological features with age is consistent with the slowly pro-

gressive course of CMT4H. Interestingly, we found the classical

hallmarks of demyelinating Charcot–Marie–Tooth disease, demye-

lination and remyelination associated with reduced nerve conduc-

tion velocity, only in older animals. In addition, these features

were generally milder than in patients with CMT4H, in agreement

with other mouse models for demyelinating Charcot–Marie–Tooth

disease showing milder neurological pathology than the corres-

ponding patients (Martini, 2000). This discrepancy is particularly

striking when Myotubularin-related protein-2 or Myotubularin-

related protein-13/Set-binding factor-2-deficient mice and their

human counterparts, the autosomal recessive Charcot–Marie–

Tooth disease subtypes CMT4B1 or CMT4B2, are compared

(Bolino et al., 2000; Azzedine et al., 2003; Senderek et al.,

2003; Bolino et al., 2004; Bonneick et al., 2005; Tersar et al.,

2007; Robinson et al., 2008). Incidentally, the neuropathological

Figure 7 Ablation of Frabin/Fgd4 reduces activation of the RhoGTPase Cdc42 in peripheral nerves in vivo. (A and B) Western blot

analyses demonstrating that total and active levels of AKT, ErbB2 receptor and JNK, and total levels of MBP and Dlg1, are not changed in

sciatic nerve of Fgd4�/� mice compared with wild-type (wt/wt) mice at the age of 10 weeks. (C and D) Active, but not total levels of

Cdc42 are significantly reduced in sciatic nerves of adult Fgd4�/� mice compared with age-matched wild-type mice. Tissues from four

wild-type and Fgd4�/� mice were analysed. ***P50.001; Student’s t-test (two-tailed). GADPH = glyceraldehyde-3-phosphate

dehydrogenase.
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features in these mutants with regards to the observed myelin

abnormalities are virtually identical compared with Frabin/Fgd4

mutants.

Loss of Frabin/Fgd4 function in
Schwann cells is sufficient to induce a
CMT4H-like phenotype
Demyelinating Charcot–Marie–Tooth disease neuropathies are usu-

ally attributed to an initial Schwann cell-specific damage, as myelin

constitutes a Schwann cell compartment. However, the possibility of

axonal contributions cannot be excluded, as establishment and

maintenance of the myelin sheath depend on axonal signals and

continuous bidirectional Schwann cell–axon communication

(Pereira et al., 2012). We found that Frabin/Fgd4 is expressed in

mouse Schwann cells and PNS neurons, compatible with a functional

role of Frabin/Fgd4 in both cell types. Thus, we dissected the cell

type-specific implications of Frabin/Fgd4 loss by genetically ablating

Frabin/Fgd4 exclusively either in Schwann cells or in motor neurons.

This experimental strategy also allowed us to determine which cell

type is primarily dependent on Frabin/Fgd4 function in myelination.

Schwann cell-specific ablation of Frabin/Fgd4 alone was sufficient to

fully replicate the myelin aberrations observed in Fgd4�/� mice. In

contrast, we found no differences in motor neuron-specific Frabin/

Fgd4-deficient mice compared with wild-type mice. Although we

cannot fully exclude a subtle role of Frabin/Fgd4 in motor neurons

that escaped our attention or species-specific differences in this con-

text, our results suggest that the disease-initiating event in CMT4H

is loss of a Schwann cell-specific cellular function of Frabin/Fgd4.

Frabin/Fgd4 function in Schwann cells
is distinctively required in myelin
maintenance
Establishing the PNS myelin sheath is a complex and expanded

process, which roughly starts at birth and is completed in young

Figure 8 Inducible gene ablation reveals that loss of Cdc42 in adult myelinating Schwann cells causes histopathological aberrations

phenocopying loss of Frabin/Fgd4. (A) Tamoxifen-mediated induction of Cdc42 ablation in 10-week-old Cdc42 flox/flox mice through

activation of Plp promotor-driven Cre recombinase (Plp-CreERT2) results in (B) strongly reduced Cdc42 protein as shown by western blot

analysis of sciatic nerve lysates obtained 7 months post-tamoxifen injection. (C) Aberrant myelin formations, including outfoldings and

redundant myelin, in sciatic nerves of 10 months old PlpCreERT2/Cdc42 flox/flox (Cdc42 mutant) mice (electron microscopy

cross-sections). (D) Representative FIB-SEM-derived longitudinal section of Cdc42 mutant sciatic nerves prepared as in C (see also

Supplementary Videos 1 and 2) showing myelin outfoldings in the vicinity of nodes of Ranvier. Scale bars = 5 mm. White arrows indicate

fibres with aberrant myelin features.
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adulthood (Jessen and Mirsky, 2005). CMT4H has an early onset

and a slowly progressive course, attaining a severe clinical pheno-

type during the second half of life when myelination has long

been completed. Thus, we asked whether Frabin/Fgd4 function

is only necessary in development when the myelin sheath is

being established. This pre-existing myelin defect would then pas-

sively aggravate during adulthood, leading to the observed pro-

gressive pathology, without requiring Frabin/Fgd4 function during

myelin maintenance. Alternatively, Frabin/Fgd4 function may be

actively required for both myelin development and maintenance. If

true, lack of Frabin/Fgd4 function in the adult may also contribute

to the progressive course of CMT4H. We addressed these mech-

anistically important questions using a mouse line that allows in-

ducible Schwann cell-specific Frabin/Fgd4 deletion in adult

animals. We found that loss of Frabin/Fgd4, induced in young

adults when myelination was virtually completed, still resulted in

histopathological myelin alterations as seen in Fgd4�/� animals

and in CMT4H. Quantitative comparisons revealed only a slightly

reduced number of affected fibres compared with age-matched

constitutive Fgd4�/� mutants. We conclude that Frabin/Fgd4
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function is not only required for correct developmental myelination

but also specifically and prominently for myelin maintenance.

Thus, one might speculate that a potential therapeutic approach

based on reconstitution of Frabin/Fgd4 function in CMT4H might

possibly work in adult individuals, as an active process requiring

Frabin/Fgd4 in adult myelinating Schwann cells seems to be ma-

jorly impaired.

The Frabin–Cdc42 axis in Schwann cells
and myelination
Frabin/Fgd4 is a member of the faciogenital dysplasia family of

proteins and has been described as a GEF for RhoGTPases, in par-

ticular for Cdc42 (Nakanishi and Takai, 2008). The available evi-

dence to support this claim is based mainly on the ability of Frabin/

Fgd4 to activate downstream effectors of Cdc42, to influence cell

morphology and to recruit Cdc42 to the plasma membrane, when

Frabin/Fgd4 was overexpressed in cultured cells (Nakanishi and

Takai, 2008). Furthermore, biochemical evidence for a GEF function

of Frabin/Fgd4 on Cdc42 has been obtained in a cell-free system

(Umikawa et al., 1999). To examine the Frabin/Fgd4–Cdc42 axis in

peripheral nerves more specifically, we measured active and total

Cdc42 levels in sciatic nerve lysates from wild-type and Fgd4�/�

mice. We found a substantial and significant reduction in active

Cdc42 when Frabin/Fgd4 was absent, while total Cdc42 levels

were not changed. These findings provide evidence for a functional

link between Frabin/Fgd4 and active Cdc42 in vivo and further

support GEF activity of Frabin/Fgd4 on Cdc42. Although we con-

sider it unlikely, we cannot exclude contributions by indirect activa-

tion mechanisms. A definitive analysis would require direct in vivo

measurements of specific GTP exchange rates in peripheral nerves.

Currently, this procedure is technically not feasible. To further sup-

port our findings in other ways, we switched to cell culture. Both in

Frabin/Fgd4-silenced RT4 cells and Frabin/Fgd4-silenced primary

rat Schwann cells (data not shown), we found prominently reduced

active levels of Cdc42 compared with control cells. These data are

in agreement with our in vivo results and support the hypothesis

that the key molecular function of Frabin/Fgd4 involves activation

of Cdc42 in the context of crucial Schwann cell functions.

Interestingly, a second GEF for RhoGTPases, ARHGEF10, has also

been implicated in the control of myelination. A missense mutation

associated with slowed nerve conduction velocity and thin PNS

myelin sheaths was found (Verhoeven et al., 2003). In contrast to

Frabin/Fgd4 mutations, this mutant seems to act through hyperac-

tivated GEF activity on RhoGTPases, in line with the dominant

segregation of reduced nerve conduction velocity within the

ARHGEF10 mutation-carrying family (Chaya et al., 2011).

Our data support the hypothesis that the initial trigger in

CMT4H is loss of Frabin/Fdg4 in Schwann cells. Frabin/Fgd4 func-

tion is still actively required to maintain a correctly structured

myelin sheath in the adult and is paralleled by reduced active

levels of Cdc42. Indeed, we show that eliminating Cdc42 from

adult myelinating Schwann cells phenocopies the consequences

of loss of Frabin/Fgd4. These experiments further strengthen the

argument for a critical connection between Frabin/Fgd4 and

Cdc42 in the PNS throughout life and demonstrate that Cdc42

is required for myelin maintenance, in addition to the critical role

of this RhoGTPase and associated signalling pathways in develop-

mental myelination (Benninger et al., 2007; Pereira et al., 2012).

Taken together, these results provide strong evidence that the

reduction in active Cdc42 levels is at least contributing to the

pathology of CMT4H.

In our quest to understand the cellular consequences of the

functional link between Frabin/Fgd4 and Cdc42 in Schwann cell

biology, we faced the extraordinary pleiotropy of Cdc42 function

(Etienne-Manneville and Hall, 2002; Jaffe and Hall, 2005;

Melendez et al., 2011). Specificity in cellular function is reached

by strict regulation of Cdc42 activity, and GEFs play a decisive role

in this regulatory process. They recruit and activate Cdc42 at spe-

cific subcellular locations, therefore exerting distinct mechanistic

influences on Cdc42 effectors, which finally results in particular

cellular functions (Garcia-Mata and Burridge, 2007). For example,

the faciogenital dysplasia family member Fgd1, which is mutated

in Aarskog–Scott syndrome, a rare X-linked disorder characterized

by typical facial dysmorphism and skeletal and genital anomalies

(Pasteris et al., 1994), is involved in Cdc42-dependent processes,

such as cell migration (Oshima et al., 2011), vesicular transport

(Egorov et al., 2009) and podosome formation (Daubon et al.,

2011). Similarly, Fgd2 has been linked to Cdc42-dependent vesicle

trafficking (Huber et al., 2008), and Fgd3 influences cell motil-

ity and cellular morphology in a Cdc42-dependent manner

(Hayakawa et al., 2008). Moreover, a unique clinical form of

Charcot–Marie–Tooth disease with glomerulopathy results from

specific allelic variants of inverted formin 2 (Boyer et al., 2011).

This formin protein interacts with Cdc42 and myelin and lympho-

cyte protein), implicated in proper myelination (Schaeren-Wiemers

et al., 2004; Buser et al., 2009), suggesting that myelinopathy and

glomerulopathy in this special form of Charcot–Marie–Tooth dis-

ease may represent particular dysfunction of cell types (Schwann

cells and podocytes), both with specialized membrane biology. We

reasoned that Frabin/Fgd4 might be involved in similar cellular

processes and found that this GEF is required for efficient endo-

cytosis. There is increasing evidence that endocytic transport is

critical in myelination. Disturbed Rab11-dependent endocytic recy-

cling is a potential disease mechanism for CMT4C (Lupo et al.,

2009; Roberts et al., 2010; Stendel et al., 2010) and dynamin 2

mutations, associated with dominant-intermediate Charcot–Marie–

Tooth disease type B, cause disturbed clathrin-mediated endocyto-

sis (Sidiropoulos et al., 2012). Cdc42 is involved in endocytosis

(Ridley, 2006; Doherty and McMahon, 2009) and most likely en-

ables clathrin-mediated endocytosis (Yang et al., 2001; Bu et al.,

2010; Shen et al., 2011) by directed actin polymerization and

therefore rearrangement of the actin cytoskeleton in the vicinity

of clathrin-coated pits (Kaksonen et al., 2006). We have observed

co-localization of Frabin/Fgd4 and Cdc42 after overexpression in

RT4 cells (data not shown), consistent with the hypothesis that

Frabin/Fgd4 may be involved in recruiting and activating Cdc42 at

the plasma membrane of Schwann cells, thereby contributing to

the cellular process of endocytosis. Endocytosis is critical for the

regulation of protein and lipid homeostasis in the plasma mem-

brane and a defect in endocytosis may result in irregular accumu-

lation of proteins and lipids at the plasma membrane. Thus, we

suggest that altered myelin membrane dynamics may contribute
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to the myelin pathology observed in Frabin/Fgd4-mutant mice and

in CMT4H. Alternatively, receptor molecules may accumulate on

the cellular surface resulting in altered cellular signalling, which

could be, at least partially, responsible for the observed CMT4H

pathology. Nevertheless, given the broad spectrum of functions of

Cdc42, other Cdc42-dependent cellular processes are likely to be

also involved in CMT4H.

Convergent and divergent signalling
pathways and the formation of redun-
dant myelin folds
Some autosomal recessive demyelinating forms of Charcot–Marie–

Tooth disease, most prominently CMT4B, CMT4H and to a minor

degree CMT4F (culprit gene periaxin; Boerkoel et al., 2001;

Takashima et al., 2002; Marchesi et al., 2010), are characterized

by comparable histopathological features, including myelin thick-

enings, redundant myelin loops (focally folded myelin with toma-

cula formation, a characteristic feature also found in hereditary

neuropathy with liability to pressure palsy; Suter and Scherer,

2003) and myelin infoldings and outfoldings (Nave et al., 2007).

Interestingly, when analysing myelin thickness in animal models

for CMT4B and CMT4H, no altered growth ratio of unaffected

fibres (fibres without histopathological features) was detected

(Bonneick et al., 2005; Tersar et al., 2007; this study). These

findings indicate that the neuropathological features in these

animal models do not reflect a major overshooting in radial

growth of myelin, but rather a lateral surplus of myelin. The

observed excess of myelin seemed to arise mainly in the neigh-

bourhood of nodes of Ranvier and Schmidt–Lanterman incisures

where the main addition of myelin is thought to occur. This specu-

lation based on histological results raises the question of how a

possible lateral surplus of myelin occurs. One possible answer to

this question consists in the perspective of persisting myelin

growth over the normal level. Myelination in the PNS is stimulated

by axonal neuregulin-1 type III through mainly PI3Kinase/AKT and

extracellular-signal regulated kinase/mitogen-activated protein

kinase signalling (Pereira et al., 2012). Accordingly, mice with

myelinating glia-specific loss of PTEN, a lipid phosphatase that

inhibits AKT signalling, exhibit mammalian target for rapamycin-

dependent overmyelination (Goebbels et al., 2010, 2012).

Furthermore, interactions between mammalian Dlg1 and PTEN

are required for the stabilization of PTEN acting as myelination

brake in Schwann cells to prevent AKT-dependent overmyelination

(Cotter et al., 2010). In the PNS of Myotubularin-related

protein-2�/� mice, the absence of this myelination brake attained

by reduction in Dlg1 levels has been suggested to be causative for

the observed pathological over-myelination phenotype (Cotter

et al., 2010). In our analysis of Fgd4�/� mice, we did not

detect hyperactivation of known myelination-driving pathways.

Provided that these results are not because of transient- or low-

signal phenomena that escaped detection, we favour the hypoth-

esis that there is molecular heterogeneity in the different pathways

leading to hypermyelination, in particular in those cases where

aberrant myelin folds are observed. Given the virtual identical

pathology in CMT4H and CMT4B, phosphoinositide signalling

pathways that are not immediately linked to AKT regulation

need to be considered (Suter, 2007). Frabin/Fgd4 contains a

FYVE (Fab1, YOTB, Vac1 and EEA1) and two pleckstrin homology

domains that most likely bind to phophoinositides, suggesting po-

tential cooperation with the CMT4B culprits Myotubularin-related

protein-2 and Myotubularin-related protein-13/Set-binding factor-

2, which regulate synthesis of specific phosphoinositides (Hnia

et al., 2012) as does the CMT4J culprit protein FIG4 (Chow

et al., 2007).

Conclusions
With the generation and characterization of an animal model for

CMT4H, we show that loss of Frabin/Fgd4 causes a recessive,

distally pronounced, demyelinating peripheral neuropathy with

early onset and progressive course. In addition, we have provided

novel insights into cellular and molecular mechanisms altered in

CMT4H. This knowledge sets a firm basis to dissect the underlying

disease mechanisms further, to elucidate common and divergent

pathways leading to hereditary neuropathies, and eventually to

provide hints as to novel molecularly targeted treatment strategies.
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