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While graphene is rapidly moving from the laboratory to the factory floor, a sustained research effort
has been applied to studying how it interfaces with the other components of emerging graphene-
based electronic devices [1]. As a result, other two-dimensional materials with structures analogous
to graphene but with complementary properties, have attracted renewed attention [2]. Single-layer
hexagonal boron nitride (h-BN) is one such material whose wide band gap of ~5.9 eV arguably
makes it the thinnest possible insulator [3]. Impurities, defects or structural tailoring have however
the potential to dramatically modify the electronic structure and therefore the properties of these two-
dimensional crystal membranes. The recent advances in atom-by-atom chemical analysis using annu-
lar dark field scanning transmission electron microscopy [4] provide the perfect tool to image di-
rectly defects or edge structures in h-BN sheets, or to identify unambiguously impurities within the
lattice. We combine here Z-contrast STEM imaging at 60kV acceleration voltage on a Nion Ul-
traSTEM100 with electron energy loss spectroscopy (EELS) in both low- and core-loss regimes to
probe defect-induced changes in the electronic structure of single and double layer h-BN.

As is the case for graphene, the plasmon structure of single and bi-layer h-BN is quite unique: fig. 1a.
While these valence EELS results generally agree with ab initio DFT simulations carried out with
WIENZ2k, the detailed shape of the calculated m-plasmon for pure h-BN shows slight discrepancies
with experimental spectra. In particular, a shoulder systematically present at ~7.5eV in the experi-
ments is not reproduced by simulations. Careful image analysis reveals the integration within the h-
BN lattice of about 4% of O and C atoms, as single O atoms or C-C/C-O short chains (rather than
clusters): fig. 1b. The incorporation in the corresponding amounts of these impurities into large su-
percells for further WIEN2K simulations leads to a much improved agreement with the experiments
(fig. 1c) and confirms the large influence of O impurities on the electronic structure of h-BN [5].

Similarly, lattice relaxations occurring at the edges of a bi-layer h-BN sheet lead to noticeable elec-
tronic structure changes. Rather than staying flat, the edges fold and bond together: fig. 2a-b. This
reconstruction is obvious through the strain-induced contrast in ADF images, also observed in simu-
lated images of the relaxed structure calculated by DFT. Core-loss B K EEL spectra acquired at spe-
cific atomic positions along and away from the folded edge show distinct EELS fine features, nota-
bly a change of the © to ¢ ratio, in extremely good agreement with ab initio simulations: fig. 2c.
Understanding such atomic scale chemical and physical effects in 2D crystal membranes will no
doubt prove essential for nano-engineering attractive properties for these novel materials.
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FIG. 1. (a) Experimental spectra from single layer (both from a large layer and in aloof mode at the
edge of a hole), double layer and bulk (10+ layers) h-BN. A shoulder at 7.5eV is clearly visible on
the m plasmon (arrow) but is not reproduced in simulations of pure h-BN. () Histogram intensity
analysis [4] of HAADF images reveals the presence of ~4% of C and O impurities. (¢) WIEN2k cal-
culation of an EEL spectrum (solid black line) from a structure similar to that of (b), showing that the
7.5eV shoulder from experimental spectra (grey line above) is well reproduced. [5]
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FIG. 2. (a) Low-pass filtered ADF image of the folded edge of a bi-layer h-BN sheet (the number of
layers was identified through VEELS and by contrast analysis). The lattice relaxation at the edge re-
sults in strain-induced contrast. () Edge-on model of the folded sheet: the relaxed atomic positions
were calculated by DFT. (c) B K EELS spectra acquired at the positions marked in (a). Clear * to
o* ratio differences can be observed, in agreement with ab initio WIEN2k calculations (not shown).
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