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S U M M A R Y
The maximum entropy technique is an accepted method of image reconstruction when the
image is made up of pixels of unknown positive intensity (e.g. a grey-scale image). The
problem of reconstructing the magnetic field at the core–mantle boundary from surface data
is a problem where the target image, the value of the radial field Br, can be of either sign.
We adopt a known extension of the usual maximum entropy method that can be applied to
images consisting of pixels of unconstrained sign. We find that we are able to construct images
which have high dynamic ranges, but which still have very simple structure. In the spherical
harmonic domain they have smoothly decreasing power spectra. It is also noteworthy that these
models have far less complex null flux curve topology (lines on which the radial field vanishes)
than do models which are quadratically regularized. Problems such as the one addressed are
ubiquitous in geophysics, and it is suggested that the applications of the method could be much
more widespread than is currently the case.

Key words: core magnetic field, geomagnetic inverse problem, geomagnetic modelling,
maximum entropy.

1 I N T RO D U C T I O N

The interpretation of a data set in terms of interesting properties

of the Earth is a long-standing activity in geophysics. The Earth

supplies data, via the experiment, through the so-called ‘forward

problem’, and deficiencies in the experiment along with approxima-

tions in theory (including unmodelled signals) and random sources

of error add noise to the data set. Almost all interpretations require

that the individual solve a so-called inverse problem, namely infer-

ring properties of the earth model x from the data γ. Apart from a

handful of problems where the interesting parameters governing the

system are finite in number, most problems involve an Earth model

which is a continuous function of the independent parameter (say

time, position in one, two or three dimensions, or both), and thus the

Earth model is strictly infinite dimensional. Even in the case of a lin-

ear forward problem, since the work of Backus & Gilbert (1967) it

has been known that such problems are fundamentally non-unique,

and their solutions require the injection of prior information into the

problem.

In a similar vein, it is possible to group the methodologies for

the solution of inverse problems into two categories: probabilis-

tic and non-probabilistic. Whilst there are certainly commonalities

between the approaches, and indeed identical final calculations of-

ten result (e.g. Backus 1988), there is a real distinction between

them. In this paper, we will avoid the probabilistic approach, and

instead follow the ‘minimum structure’ or ‘minimum complexity’

approach espoused by Parker (1994), which leads to calculations in

which a conventional least-squares estimate of the model is ‘regu-

larized’ by minimizing a chosen norm of the model; the approach

is also termed penalized least-squares. However, the major thrust of

this paper is to introduce a particular non-quadratic regularization

method, the maximum entropy method, to models whose sign is un-

constrained; this method has had some implementation previously

to models which are known to be intrinsically positive, which is

its normal application. With the exception of the electromagnetic

inverse problem, where the positivity of the electrical conductivity

usually plays a crucial role, very few models in geophysics are set up

such that the positivity plays an important role: either the logarithm

of the quantity on question is the natural quantity to seek (e.g. vis-

cosity in the mantle), or the problem is more usually set relative to a

reference model, and perturbations of unconstrained sign are sought

(e.g. seismic tomography).

Much of the requisite theory for models which are intrinsically

positive by design has been developed in the image recovery litera-

ture, with applications in astronomy and medical physics fields, as

well as spectroscopy, X-ray crystallography and nuclear magnetic

resonance; the interested reader should consult Buck & Macaulay

(1991) for a lucid introduction to the subject. There has been some

development of the theory to treat image recovery where there is

no intrinsic positivity; this appears first in Gull & Skilling (1990),

and is further developed in Hobson & Lasenby (1998). An excellent

exposition of the subject can be found in Sivia & Skilling (2006),

which is highly recommended. An example of how the method fol-

lows logically from known physical approximations applied to the
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geomagnetic inverse problem of reconstructing the core magnetic

field was sketched in Jackson (2003).

Our paper is accompanied by a companion paper, Gillet et al.
(2007), hereinafter Paper II, which applies the method to time-

dependent field modelling, and also develops the method within

the much more familiar setting of spherical harmonic analysis.

Here we develop the basic theory of the approach and provide syn-

thetic test cases in order to compare performance with other tech-

niques. Thus, this paper sets up much of the groundwork required for

Paper II.

The arrangement of the paper is as follows. Section 2 introduces

the basic maximum entropy (Maxent) method, applicable to positive

images. Section 3 shows how this can be modified to treat models

that are not intrinsically positive. Section 4 applies the method to the

geomagnetic inverse problem, giving a comparison between results

obtained using a maximum entropy method and those obtained by

traditional methods.

2 T H E C A N O N I C A L L I N E A R I N V E R S E

P RO B L E M

The core-field inverse problem can be posed in the form of a linear

inverse problem when Cartesian components of the magnetic field

B are measured, so let us consider the following canonical inverse

problem: let γ be a vector of measurements {γi : i = 1, N}, related

to an underlying earth model x: {xi: i = 1, P} via a design matrix

A:

γ = Ax. (1)

We are interested, in particular, in positive additive distributions,

or PADs (we will dispense with this specialization later); such dis-

tributions commonly occur as images in both the visible and radio

ranges (where the addition of photons to a pixel increases the in-

tensity of the image proportionally) and in spectroscopy, nuclear

magnetic resonance, X-ray tomography and small angle neutron

scattering.

As a general rule, the reconstruction problems are ill posed and

underdetermined, in the sense that either N < P or the condition

number of A is very large. Such problems require a way of selecting

solutions from the otherwise huge selection of models fitting the

data; a typical method of approach is that of regularization, picking

a model which optimizes some particular characteristic.

We proceed to solve the problem in this way by adding prior

information (regularization); in the case of noisy data where the

noise is independent and identically distributed, originating from a

Gaussian distribution with variance σ 2, we have to solve the follow-

ing schematic problem:

Minimize

{
N∑

i=1

[
(γi − γ̃i )

σ 2

]2

+ λR(x)

}
= χ2 + λR(x), (2)

where γ̃i is the model prediction of the ith datum. The regulariza-

tion is R(x), discussed below, and λ is a damping/regularization

parameter, chosen to obtain a sensible fit of the data (here in terms

of the chi-squared measure) to the model (see Parker 1994, for a

discussion of acceptable levels of fit).

In geophysics, in particular, much attention has been given to

regularizations based on quadratic measures of complexity; many

examples are given in Parker (1994). A typical quadratic norm might

be written in the form

NQ = (x − x0)T Λ(x − x0) (3)

Figure 1. The negentropy − S(x, d) for a single positive parameter. The

default d has been set to unity.

for a given non-negative definite matrix Λ and an a priori model

x0 (see Tarantola & Valette 1982a,b; Tarantola 1987). It should

be recognized that this prior model (or ‘default model’, to use the

parlance that is used below), from which deviations are measured

under the two-norm, always needs to be specified. In many cases it is

taken to be the zero model, though in some cases there are sensible

default models, such as in seismology where a 1-D model (such as

PREM) might be used when deriving a 3-D model.

An alternative approach, popular in disciplines where it is rec-

ognized that the underlying image is a PAD, is to maximize the

entropy S of the image; we will not repeat the arguments here as

to why the entropy S is a good property to maximize, which can

be found in many sources; particularly recommended are Sivia &

Skilling (2006) and Jaynes (2003).

When one demands that S be normalized, the entropy is given by

S(x, d) =
P∑

i=1

[xi − di − xi log(xi/di )] , (4)

where di is the ‘default’ for cell i. Fig. 1 shows the form of −S,

termed the negentropy, which has a single unique minimum (at x =
d). This shows the role of d: it is the value that each cell obtains in

the absence of any data. In the application described here, all the di

are set equal, as there is no a priori reason to set them otherwise. In

this case, when there are no data, the image becomes the so-called

‘flat map’. An important property of the MaxEnt solution is that it

introduces no correlation at all between the pixels, other than that

required by the data. For this reason it has known properties which

can be thought of as undesirable in certain settings: for example, the

problem of interpolation of a set of data on the line (see e.g. section

2.07 of Parker 1994 and section 6.3.1 of Sivia & Skilling 2006) has

kernels linking the data to the underlying function that are singular.

As a result of the lack of correlation induced by the MaxEnt solution,

this problem has a solution that is composed of a set of spikes that

satisfy the data points, not a solution that looks plausible to most

observers (who have an in-built bias regarding the ‘simplicity’ of

the solution).
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We alert the reader here to the fact that there are shortcomings

in the use of the entropy as a true prior probability density function

(pdf) in a Bayesian framework. The problem lies in the fact that

there is no pdf associated with the entropy that behaves properly in

the continuum limit (see Skilling 1998). Therefore, in common with

other authors, we eschew the Bayesian approach and simply use the

entropy in the form of a regularizing function.

3 M O D I F I C AT I O N S F O R M O D E L S O F

U N C O N S T R A I N E D S I G N

It is the case that often the underlying models we seek are not them-

selves PADs, and it would appear that we cannot invoke maximum

entropy as a way of choosing between models. However, actually a

redefinition of the model still allows MaxEnt to play a role, and this

section explains how.

In this section, in order to fix ideas, we will focus the arguments

on the geomagnetic inverse problem of reconstructing the core mag-

netic field at the core–mantle interface based on measurements taken

at or above the Earth’s surface. We approximate the mantle as an

insulator. Then measurements γi of the magnetic field are related

to the field at the core–mantle boundary (CMB) Br(θ , φ) by linear

relations of the form

γi =
∫

�

Gi Br d�, (5)

where Gi are known kernels (Gubbins & Roberts 1983; Backus et al.
1996). Fig. 2 shows the kernel for vertical measurements of the

field. These kernels are the equivalent of the point-spread function

in astronomy, and thus the deconvolution problem of reconstructing

Br is very severe.

For the problem at hand, where the underlying image (Br) is not

a PAD, we can still define the general radial core field Br in terms of

two spatially varying intensities B+
r and B−

r (both of which must be

Figure 2. The kernel Gi as a function of cosine of angular distance α from

the observation point for a vertical measurement of the core field made at

the Earth’s surface. The kernel is invariant with respect to rotation about the

observation point.

positive) as Br = B+
r − B−

r . The problem is to reconstruct the two

positive intensities B+
r and B−

r from the surface data.

One can certainly solve this problem using a model of the core

(the ‘image’) which consists of pixels with fluxes x+
i and x−

i ; a useful

alternative is developed below. Fortunately, in the present geomag-

netic problem, such a localized representation was developed by

Constable et al. (1993), and this is the representation we adopt for

the calculations. The representation is not strictly a pixel-based one,

as there is in fact some overlap between the span of the basis func-

tions. However, the resolution can be increased to a level that this

becomes irrelevant, and the solution becomes the true maximum

entropy one.

One can now see how the maximum entropy method enters the

problem, since we now have two PADs to reconstruct. One maxi-

mizes the entropy, subject to fitting χ2/N to unity with N data. (It is

more rigorous to remove the number of degrees of freedom F in the

model estimate from N in the denominator, though in the core-field

reconstruction problem N � F by several orders of magnitude, so

this level of accuracy hardly seems justified.) The entropies enter the

problem in terms of their sum, for the following reason. In reality

we have a size 2P model x = (x+ |x−)T to which the data are related

by

γ = Ex (6)

with E = (A | − A) from (1). Hence the entropy of the 2P-vector

x (whose components are intrinsically positive) is the sum of the

entropies of the component P-vectors x+ and x−. Our optimization

problem becomes

Minimize x+ > 0
x− > 0

{χ2 − λ[S(x+, d+) + S(x−, d−)]}, (7)

with λ chosen so as to achieve the required data fit, and S is the

entropy given by (4). We have allowed for the possibility of two

different defaults, d+ and d−, in (7); in everything that follows we

take all elements of both of these defaults to be equal to a single

scalar d. Because we pose (7) as a minimization problem, whilst

we wish to maximize the entropy (subject to the data constraints),

we instead introduce the negentropy −S into the problem via the

parameter λ. We note that an early example of this modification in

crystallography, used to interpret X-ray powder diffraction data, has

been given by David (1990).

The entropy as written in (4) is an approximation to the true

value over the sphere. In principle, because it is impossible to tes-

selate the sphere uniformly, it should have some weight functions

attached to each of the node values in the sum. Probably the correct

weights would be the areas of the Voronoi cells (Sambridge et al.
1995) associated with each node. However, the fact that the STT

parametrization does not give a true ‘pixel’-based scheme, com-

bined with the fact that the variation in the Voronoi cell size is tiny,

means that we do not introduce this further complication.

3.1 Algorithms

We now turn to the issue of algorithms, because the maximization

of a non-linear function such as the entropy is not a trivial matter;

indeed, the construction of reliable algorithms attracted consider-

able effort during the 1980s. Much of the problem lies with the

asymptotically infinite gradient of the entropy close to zero. Details

of algorithms can be found in Skilling & Bryan (1984), or Gull &

Skilling (1990). Fortunately for us, it turns out we can sidestep the

issue of solving for two underlying images B+
r and B−

r by solving
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for their difference, provided we get the correct definition for the

entropy of the difference. The following proof comes from Gull &

Skilling (1990), though see also Hobson & Lasenby (1998); it is

included to make the arguments self-contained.

We write x as the difference of two PADs f and g:

x = f − g. (8)

We assume f and g both have the same prior d, so that the total

entropy can be written:

S(x, d) = S(f, g, d) =
∑

i

{
fi − di − fi log

[
fi

di

]}

+
∑

i

{
gi − di − gi log

[
gi

di

]}
. (9)

We may remove the explicit dependence of S on f and g by applying

continuity constraints on S. Since x = f − g we have

∂S

∂ fi
=

∑
k

∂S

∂xk

∂xk

∂ fi
= ∂S

∂xi

∂S

∂gi
=

∑
k

∂S

∂xk

∂xk

∂gi
= − ∂S

∂xi
, (10)

so that

∂S

∂ fi
+ ∂S

∂gi
= 0. (11)

Some algebra (Gull & Skilling 1990) leads to the following conclu-

sion for the form for S, free of the underlying fields f and g:

S(x, d) =
P∑

i=1

{
ψi − 2di − xi log

[
ψi + xi

2di

]}
, (12)

with

ψi =
√

x2
i + 4d2

i . (13)

The gradient

[∇S]i = log

[
ψi + xi

2di

]
(14)

and the Hessian

[∇∇S]i j = 1

ψi
δi j (15)

are useful for the optimization.

Fig. 3 shows the form of the negentropy for an unsigned pa-

rameter, along with the quadratic approximation valid for small x
(Maisinger et al. 1997); one can see that at large x the penalty is not

so great from the negentropy as from quadratic regularization. One

can implement this definition of the entropy in a very straightforward

Newton-type algorithm, commonly used in non-linear geophysical

problems. It is straightforward to implement the relevant derivatives

in a conventional regularized solver of the form

xk+1 = xk + (
2AT C−1

e A + λ∇∇S
)−1[

2AT C−1
e (γ − Axk) − λ∇S

]
,

(16)

where xk is the model vector at the kth iterate, and Ce is the error

covariance matrix of the data, containing the variances of the errors

on its diagonals in the simplest case of independent errors. Note that

we have not employed step-length damping, though it is possible

that it could be necessary; see Maisinger et al. (1997) for details.

In the geomagnetic case the Newton-type solver of (16) converges

rapidly when one starts from a nearby solution, and a quadratically

regularized solution provides an excellent starting solution.

Figure 3. The negentropy −S for an unsigned parameter. The default d
has been set to unity. Also plotted as a green dashed line is the quadratic

approximation, valid for |x | � d.

3.2 Implementation in LSQR

A very popular method for the solution of large tomographic systems

is the method LSQR of Paige & Saunders (1982). In order that the

maximum entropy method can be employed in such a scheme, per-

haps for seismic tomography, we list here the simple modifications

that are necessary. We can coax LSQR into solving the appropriate

MaxEnt equations, if we pass to it the system[
C−1/2

e A
D

]
δx ≈

[
γ − γ̃

α

]
, (17)

Figure 4. Dynamo model Lowes spectrum, MF2 Lowes spectrum and, for

comparison, between degrees 1 and 8 the GSFC9/80 model evaluated in

1980. Inset shows the main field parts of the model in more detail. All are

evaluated at the Earth’s surface.
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where D = diag{√λ/ψi } and α = −√
λψi∇S. This leads to the

least-squares system(
AT C−1

e A + DT D
)
δx = AT (γ − γ̃) + DTα, (18)

which can be verified to be the appropriate system. The implemen-

tation is then as follows.

(i) Calculate current predictions γ̃ from the current model xk at

kth iterate.

(ii) Set up D and α from the current model xk .

(iii) Call LSQR to solve for δx.

(iv) xk+1 = xk + χδx (step length damping (using weight χ ) may

be implemented).

Figure 5. Comparison of the radial magnetic field from the original dynamo model with the output of the two inversion schemes, on Aitoff equal-area projection.

Red colours represent magnetic flux out of the core, while blue colours represent magnetic flux entering the core; each colour bar represents an interval of

250 μT. At the top is the original dynamo field before contamination with the crustal field. In the middle is the result of the maximum entropy inversion, and at

the bottom is the quadratic damping result.
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(v) If step-length damping—find optimal χ .

(vi) Convergence? If not go again.

4 A P P L I C AT I O N T O T H E

G E O M A G N E T I C I N V E R S E P RO B L E M

4.1 Application to a synthetic data set

In this section we implement the theory developed above in the ge-

omagnetic inverse problem of reconstructing the radial magnetic

field at the CMB based on observations taken at satellite altitude.

A simulated data set is used in order that the results can be com-

pared with a known input, in order to see the typical abilities of the

method.

In the simulation we take the output from a numerical dynamo

model kindly supplied by Ulrich Christensen. The dynamo was com-

puted with an Ekman number of 10−3, Prandtl number 1, magnetic

Prandtl number 4, modified Rayleigh number 300 and rigid bound-

aries (see Christensen et al. 1999). When one computes an average

magnetic Reynolds number it is 156, within the reasonable range

for the Earth’s core. The model is truncated at degree 42, and has

a slowly decreasing spectrum at the CMB. We normalized the field

model to give Earth-like amplitudes. We then add the field model

MF2 of Maus et al. (2006), which represents the crustal spectrum

from spherical harmonic degrees 16–80. The spectrum of the field

models is plotted in Fig. 4. The model itself on the core surface is

shown in Fig. 5. We use this model to synthesize 1600 Z measure-

ments at the same sites as in the 1980 data set of Shure et al. (1985)

at altitude 400 km, and we assign the data an error of 2.5 nT; this

number is representative of the variance of the crustal field model

that was added.

The representation of the core magnetic field for the inverse prob-

lem is in the form of the ‘spherical triangle tesselation’ (Consta-

ble et al. 1993) whereby the core is tesselated into P = 1442 al-

most equally spaced nodes and 2880 spherical triangles. The node

structure is based on the subdivision of the regular icosahedron

(Baumgardner & Fredrickson 1985). We invert the synthetic data

set using both quadratic regularization, minimizing the norm

Q =
∫

�

B2
r d�, (19)

and with the maximum entropy method with default 10 μT, as was

used in Jackson (2003). Both solutions are computed with misfit

(
√

χ2/N ) equal to unity; in order to obtain this value for the MaxEnt

solution required that the damping parameter λ = 0.05; the model

has negentropy 789 × 103 μT.

Examination of the results in Fig. 5 shows that the maximum

entropy image is generally more in accord with the original. The

quadratic solution, whilst being reasonably consistent, has been

smoothed too much. In many places there appears to be about 1

contour interval of extra resolution in the MaxEnt image; these are

most easily seen where the field is higher than average (e.g. pink

patch A; blue patch B; blue ‘tongue’ of field C). One contour interval

places an upper bound on the improvement, so it is certainly less

than 250 μT.

In order to quantify these assertions, we have compared the re-

sults to the known ‘truth’, namely the values of the field on the CMB

supplied by the original dynamo model. We calculated the differ-

ences between the estimate of Br from the MaxEnt model at 6480

STT cell centres on the core surface (which originate from a 3242

node tesselation of the core); the results are shown in Fig. 6. The re-

sults have been computed using the technique described in Paper II,

Figure 6. Comparison of the residuals (between model estimates and the

known input) in the synthetic experiment, for MaxEnt (black) and quadratic

(grey) regularization methods. In the text, N is the number of samples, σ

is the standard deviation, max and min are the maximum and minimum of

the residuals, and the ‘mean abs dev.’ is the mean of the absolute values of

the residuals (all in μT). The MaxEnt model used d = 10 μT; even better

performance of MaxEnt can be found when d = 30 μT (see text).

Table 1. Properties of the synthetic test results: tabulated are quadratic norm

Q, entropy S, unsigned flux N (see eq. 20), standard deviation σ and mean

absolute deviation (MAD) of the differences between the model and the true

model at 6480 cell centres on the core surface.

Model Q (mT2) N (mT) S (μT) σ (μT) MAD μT

MaxEnt 1.18 2.56 −789 × 103 70.2 48.9

Quadratic 1.15 2.68 −808 × 103 78.8 53.1

namely using the spherical harmonic adaptation of the method. The

figure demonstrates that the improvement seen in Fig. 5 is real and

quantifiable. The MaxEnt model has roughly a 10 per cent improve-

ment in the standard deviation, and of the mean absolute deviation

(70.2 μT versus 78.8 μT for σ and 48.9 μT versus 53.1 μT for the

mean absolute deviation, for the MaxEnt and the quadratic models,

respectively); see Table 1. The reason that the MaxEnt model appears

better visually is that it has superior performance on the wings of the

distribution, with fewer large residuals in the 200–400 μT range (see

Fig. 6). It is of course these larger discrepancies that are most visible

on a plot with contour intervals of 250 μT. Fig. 7 shows the spatial

distribution of the differences between the model estimates and the

true input model. The largest residuals are associated with the po-

sitions of high amplitude, and it is again clear that the Maximum

entropy solution performs better than the quadratically regularized

model.

Some words are in order regarding the default parameter d. It

has been chosen completely arbitrarily to be 10 μT in the work

described herein, consistent with the results previously reported in

C© 2007 The Authors, GJI, 171, 995–1004
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Maximum entropy regularization 1001

Figure 7. Spatial distribution of the differences between (a) Quadratic model and input model and (b) MaxEnt model and input model. Plotted is Br in μT.

Table 2. Data, misfit, trade-off parameter λ, entropy S and unsigned flux N for the 1980 and 2000 MaxEnt models. X , Y and Z are the

north, east and down components of the magnetic field. A ‘default’ value of di = 10 μT has been used; this small value does not unduly

penalize large amplitude features.

Model No. of data Misfit=
√

χ2/N λ S (μT) N (mT)

1980 1600 (Z) 1.00 3.82 × 10−2 −873 × 103 2.91

2000 3684 (X,Y,Z) 1.00 2.50 × 10−2 −865 × 103 2.90

Jackson (2003). This value is small enough to avoid the behaviour

described in Paper II, namely that the method becomes equivalent

to the quadratic regularization method when the default d is large

compared to the typical amplitudes required in the image by the

data. Paper II gives a discussion of the effects of chosing different

d on the spherical harmonic spectra. There appears to be no way of

deriving what d should be a priori. In a synthetic experiment, one

can of course discover what the optimal value of d would be, such

that the results of the inversion are optimal. We have not done that,

nor do we see great value in doing so; when faced with analysing

real data, there is no way of checking what the correct answer should

be, and it is unlikely that the ‘best’ default value corresponds to the

optimal value found when analysing a synthetic dynamo model. For

the dynamo model analysed here, one does in fact obtain superior

results with a slightly different default: for d = 30 μT the standard

deviations of the residuals drops to 67.4 μT (recall the values for the

d = 10 μT MaxEnt model and the quadratically regularized model

were 70.2 and 78.8 μT, respectively). The problem remains open to

further study.

4.2 Application to satellite data

We now apply the method to two high-quality data sets; some

results previously appeared in Jackson (2003), but we give more

details of the parameters used for the inversion, and compare with

the synthetic example. The first is a selection of Magsat data from

1980, used previously by Shure et al. (1985). Only Z data up to

± 83◦ latitude are used. The second is from the satellite Ørsted,

used previously by Olsen et al. (2000) to create the Ørsted Initial

Field Model; the selection of data is from December 1999–January

2000. It has been reduced to epoch using the IGRF secular variation

model, and had the external field of Olsen et al. (2000) removed.

In calculating the models the Magsat data are assigned errors of

C© 2007 The Authors, GJI, 171, 995–1004
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1002 A. Jackson, C. Constable and N. Gillet

Figure 8. Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff equal-area projection. Red colours represent magnetic flux out of the

core, while blue colours represent magnetic flux entering the core; each colour bar represents an interval of 100 μT. The continental outlines are for orientation.

A 1442-node tesselation has been used.

Figure 9. The radial magnetic field for epoch 2000 on Aitoff equal-area projection, constructed using conventional quadratic regularization. The misfit is the

same as that of the maximum entropy model of Fig. 8. Red colours represent magnetic flux out of the core, while blue colours represent magnetic flux entering

the core; each colour bar represents an interval of 100 μT. The continental outlines are for orientation.
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10 nT, commensurate with previous studies. The Ørsted data have

lower errors and are treated using the anisotropic error model of

Holme & Bloxham (1996); we use σ = 2.25 nT, and errors of 10′′

and 60′′ for the two pointing angle errors (Olsen et al. 2000). We

invert these data sets using the same value of the default parameter

as that used in the simulation. Details of the models are given in

Table 2.

The values for the negentropy are a little less than 10 per cent

different to that found for the simulated data set. We report values

of the unsigned flux N given by

N =
∫

�

|Br | d�. (20)

It is interesting that the unsigned flux of the two models differs by

less than 0.5 per cent. Although it is possible to do so, the monopole

component is not explicitly constrained to be zero, but we find a
posteriori that it is naturally satisfied to better than one part in 105.

Fig. 8 shows the fields on the core surface separated by 20 yr.

These models illustrate the intense equatorial spots on the core sur-

face previously highlighted by Jackson (2003). Of particular note

in these maps are the locations where the radial flux changes sign—

the so-called null-flux curves on which Br = 0. These contours are

of importance because they bound regions, the so-called null flux

patches, which under the theory of frozen flux (Roberts & Scott

1965), should retain the same amount of flux throughout time. What

is noteworthy is how simple these maps are in terms of their null-

flux curve topology. Although the location and number of null-flux

curves is notoriously hard to determine, even with a high-quality data

set (O’Brien 1996), most maps of the core field for 1980 or 2000

have on the order of 8–10 null flux curves (e.g. Fig. 9), whereas

our results for 1980 has only three curves and the result for 2000

has four. This has implications for models that attempt to conserve

flux, as the number of constraints is then drastically reduced. Note

that there is no longer a null-flux curve at the north pole as occurs

in quadratically damped models. In many ways it is the smoothly

decaying power spectrum that allows this level of ‘simplicity’ in the

models.

Fig. 10 shows the spherical harmonic energy spectrum of the re-

sult for 1980 (often called the Lowes spectrum). These spectra are

much more realistic when compared to numerical dynamo model

output, such as that shown in Fig. 4, which shows a very slow

decrease of magnetic energy with increasing spherical harmonic

degree.

5 D I S C U S S I O N

We have presented the foundations of the maximum entropy method

and its application to a deconvolution problem in geomagnetism, but

the applications of the method in geophysics could be much broader.

Many problems in seismology are faced with ‘images’ which are

known to have high dynamic range, because of the nature of the

underlying structures (e.g. slabs in seismic tomography). For this

reason we suggest that it is a technique that warrants more attention

in all areas of imaging in geoscience: seismology and environmental

geophysics are immediate areas of application. The idea, originating

with Gull & Skilling (1990), of having two underlying images each

of which is a PAD from which the whole image is constructed,

allows the application of the technique to problems where there is

no obvious positivity in the image. This enlarges the scope of the

method to an extremely large class of problems.

Figure 10. Comparison of the spherical harmonic energy (Lowes) spectrum

(the contribution by spherical harmonic degree to |B|2) on the core surface

for conventional 2-norm model and maximum entropy model.
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