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Neocortical pyramidal cells (PCs) project to various cortical and
subcortical targets. In layer V, the population of thick tufted PCs
(TTCs) projects to subcortical targets such as the tectum, brainstem,
and spinal cord. Another population of layer V PCs projects via the
corpus callosum to the contralateral neocortical hemisphere medi-
ating information transfer between the hemispheres. This sub-
population (corticocallosally projecting cells [CCPs]) has been
previously described in terms of their morphological properties, but
less is known about their electrophysiological properties, and their
synaptic connectivity is unknown. We studied the morphological,
electrophysiological, and synaptic properties of CCPs by retrograde
labeling with fluorescent microbeads in P13--P16 Wistar rats. CCPs
were characterized by shorter, untufted apical dendrites, which
reached only up to layers II/III, confirming previous reports. Synaptic
connections between CCPs were different from those observed
between TTCs, both in probability of occurrence and dynamic
properties. We found that the CCP network is about 4 times less
interconnected than the TTC network and the probability of release is
24% smaller, resulting in a more linear synaptic transmission. The
study shows that layer V pyramidal neurons projecting to different
targets form subnetworks with specialized connectivity profiles, in
addition to the specialized morphological and electrophysiological
intrinsic properties.
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Introduction

Transfer of information between the 2 neocortical hemispheres

is essential for a variety of cognitive processes, such as per-

ception, memory, attention, and learning (Engel et al. 1991;

Matsuzaka et al. 1999; Eliassen et al. 2000; Aboitiz et al. 2003;

Quigley et al. 2003). Information is directly transferred between

the 2 neocortical hemispheres by axons of a specialized sub-

population of neocortical pyramidal cells (PCs) via the corpus

callosum. Neocortical PCs exhibit a large diversity, which is

mainly evident in their different morphological properties

(Simons and Woolsey 1984; Hirsch et al. 1998) and projection

targets (Katz 1987; Hubener and Bolz 1988; Kasper et al. 1994;

Zhang and Deschenes 1997; Thomson and Bannister 2003).

Layer V PCs project to various targets, including subcortical

nuclei (White and Hersch 1982; Cho et al. 2004), cortical

regions in the same hemisphere (Zhang and Deschenes 1998),

and the contralateral hemisphere (Katz 1987; Hubener and Bolz

1988). The differences in the morphological properties of the

different PC subpopulations (Hubener and Bolz 1988; Tsiola

et al. 2003; Vercelli et al. 2004; Yuste 2005) suggest that they

integrate cortical activity differently, thus conveying different

aspects of the cortical activity to the various efferent targets.

The electrophysiological and synaptic properties of the differ-

ent PC subpopulations are also likely to affect their respective

functions.

Corticocallosally projecting cells (CCPs) project to the

contralateral hemisphere via the corpus callosum. They are char-

acterized by a small soma and a short apical dendrite that does

not display a tuft in layer I, strikingly different from the

extensively studied layer V thick tufted PCs (TTCs) that have

a big soma and a thick apical dendrite forming tuft dendrites in

layer I and project their axons to the tectum, brainstem, and the

spinal cord (Hubener and Bolz 1988; Kasper et al. 1994).

Previous reports showed electrophysiological (Kasper et al.

1994; Christophe et al. 2005) and genetic (Christophe et al.

2005) differences between the TTCs and the CCPs. A systematic

study of the CCPs synaptic properties is however still lacking. In

this study, CCPs were selectively labeled by retrograde injection

of fluorescent microbeads to the contralateral hemisphere and

then recorded by multineuron whole-cell recordings followed

by 3-dimensional morphological reconstruction for detailed

characterization. We describe here the morphological, electro-

physiological, and synaptic properties of corticocallosal PCs in

layer V of the rat somatosensory neocortex.

Materials and Methods

Injections
CCPs labeling was done by injections of fluorescent microbeads

(Lumafluor, Naples, FL, 43 diluted in nano-pure water) into the left

hemisphere of P11 (postnatal 11 days) Wistar rats (Fig. 1A). These beads

are retrotransported by the axons that terminate at the site of injection.

The rats were anesthetized with an intraperitoneal injection of

Fentanyl--Medetomidine (mixed from Fentanyl IV solution at 0.05 mg

mL
–1 and Domitor solution at 1 mg mL

–1 and completed with saline

solution to get a 10 mL kg
–1 injection and 0.3 mg kg

–1 for both products).

They were then fixed on a stereotaxic table (Stoelting Co., Wood Dale,

IL) and their head skin openedwith a scalpel sagittally from between the

eyes to between the ears. The skin was then gently pushed aside, and the

skull cleaned with a dry cotton piece. The smooth skull was then

pierced at the injection sites with a Neolus 25G 3 5/8$ syringe needle

(Terumo Europe N.V., Leuven, Belgium). It was then cleaned again, and

the beads were injected with a Hamilton syringe inserted 1 mm below

the skull surface. A volume of 0.5 lL per site was injected in 3 sites 1 mm

lateral and 0 ± 1 mm from Bregma in the left hemisphere (somatosen-

sory cortex, S1). In order to get a good diffusion at the injection site, the

syringe was retracted 60 s after the end of the injection. The wound was

then gluedwith chirurgical glue (Histoacryl, Braun Aesculap, Tuttlingen,

Germany) and the rats awakened with Atipamezole--Naloxone (1 mg

kg
–1 and 0.1 mg kg

–1, respectively, mixed from Antisedan solution at 5

mg mL
–1 and Narcan solution at 0.4 mg mL

–1 and completed with saline

to get a 10 mL kg
–1 injection). After complete awakening (~20 min), the

rats were returned to their mother’s cage. All animal experimentations

were performed under the Swiss guidelines for animal experiments.

Slicing
Three days following the injection of beads, the rats were rapidly

decapitated, and sagittal slices (300 lm thick) of the right hemisphere
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were cut in artificial cerebrospinal fluid (ACSF) on a slicer HR2 (Sigmann

Elektronik, Heidelberg, Germany). The hemisphere was glued at the

surface of the sagittal plane onto a block, which wasmounted at an angle

of 10� such that the blade cut from the upper part of the cortex toward

the caudal border and down toward the midline. Slices were incubated

for 15--30 min at 35 �C and then left at room temperature (20--22 �C).
The ACSF contained (in mM) 125 NaCl, 2.5 KCl, 25 D-glucose, 25

NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2.

Fluorescence and infrared differential interference contrast
(IR-DIC) Microscopy
Neurons in somatosensory cortex were identified using IR-DIC micros-

copy (Fig. 1C), with an upright microscope (BX 51WI, Olympus, fitted

with a 603 LUMPlan FI, Japan objective). The recorded neurons were

selected up to 50 lm below the slice surface. The fluorescent beads

were identified using the same microscope with a filter cube for green

fluorescent protein (Fig. 1B). Both fluorescence and IR-DIC images were

taken by a camera (VX 55, Till Photonics, Gräfelfing, Germany) and

displayed on a monitor (WV-BM 1410, Panasonic, Osaka, Japan). The

cells identified under the fluorescence were marked on the monitor

with the z coordinates given by themicromanipulators (SM-55, Luigs and

Neumann, Ratingen, Germany) and could then be identifiedwith certainty

in the IR-DIC imaging for patch-clamp recordings (Fig. 1D).

Electrophysiological Recordings
Somatic whole-cell recordings were performed at 35 �C, and signals

were amplified using Axoclamp-2B amplifiers (Axon Instruments,

Molecular Devices, Union City, CA). Voltages were recorded with

pipettes containing (in mM) 110 potassium gluconate, 10 KCl, 4 ATP-

Mg, 10 phosphocreatine, 0.3 GTP, 10 N-2-hydroxyethylpiperazine-N9-2-

ethanesulfonic acid (pH 7.3, 310 mOsm adjusted with sucrose), and

0.5% biocytin. The pipettes were pulled with a Flamming/Brown

micropipette puller P-97 (Sutter Instruments Co, Novato, CA). The

scaled output of the amplifier was connected to an ITC device (ITC-18,

Instrutech Co, Port Washington, NY) connected to an Apple computer

running Igor Pro (Wavemetrics, Portland, OR). The junction potential

between the ACSF and the solution in the pipettes was around –10 mV.

The recordings were made without correction for it.

Biocytin Labeling
The recording pipettes were filled with 5 mg mL

–1 of biocytin that was

perfused into the neurons during recording. Following the recording,

the slices were fixed for at least 24 h in a cold phosphate buffer (100 mM,

pH 7.4) containing 2% paraformaldehyde and 1% glutaraldehyde and

0.3% picric acid. Thereafter, the slices were rinsed and then transferred

into a phosphate-buffered 3% H2O2 to block endogenous peroxidases.

After rinsing in the phosphate buffer, slices were incubated overnight at

4 �C in an avidin-biotinylated horseradish peroxidase (ABC-Elite, Vector

Labs, Burlingame, CA; 5% A, 5% B, and 0.25% Triton X-100). Sub-

sequently, sections were rinsed again in the phosphate buffer and

developed with diaminobenzidine (DAB substrate kit, Vector Labs)

under visual control using a stereomicroscope (Leica, Wetzlar, Ger-

many) until all processes of the cells were clearly visible. Finally, the

reaction was stopped by transferring the sections into the phosphate

buffer. After rinsing in the phosphate buffer, slices were mounted in an

aqueous mounting medium.

Reconstruction
The stained cells were reconstructed under light microscope using

Neurolucida software (MicroBrightField, Magdeburg, Germany). Recon-

structed neurons and connections underwent quantitative analysis

using NeuroExplorer (MicroBrightField). The quantitative morphometric

analysis is based on multiple parameters derived from the dendrites and

axons of reconstructed neurons. Putative contacts were identified

according to the following criteria: (i) only the contacts formed by

axonal swellings (boutons) were considered; (ii) the same plane of focus

(microscope lens with 603 magnification, numerical aperture = 0.9;

resolution along the z axis = 0.37 lm) is used. This requires the boutons

and soma/dendrite/axon to be membranes within <0.5 lm of each

other; (iii) if a dendrite is thick ( >2 lm)with many spines, then a greater

distance between the bouton and dendrite is allowed, providing that the

course of the axon bent toward or ran parallel to the dendrite. When

a putative contact was located, it was systematically double-checked

through the eyepieces to confirm the screen-based identification. The

staining procedure results in ~25% shrinkage of the slice thickness and

~10% anisotropic shrinkage along the x and y axes. Only the shrinkage

of thickness was corrected.

Electrophysiological Analysis
The action potential (AP) onset is measured as the time point where the

second derivative with respect to time of the voltage trace is maximum,

that is, where the deflection of the curve is maximum. The end of the AP

falling phase is measured as the time point where the modulus of the

falling rate becomes lower than 5 V s
–1.

Figure 1. Isolation of the corticocallosally projecting PCs. (A) Schematics of the beads
injection procedure. The beads are injected in layer V of the left hemisphere cortex.
They then undergo retrograde transport (green arrows) to the right hemisphere (used
for recordings) marking the cells projecting via the corpus callosum. (B) High-
magnification picture of a retrograde-labeled pyramidal neuron. The green dots are the
~0.2-lm beads. Scale bar 5 lm. (C) The same view as in (B) but under IR-DIC
imaging, showing the cell and the patch pipette. (D) Merge of (B) and (C). (E) Low-
magnification fluorescence view of the cell in (B), (C), (D) filled with alexa red by the
patch pipette. Scale bar 20 lm. (F) Low magnification of the region containing the cell
mentioned (in plain green due to overlap with alexa red spectrum in the green region).
Other cells marked with beads are present in the area showing the possibility to obtain
paired recordings of the identified population. Scale bar 20 lm.
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The excitatory postsynaptic potential (EPSP) onset was calculated by

linear extrapolation from the 20--80% maximum amplitude linear fitting

on the average trace of 80 single sweep events. These onset points were

then automatically marked on the graph for visual verification. The

latency of the single EPSP is defined as the time lapse between the top of

the presynaptic AP and the EPSP onset. The coefficient of variation (CV)

of the EPSP amplitude was calculated based on the measured amplitudes

of each of the 80 single events triggered.

Model for Synaptic Dynamics
In order to analyze quantitatively the synaptic connections, a model of

dynamic synaptic transmission was used (Markram et al. 1998). Fitting

the responses to the model yielded 4 parameters: the time constant of

recovery from depression, sD; the time constant of recovery from fa-

cilitation, sF; utilization of synaptic resources as used analogously to Pr

(e.g., release probability), U; and the absolute strength, ASE, of the

synaptic connection (defined as the response when Pr equals 1). After

the 5th EPSP of a given train, the response typically reaches a steady-

state amplitude considered to calculate the steady-state versus fre-

quency ( f ) relationship. The frequency at which this curve matches a

1/f function is the limiting frequency. Tsodyks and Markram (1997)

showed that if the presynaptic cell fires above the limiting frequency,

the average postsynaptic depolarization will remain constant. The same

study demonstrated that as lowering the calcium concentration in-

creases the limiting frequency, this frequency is presynaptically de-

pendent and estimated by f � 1/(sD 3 Pr).

Results

Thirty-nine P11 Wistar rats were injected with fluorescent latex

microbeads into layer V of the somatosensory cortex (S1). Rats

appeared fully recovered within 2 days following the injection.

The microbeads were clearly visible in acute slices under fluo-

rescence microscopy, enabling selective recordings from neigh-

boring ( <100 lm somatic distance) CCPs (Fig. 1 A,F). A total of

476 marked cells were patched and filled with biocytin. The

neuron somata were small and pyramidal shaped with a slender

apical dendrite projecting toward the pia. Neurons with soma

located in lower layer V had an apical dendrite projecting to

layer II/III, whereas about 80% of the neurons located in more

superficial layers had an apical dendrite reaching layer I (Fig.

1E). Labeled cells were visible in all the layers from layer II to

layer VI in an area symmetrical to the injection site.

Single -Cell Electrophysiology

The response of CCPs to a step current injection was either an

initial AP or a burst of 2--3 APs followed by a pause before firing

again (Fig. 2G, defined as burst adapting) or an initial AP or burst

followed by a regular spiking train (Fig. 2H). Both behaviors

were observed at high and low current injections. Their small

somata and dendrites are expected to yield a relatively high

input resistance and indeed, the input resistance was 183 ± 67

MX (all values are given as mean ± standard deviation [SD], n =
22, Fig. 2A,B, Table 1), and the membrane time constant in

response to a negative pulse (D pulse) was 20 ± 6 ms (Fig. 2D,

Table 1). In response to a step current injection, CCPs displayed

slow after-hyperpolarization (Fig. 2C) of 7.1 ± 3.2 mV. The

spiking threshold was –32 ± 6 mV (Fig. 2F), and on about half of

the cells, an initial burst was present (Fig. 2F). A typical AP had

an amplitude of 60 ± 5 mV, a duration at half amplitude of 1.9 ±
0.3 ms, a rise time of 1.0 ± 0.2 ms, and a fall time of 3.2 ± 0.6 ms

(Fig. 2E). Values for second APs in a train and other intrinsic

parameters are given in Table 1.

CCP versus TTC Single-Cell Electrophysiology

In order to compare the single-cell electrophysiology of the

CCPs with the TTCs, we recorded from 35 TTCs using the same

protocol of Figure 2. The CCPs have an AP amplitude signifi-

cantly smaller than the TTCs (60 ± 5 mV, n = 22 vs. 63 ± 5 mV,

n = 35, respectively, mean ± SD). This difference is even larger in

the second AP of a train generated by a depolarizing step

current (45 ± 11 mV vs. 63 ± 6 mV). On the contrary, the AP

duration is about 1.2ms longer for the CCPs (4.3 ± 0.6 ms vs. 3.1 ±
0.5 ms for the first AP and 7.2 ± 1.2 ms vs. 6.0 ± 0.7 ms for the

second AP in a train). The input resistance is 3.6 times larger in

the CCPs (183 ± 67 MX vs. 51 ± 15 MX), but the membrane time

Figure 2. Single CCP electrophysiology. Recorded neurons are held at a membrane potential of �70 mV in current-clamp configuration. (A) Injected current steps and their
corresponding voltage responses. (B) IV graph of the current--voltage relationship protocol described in (A). (C) Voltage response and current stimulation for slow after-
hyperpolarization potential. (D) Voltage response and current stimulation of a short (5 ms) hyperpolarizing current injection used to determine the membrane time constant. (E)
Voltage response and current stimulation of high temporal resolution used to determine the AP waveform. (F) Voltage response and current stimulation of a ramp to determine the
discharge threshold. (G) Voltage response and current stimulation just above threshold to determine the threshold response to a long depolarizing pulse. (H) Same as in (G) but for
more depolarized stimulation.
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constant after a hyperpolarizing spike is similar for both

populations (20 ± 6 ms vs. 18 ± 5 ms). CCPs had a higher

discharge threshold (-32 ± 6 mV vs -40 ± 3 mV), as extracted

from a response to a ramp current injection (Fig. 2 F). Both

populations have a similar mean current-discharge slope al-

though its variation is much higher in the CCPs population than

for the TTCs (28 ± 28 Hz nA
–1 for CCPs and 26 ± 6 Hz nA

–1 for

TTCs). The initial burst interval is significantly smaller in the

CCPs (50 ± 50 ms vs. 80 ± 50 ms) showing the tendency for

some cells of this population to discharge with an initial burst in

response to a depolarizing step current. The distribution of this

interval for the CCPs is not showing 2 distinct groups indicating

that the transition between bursting and not-bursting behavior

is continuous in the CCPs population (bursting on Fig. 2F and

not-bursting on Fig. 2G). None of the TTCs recorded showed

this initial burst. The complete data set is given in Table 1.

Morphology of the Corticocallosal Cells

Consistent with previous reports (Katz 1987; Hubener and Bolz

1988; Christophe et al. 2005), the morphological differences of

CCPs from TTCs were already obvious under light microscopy

by the smaller soma and the untufted apical dendrites (Fig.

3A,F). These differences in the dendritic arborization are

further quantified by the total dendritic tree surface (4800 ±
300 lm2 for the CCPs vs. 33 000 ± 3000 lm2 for TTCs) and by

the dendritic Sholl distance (Fig. 3B), in which the number of

intersections crossing concentric circles centered on the soma

are counted (Fig. 3A). The Sholl analysis provides a quantitative

estimate of the arborization of an axonal or dendritic tree. A

greater number of crossings at a given distance compared with

another indicate that it is more likely for the neuron to send

outputs or receive inputs at that distance. The dendritic Sholl

distance distribution of CCPs displayed a single peak within

a radius of 100 lm from soma (Fig. 3B, red). The TTCs Sholl

distance distribution shows clearly the tuft at a distance be-

tween 700 lm and 980 lm from the soma (Fig. 3B, gray).

Moreover, the more extended dendritic tree of the TTCs is also

visible on the Sholl distribution as the plot of Figure 3B is scaled

by a factor of 0.51 for the TTCs. The axonal Sholl distance

reflected the CCPs axons dense projection below the soma

within a radius of 200 lm (Fig. 3C). Most of the cells had

multiple primary axonal collaterals (collaterals directly emerged

out from the main axonal stem, 7 ± 3). One of them often pro-

jected up ascending in parallel to the apical dendrite (70%, 15/

22 reconstructed), with an averaged length of about 400 lm.

Below the dense projection zone illustrated by the Sholl

distance analysis, CCPs axons typically project 2 primary axonal

collaterals horizontally extending within the layer VI (80%, 17/

22 reconstructed, Fig. 3A). The main axonal trunk descends

vertically into the white matter, presumably projecting to the

opposite hemisphere. A summary of the morphological param-

eters is presented in Table 2.

Synaptic Connections between CCPs

In order to study the CCPs synaptic properties, we recorded

simultaneously from labeled neurons with soma lying within

a lateral distance of 100 lm. The probability to find a connection

between 2 CCPs in acute slices was 3.15% (40 connections out

of 1272 pairs tested). A single presynaptic AP induced an EPSP

with amplitude of 0.8 ± 0.6 mV (Fig. 4D, mean ± SD). The latency
(Fig. 4C), defined as the time lapse between the top of the AP

and the EPSP onset, was 1.4 ± 0.8 ms (Fig. 4D). The 20--80% rise

time was 2.8 ± 1.0 ms (Fig. 4D), and the decay time constant to

rest membrane potential from the EPSP maximum amplitude

(Tau) was 47 ± 25 ms (Fig. 4D). The mean number of synapses

per connection obtained with the CV analysis was 4.6

(n = ½1–Prm�=½Prm3CV2
m�; Prm: mean probability of release equiv-

alent to U [see Materials and Methods], Fig. 6D, CVm =mean CV,

Fig. 5C). Morphological analysis yielded 4.0 ± 1.3 putative

contacts per connection, in agreement with the CV analysis.

Putative contacts between CCPs were mainly formed on basal

dendrites (80%), at a branching order of 3.4 ± 0.2 (67.3% of total

were formed on basal dendrites at a branching order higher

than 3), a geometric distance of 129 ± 20 lm, and an elec-

trotonic distance (see Materials andMethods) of 0.15 ± 0.02 (n =
14). The number of failures was relatively small and comparable

to previously found values for other PC to PC connections (12 ±
11%, n = 23 [Thomson et al. 1993; Markram et al. 1997]). Despite

this low failure rate, the observed CV was quite high (0.58 ±
0.24, n = 23). Weak synaptic connections displayed high trial-to-

trial variability, as observed by the negative correlations be-

tween the mean EPSP size and the failure rate and CV

(correlation index –0.73 and –0.74, respectively) and the

positive correlations between the CV and failure rates (corre-

lation index 0.92). These correlations show that the amplitudes

of the CCPs to CCPs EPSPs depend on the number of synapses

rather than on the probability of release. Among the correlations

between the number of contact points, the distance of the

contacts from the soma along the dendrites, the distance

between the cell soma and the amplitude of the EPSP, only 3

were above 0.4. The correlation indices are 0.62 between the

number of contact and the distance separating soma, 0.46

between the amplitude of the EPSP and the number of contact

points, and 0.42 between the EPSP amplitude and the distance

separating soma. It is worth to notice that given the small range

of the data obtained for the soma separation distance (80 ± 40

lm, n = 14, mean ± SD) and the number of contact points

Table 1
Electrophysiological properties of the CCPs and the TTCs

CCP (n 5 22) TTC (n 5 35)

Access (MX) 23.7 ± 5.4 21.9 ± 4.9
First AP in train
AP amplitude (mV) 59.6 ± 5.5 63.0 ± 5.3*
AP duration (ms) 4.29 ± 0.64 3.09 ± 0.52***
AP duration at half amplitude (ms) 1.93 ± 0.31 1.35 ± 0.24***
AP rise time (ms) 1.05 ± 0.16 0.80 ± 0.15***
AP fall time (ms) 3.24 ± 0.55 2.29 ± 0.41***
Fast AHP (mV) �2.2 ± 4.1 3.7 ± 3.5***

Second AP in train
AP amplitude (mV) 45 ± 11 63 ± 6***
AP duration (ms) 7.2 ± 1.2 6.0 ± 0.7***
AP duration at half amplitude (ms) 2.87 ± 0.88 2.06 ± 0.35***
AP rise time (ms) 1.99 ± 0.39 1.25 ± 0.26***
AP fall time (ms) 5.2 ± 1.1 4.7 ± 0.7

IV analysis
Time to hyperpol peak (s) 0.194 ± 0.033 0.417 ± 0.430**
Input resistance for peak (MX) 228 ± 92 64 ± 19***
Input resistance for steady state (MX) 183 ± 67 51 ± 15***
Maximum sag (mV) 6.6 ± 3.9 5.8 ± 3.4

Decay time constant for D pulse (ms) 20.0 ± 5.8 17.5 ± 4.7
AP threshold (mV) �32.3 ± 5.6 �39.4 ± 2.6***
Slow AHP (mV) 7.1 ± 3.2 8.6 ± 2.9
Step current
Average delay to first spike (s) 0.031 ± 0.013 0.026 ± 0.012
Current-discharge slope (Hz nA�1) 27.6 ± 28.5 26.2 ± 5.7
Initial burst interval (s) 0.052 ± 0.047 0.081 ± 0.049*

Note: Mean ± SD, *P\ 0.05, **P\ 0.01, ***P\ 0.001, P value is from Student t-test;

AHP 5 after hyperpolarization.
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(Fig. 3D), more data would be required to reach any strong

conclusion on this issue.

We used presynaptic trains of APs at various frequencies to

characterize the dynamic properties of synaptic connections be-

tween CCPs (Figs 4B and 6). The synaptic responses were fitted

using the model for synaptic dynamics, allowing for the ex-

traction of the release probability and time constants of

recovery from depression and facilitation (Markram et al. 1998)

(see Materials and Methods and Fig. 6B). Synaptic connections

between CCPs had low release probabilities (0.39 ± 0.14, range

0.04--0.61, n = 23, Fig. 6D top right panel), exhibited short-term

depression (depression time constant: 690 ± 410 ms, Fig. 6D

bottom left panel) and only little facilitation (facilitation time

constant 44 ± 103 ms, Fig. 6D bottom right panel). We used

presynaptic trains of different frequencies to extract the

limiting frequency of CCP synapses (see Materials and Meth-

ods), which was found to be approximately 4 Hz (Fig. 6C).

CCP versus TTC Connectivity

We recorded from 24 synaptically connected TTCs pairs to

perform a quantitative comparison with CCP pairs. TTCs were

identified under IR-DIC microscopy by their large soma and

thick apical dendrites. Neurons were biocytin filled via the

patch pipette during recordings, and a later confirmation of the

stained TTCs was obtained under light microscopy (as in

Markram et al. 1997). The number of probed pairs was 222,

giving 11% of connected pairs. This shows that the CCPs are 3--4

times less connected than the TTCs. A chi-square test yielded

a P value of 8.10
–17. The EPSP amplitudes had a tendency to be

smaller for the CCP synapses compared with TTC synapses (0.8

± 0.2 mV for CCPs and 1.2 ± 0.2 mV for TTCs, mean ± standard

error of the mean [SEM]).

Figure 3. Morphological characteristics of single cell and connections in the CCP population. (A) Reconstruction of a single CCP showing the untufted apical dendrite and the circles
defining the Sholl distances. Axon in blue and dendrites and soma in red. (B) Dendrite Sholl analysis. The distribution designates the number of times the circle centered on the soma
with a radius of the Sholl distance crosses a dendrite (cf., A) (n5 23). Front in red: CCPs, behind in gray normalized with a factor of 0.51: TTCs (C) Axon Sholl analysis (n5 23),
same as in (B). (D) Distribution of putative contacts in the population. A total of 4.0 ± 0.3 putative contacts per connection (mean ± SEM, n5 14). (E) Distribution of the distance
between the soma and the putative contacts along the dendrites 130 ± 18 lm (mean ± SEM, n5 55). (F) Reconstruction of a pair of connected CCPs. Presynaptic axon in blue
and dendrites in red and orange. Stars show the location of the identified putative contacts (axodendritic contact points with a bouton at the touch site).

Table 2
Morphometric properties of the corticocallosal PCs

Mean SEM n

Dendritic tree surface (lm2) 4800 300 23
Apical dendritic length (lm) 2973 1285 23
Basal dendrite number 5.2 1.5 23
Maximum branching order
Apical dendrite 13.6 4.5 23
Basal dendrite 5.4 2 23
Axon 9.8 2.7 23
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The onset latency for EPSPs was 1.4 ± 0.2 ms for CCPs and 1.2

± 0.3 ms for TTCs; the 20--80% rise time was 2.8 ± 0.3 mV for the

CCPs and 3.6 ± 0.6 ms for the TTCs; the synaptic decay time was

47 ± 7 ms for the CCPs and 54 ± 4 ms for the TTCs (mean ± SEM,

n = 14 for CCPs and n = 12 for TTCs). None of these values was

significantly different (P value larger than 0.2 in a 2-tailed t-test,

data summarized in Table 3). Short-term plasticity was also

compared between CCPs and TTCs (Fig. 7A,B) using the model

for synaptic dynamics (see Materials and Methods). The only

significantly different parameter was the probability of release

(0.39 ± 0.03 vs. 0.51 ± 0.02 for CCPs and TTCs, respectively,

mean ± SEM, P < 0.01 Fig. 7C, top panel). TTCs are intercon-

nected by a disynaptic inhibitory pathway (Fig. 7D, first, second,

and third panels) (Silberberg and Markram 2004; Rinaldi et al.

2005), which is activated following a presynaptic burst dis-

charge. Such disynaptic inhibitory responses were not observed

between CCPs, in contrast to their high prevalence between

TTCs (Fig. 7D).

Discussion

Our study describes the properties of a subpopulation of

neocortical pyramidal neurons projecting to the contralateral

hemisphere. Whole-cell recordings from groups of layer V CCPs

were obtained following retrograde labeling of the contralateral

hemisphere and their morphological, electrophysiological, and

synaptic properties were extracted. In agreement with previous

reports (Katz 1987; Hubener and Bolz 1988; Mercer et al. 2005),

CCPs had shorter and thinner apical dendrites, smaller soma,

and higher input resistance than the thick tufted layer V PCs. In

addition, the AP amplitude of the CCPs was smaller, and the AP

duration was longer in the CCPs than in the TTCs. The discharge

threshold was higher in the CCPs suggesting a lesser excitability

of this PC type. We speculate that together with the AP du-

ration, this lesser excitability could compensate for the higher

input resistance and hence explain the similar current-

discharge slope between the 2 populations.

Previous studies showed that some neurons in the guinea pig

adult neocortex tend to discharge with an initial burst in

response to a depolarizing step current (Connors et al. 1982).

In a previous study, PCs that were morphologically undistin-

guishable exhibited discharge with or without an initial burst

(McCormick et al. 1985). Another study reported that the large

PCs (like the TTCs described here) displayed an initial burst

discharge, whereas small PCs (closer to the CCPs) presented

only a regular spiking behavior in the somatosensory cortex of

1-month-old rats (Chagnac-Amitai et al. 1990). Later, it was re-

vealed that the bursting behavior of the TTCs originated from

dendritic stimulations and regular firing originated from somatic

stimulations (Schwindt and Crill 1999). Our results indicate that

a variation of discharge behavior is true for the CCPs in the

juvenile somatosensory neocortex. However, there are clear

morphological and electrophysiological differences between

the TTCs and the CCPs. Indeed, the main differences are in the

shorter apical dendrite, larger input resistance, longer AP

Figure 4. CCP connectivity: population response to a single AP. (A) Confocal image of
a pair of layer V CCPs. (B) EPSP (top trace) recorded in response to the presynaptic cell
stimulation of 8 APs at 30 Hz and a recovery test spike 500 ms later (bottom trace).
Membrane potentials are given in the middle of the traces. (C) Single AP stimulated in
the presynaptic cells (top trace) and 4 examples of trial-to-trial EPSP (bottom trace).
The dashed line indicates the reference point for the latency measurement. Membrane
potentials are given near the traces. (D) Population distribution of CCP single AP EPSP
(80 trials per cell). Amplitude 0.8 ± 0.2 mV, latency 1.4 ± 0.2 ms, rise time 2.8 ± 0.3
ms, Tau 5 47 ± 7 ms (membrane potential decay time constant from the top of the
EPSP to rest) (mean ± SEM, n 5 13 cells).

Figure 5. CCP connectivity: trial-to-trial response to a single AP. (A) Example of
a successful EPSP, a failure and the corresponding presynaptic AP. Membrane
potentials are given in the middle of the traces. (B) Distribution of the amplitudes for
one cell across the trials (80 trials, 0.99 ± 0.06 mV, mean ± SEM). (C) Distribution of
the CV for the CCP population (0.58 ± 0.05, n5 22). (D) Distribution of the failures for
the CCP population (12 ± 2%, n 5 22).
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duration, smaller AP amplitude, and the presence of an initial

burst for the CCPs compared with the TTCs. The mechanism

underlying bursting was suggested to be dependent on the

synchronicity of the sodium spike with a dendrite generated

calcium spike (Schwindt and Crill 1999). The bursting behavior

of some CCPs reported here might depend on various intrinsic

properties that are related to the dendritic calcium spike.

Intrinsic neuronal properties depend on the developmental

stage of the tested animals, which may also be a reason for the

variability in firing patterns recorded in different studies.

Synaptic connections between pairs of CCPs were charac-

terized and compared with those observed between TTCs.

Synaptic connections between CCPs differed in their low

Figure 6. CCP connectivity: response to a train of APs. (A) Frequency dependence of EPSPs in response to a train of 8 APs at 5, 10, 20, and 30 Hz. Membrane potentials are given
at the beginning of the traces. (B) Red trace: actual data for one connection averaged over 30 trials. Blue trace: Tsodyks--Markram model fit of the data. (C) Frequency dependence
of the steady-state amplitude (last 3 EPSPs of the trains shown in panel A averaged and divided by the corresponding ASE). Blue trace: inverse frequency fit of the data trace, as
given by the equation for Amp_fit. (D) Distributions of the parameters extracted by the Tsodyks--Markram model. ASE is the absolute synaptic efficacy, that is, the amplitude of the
EPSP if the probability of release U was 1. ASE 5 3.4 ± 0.6 mV, U 5 0.39 ± 0.03, sD 5 690 ± 90 ms, sF 5 44 ± 21 ms (mean ± SEM, n 5 23).

Table 3
Comparison of the synaptic properties between CCPs and TTCs

CCP TTC P value

Number of putative contacts/connection 4.0 ± 0.3 5.5 ± 1.1a \0.005
Amplitude (mV) 0.8 ± 0.2 1.2 ± 0.2 [0.02
Latency (ms) 1.4 ± 0.2 1.2 ± 0.3 [0.07
Rise time (20--80%, ms) 2.8 ± 0.3 3.6 ± 0.2 [0.02
Decay time (ms) 47 ± 7 54 ± 4 [0.03
ASE (mV) 3.4 ± 0.6 3.8 ± 0.4 [0.06
U 0.39 ± 0.03 0.51 ± 0.02 \0.01
sD (ms) 690 ± 90 620 ± 30 [0.03
sF (ms) 44 ± 21 13 ± 4 [0.01

Note: Student t-test was used for the statistical comparison.
aData obtained from Markram et al. (1997).
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connection probability, smaller EPSP amplitudes, and lower release

probabilities. Disynaptic inhibition was not observed between

CCPs pairs, compared with the large probability for these con-

nections between TTCs. Our results show that in addition to

differences in the morphological and electrophysiological prop-

erties, subpopulations of PCs within the same neocortical col-

umn and layer also display different properties of connectivity.

The short untufted apical dendrites of CCPs as well as the

narrow span of their basal dendrites suggest that, unlike TTCs,

they integrate inputs in a relatively narrow range. This is further

supported by the almost complete absence of dendritic arbor-

ization in layers II/III, in which long-range horizontal intra-

cortical connections are abundant (Fitzpatrick 1996; Chisum

and Fitzpatrick 2004). CCPs do not display a dendritic tuft in

layer I, suggesting that they also do not receive top--down inputs

(Rockland and Virga 1989; Cauller and Connors 1994; Cauller

et al. 1998). The untufted aspect of the CCPs apical dendrite

is not a developmental feature due to incomplete dendritic

growth because the dendritic arborization is already completed

by the end of the first postnatal week (Wise and Jones 1976).

Further, untufted morphology also exist in adult animals

(Kasper et al. 1994). Putative contacts between CCPs were

mainly located on basal dendrites, similar to those formed be-

tween TTCs, but different from those formed between cortico-

striatal PCs (Morishima and Kawaguchi 2006). Comparing with

the TTC connections (5.5 ± 1.1, n = 19) (Markram et al. 1997),

the CCPs formed a significantly smaller number of putative

contacts in a connection (4.0 ± 0. 3, n = 14; P < 0.005, Student

t-test). Connections between TTCs had 63% of contacts located

on basal dendrites, and 37.5% of all contacts were formed on

basal dendrite at an order higher than 3 (Markram et al. 1997)

innervating to a greater extent the apical dendrite than the

CCPs (80% of contacts on basal dendrites and 67.3% of contacts

were on basal dendrites at a branching order higher than 3). The

mean geometrical distance between the soma and the contact

points tends to be larger in TTCs (201 ± 62 lm compared with

129 ± 20 lm for CCPs); however, the mean electrotonic dis-

tance is similar for both cell types as TTCs contacts are located

at a mean electrotonic distance of 0.13 ± 0.03 (Markram et al.

1997) (0.15 ± 0.02 for CCPs).

The connection probability between CCPs was much lower

than observed between TTCs, indicating different connectivity

patterns for PCs in somatosensory cortex projecting to different

targets. Similar differences in connectivity probabilities were

observed between PCs in the prefrontal cortex projecting to

different targets (Morishima and Kawaguchi 2006). The sparse

connectivity between CCPs suggests that they may primarily be

driven by other sources of excitation such as PCs from other

subpopulations within layer V or from other layers. The con-

nectivity between CCPs and other subclasses of PCs is, however,

yet to be investigated. Given the differences reported here

between the CCPs and TTCs circuits, it is very likely that there is

an asymmetry in the connections between the PCs subpopula-

tions (Thomson and Bannister 2003). The inhibitory network

signaling to CCPs should also be considered in face of the

specific excitatory connectivity pattern. Previous studies showed

that Martinotti cells provide inhibition primarily to layers I and

IV (Wang et al. 2004). These interneurons also mediate a

disynaptic feedback loop within the TTCs population (Silberberg

and Markram 2004). We did not observe any disynaptic

inhibitory responses between CCPs, suggesting that the in-

hibitory connectivity also differs for various PC subpopulations.

Figure 7. Comparison of CCP connection dynamics with the TTC. (A) Comparison of an EPSP response to an 8 APs train at 30 Hz followed by a recovery test AP 500 ms later. Red
trace: TTC single connection and blue trace: CCP single connection. Membrane potentials are given at the beginning of the traces. (B) Same as (A) but traces are population
averages (n5 13 for CCPs and n5 10 for TTCs). (C) Parameters extracted by the Tsodyks--Markram model. **P\0.01, CCP n5 23, TTC n5 24 (CCP: U5 0.39 ± 0.03, ASE5
3.4 ± 0.6 mV, sD 5 690 ± 90 ms; TTC: U 5 0.51 ± 0.02, ASE5 3.8 ± 0.4 mV, sD 5 620 ± 30 ms, mean ± SEM). (D) Disynaptic connection between PCs mediated by an
interneuron. First panel shows a presynaptic stimulation used to evoke the disynaptic connection (15 APs at 70 Hz). Second and third panels show a TTC disynaptic inhibitory
response with and without a direct monosynaptic connection, respectively. Fourth panel shows a CCP response, whereas another CCP was stimulated at 70 Hz. No disynaptic
connections were observed between CCPs. Membrane potentials are given at the beginning of the traces.
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This hypothesis is supported by a morphological study of the

inhibitory synapses onto the TTCs and CCPs populations

(Farinas and DeFelipe 1991) in the cat visual cortex that shows

a higher axosomatic inhibitory synapses density on the CCPs.

This population would then be less innervated distally and more

somatically than the TTCs. The differential distribution of in-

hibitory synapses between cell populations projecting to dif-

ferent target has also been shown in the monkey (Lund et al.

2001), indicating that this projection target specificity for

inhibition might not be specific to species.

Most synaptic properties, such as onset latency, kinetics,

depression, facilitation, were similar for connections between

CCPs and between TTCs. However, connections between CCPs

were weaker and had lower release probabilities, following the

same tendency of very low interconnectivity in this subpopu-

lation.

This low interconnectivity suggests a reduced integration

capacity of the CCP population as compared with the thick

tufted pyramidal network. The rather linear dynamics of

the connections between CCPs also suggests a different func-

tional role in the neocortex compared with the TTCs. The

narrower dendritic field of the CCPs further indicates that this

population mainly receives and processes information present

in the microcolumn and the neighboring layers, thus integrating

inputs from a smaller area than the TTCs. We therefore

speculate that CCPs contribute less to the processing within

the column than TTCs and perform minimal transformation of

the information processed before sending it to the opposite

hemisphere. The CCP cells therefore appear to be well suited to

act as read out neurons of the columns for the opposite

hemisphere.
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