
During the past two decades, much interest has focused on the

pathogenic role of autoreactive T-cells recognizing myelin in

both multiple sclerosis and its animal model, experimental

autoimmune encephalomyelitis (EAE). The vast majority of

data support the hypothesis that EAE and, by analogy,

multiple sclerosis are diseases mediated by autoreactive Th1

T-cells, much as rheumatoid arthritis, autoimmune diabetes,

psoriasis or in¯ammatory bowel disease. Thus, much effort

has been put into developing multiple sclerosis therapies that

eliminate more or less speci®cally autoimmune T-cells or

shift the balance from the presumed pathogenic Th1 to the

presumed bene®cial Th2 phenotype of T-cells (Noseworthy

et al., 2000). The two currently approved disease modifying

treatments, IFN-b and glatiramer acetate (GA), are thought to

exert their bene®cial effect in multiple sclerosis at least in part

by this mechanism of action.

But clinical observations mainly related to the `clinical±

radiological paradoxon' indicate that suppression of a

deviated immune response may be an inappropriately

simplistic approach: (i) multiple sclerosis in¯ammatory

lesions, as depicted with high sensitivity by contrast enhanced

magnetic resonance imaging (MRI), did not predict later

changes in impairment or disability (Kappos et al., 1999);

(ii) in primary progressive and also late secondary progres-

sive multiple sclerosis, the disease courses most closely

associated with increasing disability, less in¯ammatory

changes are observed than in relapsing±remitting disease;

and (iii) currently available immunomodulatory and immuno-

suppressive treatments of multiple sclerosis have a much

more pronounced effect on in¯ammatory activity (as shown

by serial MRI) than on clinical disease.

Recently, an increasing body of experimental evidence

supports the hypothesis of a `dual role' of the immune system

in demyelinating disease, emphasizing potentially bene®cial

effects of in¯ammation. In a series of experiments it was

elegantly shown that in models of crush injury of the optic

nerve or contusion of the spinal cord in rats, activated T-cells

speci®c for CNS antigens, e.g. basic myelin protein, but not

against non-CNS antigens, protect the injured nervous system

tissue from secondary degeneration and promote repair

(Moalem et al., 1999, 2000; Cohen and Schwartz, 1999;

Yoles et al., 2001). This neuroprotective effect of auto-

immune T-cells is at least partly mediated by the release of

neurotrophic factors (Hohlfeld et al., 2000). Activated human

T-cells but also B-cells and macrophages produce neuro-

trophic factors (Kerschensteiner et al., 1999; Besser and

Wank, 1999). Extending the ®rst observations by

Kerschensteiner et al. (1999), detailed immunohistochemical

analysis (Stadelmann et al., 2002) has shown that brain-

derived neurotrophic factor (BDNF) and its receptor trkB are

present in multiple sclerosis lesions thus suggesting a role for

this neurotrophin in multiple sclerosis.

These ®ndings would have major therapeutic implications

if it were possible to obtain T-cells which react with CNS

antigens and exert such protective effects without the

destructive potential of CNS autoimmunity. GA should be a

logical candidate for the induction of such cells, as it is non-

pathogenic, capable of inducing a protective immune

response in EAE and partially bene®cial in relapsing±

remitting multiple sclerosis.

In this issue of Brain, Ziemssen et al. (2002) provide ®rm

evidence that indeed BDNF is secreted by GAA reactive

human T-cell lines in vitro. Interestingly, the four T-cell lines

described secreted roughly equal amounts of BDNF although

they were of stable Th0, Th1, Th2 or combined Th1/Th0

phenotypes, usually known for very diverging patterns of

cytokine secretion. They hypothesize that treatment with GA

in multiple sclerosis may not only exert an anti-in¯ammatory

effect by a shift from secretion of Th1 to Th2 cytokines (Duda

et al., 2000; Neuhaus et al., 2000) but in addition mediate

neuroprotection by the secretion of BDNF.

These data are in line with earlier results from Kipnis et al.

(2000) who found high secretion of BDNF and moderate

secretion of NT3, NT4/5 and NGF in both passively

transferred and actively induced GA reactive rat T-cells that

were capable of mediating neuroprotection in an optic nerve

crush injury model.

Although encouraging, these ®ndings provide only indirect

evidence of GA-speci®c T-cell induced neuroprotection in

the human disease multiple sclerosis. It is not clear if and in

what quantities GA-speci®c T-cells reach the CNS of

multiple sclerosis patients and ifÐonce thereÐthese cells

produce suf®cient quantities of BDNF and perhaps other

neurotrophins.

Recent neuroimaging ®ndings in patients treated with GA

seem to further support an anti-degenerative role of GA in
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multiple sclerosis: in addition to a signi®cant reduction of

in¯ammatory activity (which was less pronounced than in

similar studies with interferon-b) treatment with GA also

resulted in a decrease of the proportion of new lesions that

evolved into T1 hypointense lesions, a lesion type more

indicative of tissue destruction (Filippi et al., 2001). This

®nding as well as similar observations in the long term follow

up of the original patient cohort of the pivotal GA trial

(Wolinsky et al., 2001) are still controversial and derived

from secondary (post hoc) analysis and certainly need

con®rmation in prospective studies.

More research is needed to elucidate the roles of immune

cells in neuroprotection and repair mechanisms in the CNS, if

we ultimately want to explore the Janus shape of autoimmune

myelin reactive T-cells in CNS diseases for the development

of future therapeutics.
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