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ABSTRACT Sequential decision rules based upon defining a relationship between the mean
and variance of a population and using this relationship in a confidence interval about a
sum of counts on sample units have been developed and used for sampling insect pests. The
actual error rates that arise from the use of these rules are much larger than the nominal
ones. This occurs for three reasons:The confidence interval is incorrectly used as a sequential
decision rule; it is assumed that random variables are normally distributed; and variances
are not constant. If these sequential decision rules are to be used, we suggest that actual
error rates be determined through simulation.

WHEN SAMPLINGto assess the density or intensity
(or any index of either) of a pest population it is
often not necessary to estimate a mean precisely;
rather, it is often desirable to classify it as above
or below a specified level. In such cases, sequential
hypothesis testing provides an attractive alterna-
tive to sampling schemes that employ a fixed num-
ber of observations per sample. Fixed-sample-size
methods often provide inadequate precision at low
population densities and excessive sample sizes at
high densities. With sequential procedures, sample
size is dependent on the outcome of each succes-
sive observation as it relates to the sum or average
of previous observations in a given set of samples.
When properly constructed, these procedures, on
the average, are as reliable as fixed-sample-size
procedures and require fewer observations. For this
reason, they are attractive sampling schemes when
cost and time efficiency are important.

Most applications of procedures for sequential
hypothesis testing in insect sampling have em-
ployed Wald's Sequential Probability Ratio test
(SPRT) (Wald 1947). A sequential procedure pro-
posed by Iwao (1975) is purported to overcome
some of the problems inherent to the SPRT and
has recently been applied to insect sampling (Cog-
gin and Dively 1982, Shaw et al. 1983). The basis
for each of these hypothesis-testing procedures is
quite different. Use of the SPRT necessitates that
the distribution of a sampled population can be
described by a mathematical model (e.g., Poisson,
negative binomial) with all parameters other than
the mean fixed regardless of population density.
However, population distributions often change
with changes in the density, quality, and age of a
population, as well as spatial and temporal changes
in the environment. Iwao's procedure depends on
defining a relationship between the mean (#I-) and
variance (q2) of a population:

(1)

Since such a relationship can often be found when
distributional models change in relation to the
mean (e.g., variable k of a negative binomial), the
procedure is appealing.

The properties, assumptions, and errors associ-
ated with SPRT's have been studied and are well
documented (Wald 1947, Davies 1956, On sager
1976, Fowler 1978). Comparable knowledge of
Iwao's procedures does not exist. Hence, the pur-
pose of this paper is to establish the statistical prin-
ciples upon which Iwao's procedure rests and to
indicate errors that arise through its use. It will be
shown that these errors are actually much larger
than the nominal errors established during con-
struction of the procedure. The ideas presented are
illustrated by simulating samples from populations
described by mean/variance relationships.

Basis for Iwao's Sequential
Sampling Procedure

In statistical inference there are three types of
problems, each with an element of uncertain prob-
ability associated with it: hypothesis-testing prob-
lems, multiple-decision problems, and estimation
problems. Sequential sampling is an approach to
hypothesis testing. The problem is to decide
whether a population parameter 8 belongs to either
set ~o or set ~l' More formally, two hypotheses are
constructed, the working and alternate hypotheses:

Ho:8E~o
HI:8E~1

A sample is drawn from the population and one
of three possible actions is taken: the working hy-
pothesis is accepted, the working hypothesis is re-
jected and it is assumed that the alternate hypoth-
esis is correct, or another sample is taken. To arrive
at an action, a decision function d(xl, x2, ••• , xn)

is constructed which separates an n-dimensional
sample (Xl' X2, ••• , xn) into three parts: Ao, AI' and
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This rule is applied for each sample up to a maximum of nmax
samples. Frequencies are based on 2,000 simulations for each
nmax.

Table 1. Frequency of sequentially classifying the mean
n

of n samples (xn = t1 xJn) as >5 when Xi - N(4.7, 10)

based on the following rule: 1J > 5 if :in > 5 + 1.96VIUTn:

Assumptions and Errors in
Iwao's Procedures

Suppose a is specified as aO to construct confi-
dence bounds in equation 2. It might then be as-
sumed that the probability of making a sequential
error (provided by the respective parts of the OC
and power curves) will be SaO. However, this will
never be true: Sequential errors will actually be
much larger than the specified level over some
range of the population mean. This deviation re-

For a composite hypothesis, the error probabil-
ity a is defined as P(xEA11fJ) S a for all fJE~o'For
Iwao's procedure, this probability is maximized
when p. = 'Y.To evaluate the decision rule, a more
useful criterion is the operating characteristic (OC)
defined as P(accept HoIH, is true) where H, is any
simple hypothesis; H,:p. = 'Y,. Note that the OC for
JL = 'Y = 1 - a. A further useful criterion is the
power defined as 1 - Oc. With Iwao's procedure,
the OC and power are symmetric about 'Y. When
Ho is true, the power describes the probability of
making an error, and when HI is true, the OC
describes the error probabilities.

The OC is composed of two parts: one part as-
sociated with sequential decision making (OC",,)
and one part associated with computing a sample
mean from nmax observations and basing a deci-
sion on the sample mean (OCnrn •• ). In terms of rel-
ative frequencies, OC"", and OCnm •• are computed
from the number of correct and incorrect sequen-
tial and terminal decisions divided by the total
number of decisions made. If JL < 'Y,then OC"", is
the number of correct sequential decisions divided
by the total number of decisions. When JL > 'Y,
OC ••••is the number of incorrect sequential deci-
sions divided by the total number of decisions.
OCnrn •• is similarly defined.

0.021
0.039
0.049
0.053
0,065
0.064
0.067
0.077
0.061
0.085
0.086
0.076
0.086

Frequency of error

1
3
5
7
9

11
13
15
17
19
21
23
25

nmax

A •. If a random sample x produces a point in Ao,
then Ho is accepted. If a random sample x pro-
duces a point in AI> then Ho is rejected and HI is
assumed to be correct. If a random sample x pro-
duces a point in A2' another sample is taken.

There are two types of errors associated with
such a decision function. A Type I error corre-
sponds to the probability (a) that a random sample
x is an element of AI given that fJ belongs to set
~o.A Type II error corresponds to the probability
({3)that a random sample x is an element of Ao
given that fJ belongs to the set ~l' For a given sam-
ple size, the value of a can be decreased only by
shifting sample points from AI to Ao and this will
increase {3.Hence, there is no partition of the sam-
ple space that will simultaneously minimize a and
{3.This may not, however, impose a handicap on
a decision function since in many cases it is not
necessary to minimize both a and (3. This is be-
cause it may be more important not to make one
of the errors in the context of the decision to be
made.

Iwao' s decision function depends first on de-
scribing a mean/variance relationship as in equa-
tion 1. The working and alternate hypotheses are
then formulated as follows:

Ho:p. < 'Y
HI:p. > 'Y

A decision function is constructed by computing a
confidence interval about 'Y in terms of the total
number of organisms found in n observations.
These a-level confidence bounds are:

'Yn ± Za/2 vnJf0 (2)
The term vnJf0 is the standard deviation of the
variable ')'noThe variable Za/2 is a standard normal
deviate such that P( Iz I > Za/2) = a. Here, P( ) reads
"the probability that." An interpretation of the
confidence limits described in equation 2 is that
the sum of animals in n observations (Tn) will lie
within the confidence limits 100(1 - a) percent of
the time if the population mean is 'Y.

In Iwao's procedure, the space Ao is upper-
bounded by the lower limit of the confidence in-
terval in equation 2. The space AI is lower-bound-
ed by the upper limit of the' confidence interval
in equation 2. Sampling is discontinued whenever
Tn falls within Ao or Al and a decision is made
either to accept or reject the working hypothesis.
If Tn falls within A2, an additional sample is taken.
If all sample points fall in A2, sampling is discon ..
tinued when n reaches some maximum (nmax).
Iwao does not provide guidelines for decision mak-
ing at this point; however, two alternatives are
available. First, a mean based on nmax samples
may be computed and compared to 'Y. Because the
variance is assumed known, a maximum sample
size can be chosen for a desired level of precision,
Second, no decision may be made and sampling
may be initiated again after a short period of time.
In this paper we adopt the first rule.
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(3c)

Select xi; (xi-NB(U, k=5))

+ n
Compute Sumn = EX;

! 1
If n<nmin, take another sample ~

Apply seQu:ntia1 decision rule

*If Sum?5 + 1.96 /riiO, j.L>5, stop

t
If Sumn<S - 1.96,/riiO, j.L<5, stop

*If n<80, take another sample

- ~-Compute x and set j.L = x

Fig. 1. Iwao's sequential decision rule applied to a
population of negative binomially (NB) distributed vari-
ates where nmax = 80 and the maximum nominal error
rate is 0.05.

suIts from an incorrect application of the confi-
dence bounds in equation 2 as a sequential deci-
sion rule, from the naive assumption that Tn is
normally distributed, and because the mean/vari-
ance relationship is usually not specified such that
the variance is constant with respect to the mean,
i.e., cr == C. In this section, the details of these errors
are discussed. '

The confidence bounds in equation 2 may be
rewritten as J.Lo ± zo/.VKiiJTii by dividing by n.
Now suppose samples are to be drawn from a pop-
ulation which is normally distributed with mean J.L

and variance cr. We wish to determine whether J.L
is greater than or less than J.Lowhen uo' == u'. Note
that a constant variance has been assumed. Be-
cause of the symmetry of the normal distribution,
errors for the case J.L < /J.o and errors for the case
J.L > /J.o will be similar. It therefore suffices to dis-
cuss only one of these situations.

If J.L < J.Lo, the first probability of making an in-
correct sequential classification with the first ob-
servation (XI) is P(xi > CI), where CI = J.Lo+ Zo/'U'
When a is chosen to be 0.05, this conditional error
(conditional on the fact that J.L < J.Lo)is less than
0.025. For two samples, (XI> x.) the probability of
an incorrect classification is P(xi > CI) + P[(xi +
x2)/2> Cal Co < x, < CI] where Co = /J.o - z./.u and
ez = J.L" + zalzu/V2. The second probability is con-
ditional on Co < XI < C)' The first and second
events are mutually exclusive and the probability
of their union is the sum of their probabilities.
Note that the second term in this sum must be
greater than O. Hence, the probability of a se-
quential error when the maximum number of
samples to be taken is two is greater than when
only one sample is taken before terminating the
sampling process. The probability of a sequential
error therefore increases in an asymptotic manner
as the maximum number of samples which can be
taken increases.

Changes in the sequential error as a function of

the maximum sample size are dramatic. As an ex-
ample, let J.L= 4.7, J.Lo== 5.0, cr = 10. For nmax =

*1, P(accept HIIJ.L= 4.7) = P(ZI >C]) = 0.0202
*where ZI = (XI - J.L)/u and CI = (J.Lo+ 1.96u - J.L)/u.

For nmax = 2, P(accept H11J.L = 4.7) = P(Z, >
CI) + P[(ZI + Z.)/2 > Cal Co < Xl < Cll where Z. =

* *(x. - J.L)/u, C" = (J.Lo- 1.96u - J.L)/u, and C. == (J.L..,+
1.96u/v'2 - J.L)/u. The following manipulations
may be made on the second term:

(;3a)

(:3b)

where 1/; is the standard normal density function,

= rei 1/;(ZI)r/>(ZI - 2(;.) dZJJco

lCI

1/;(ZI) dZ]
Co

where r/> is the standard normal cumulative prob-
ability function. The integral in equation 3c must
be evaluated numerically and has the solution
0.0128. Therefore, the probability of a sequential
error is 0.0128 + 0.0202 = 0.0$30. This is much
greater than the assumed maximum nominal error
of 0.025.

Further extensions of the above analysis are im-
practical. However, a general picture of the rela-
tion between the maximum sample size and se-
quential error can be obtained through computer
simulation. For the population described above,
the' outcome of 2,000 simulated applications of the
decision rule per nmax are listed in Table 1. With
a maximum nominal sequential error rate of 0.025,
an actual error rate of 0.086 was obtained when
nmax = 25. This is almost 3.S-fold the assumed
maximum sequential error rate. ::'IIotethat the error
rates are distributed about an asymptotic limit
which is ca. 0.08,

The important fact is that the application of a
confidence bound as a sequential decision rule will
not yield an error rate equal to the confidence
level chosen when constructing the confidence in-
terval. This is because the actual error rate is a
sum of conditional probabilities which must be
greater than the assumed nominal error rate. In
order for the overall error rate of the sequential
portion of the test to be equal to some predeter-
mined level, a new z. = Zon would have to be de-
termined for each n. This' has in fact been done
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Fig. 2. Frequency of error for the sequential portion of Iwao's decision rule when the minimum number of
samples taken before applying the decision rule ranged from 1 to 20. The X, were distributed as negative binomial
variates with k = 5 and the null hypothesis was J.I. ::5 5.0. The dashed line is the conditional maximum nominal
error rate except when the population mean = 5; then the nominal error rate is 0.05. Error rates are conditional
on the sample population mean being either < or > 5.

for a number of sequential t tests (see Rushton
1950, Fowler and O'Regan 1974).

A further extension of this concept can be made
with respect to the total probability of error with
Iwao's procedure. The total probability of error is
equal to the probability of a sequential error plus
the probability of a terminal error, since these
events are again mutually exclusive. Therefore, if
a sequential test was constructed to yield an actual
error rate of 0.05 and nmax was selected so that a
terminal decision also had a maximum error rate
of 0.05 for a particular Il, the total error rate for
the test would be 0.10 for this mean. Both error
rates would change as the mean changed.

In addition to a misapplication of a confidence
interval as a sequential test, violation of the nor-
mality assumptions also contributes to increased
error rates. A fundamental theorem in statistics,
known as the Central Limit Theorem, states that
if x, are independent, identically distributed ran-
dom variables with mean Il and variance (J2, then.
for S. = ~ X,

'-1

lim P[(Sn - nll)/(Jvn < Z)] = f/J(Z) (4)

where f/J(Z) is the cumulative distribution function
for the standard normal variate Z. The term lim

.-00

and what follows reads "the limit of P( ) is <I>(Z) as
n converges to infinity." Equation 4 may be re-
written as:

lim P(S. - Za/2(Jvn < nil

This is identical to equation 2 with the added
requirement that if X is not normally distributed,
then the probability converges to 1 - a as n gets
large. If X is normally distributed, the limit is not
necessary. In practice, n equal to 20 is often suf-
ficiently large for the statement to be useful.

The important point is that when x is not nor-
mal, a decision based on a normal model should
not be made unless n is large enough to invoke
the Central Limit Theorem. Hence, some number
of samples should be taken before applying the
decision rule. Samples of insects most often have
a contagious distribution. As a result, considerable
deviations in (1 - a) may result unless the criteria
for the Central Limit Theorem are met.

The probability statement in equation 5 states
that for n large or x normally distributed, the
probability of S. falling within the bounds nil ±
Za/2(J/vn is 1 - a. Note that Za/2 .• must be re-

'*placed with Za/2 .• if a sequential test is to be used.
This is not necessary to illustrate the effect of
changes in the population variance. Suppose sam-
ples are taken from a population with a mean equal
to Il + O. One might then expect that the proba-
bility of a Type I error would be less than a/2.
However, this will only be the case provided the
variance is a constant.

As an example, let x be normally distributed
with Il = 5 and (J = 2. For a sample size of 10, the
95% confidence limits about a are 5 ± 1.96 2/VIO.
Suppose Il + 0 = 6 and (J = 4 describe the popula-
tion from which samples are to be drawn. The
probability of classifying the population mean as
less than 5 may be found by solving for Z in 3.76 ::0

6 - (z·4/VIO). The value of Z is 1.771 which
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Fig. 3. Average sample number curves for Iwao's

decision rule when the minimum number of samples
taken before applying the sequential part of the rule
was 1, 5, 10, and 20. The upper line corresponds to 20
and the lines decrease in a natural progression. The x,
were distributed as negative binomial variates with k ='
5 and the null hypothesis was /l :5 5.0. Sampling was
terminated after 80 samples were taken.

corresponds to an a of 0.0383. If the variance had
been a constant, then Z would equal 3.541 and a
would be 0.0002. The magnitude of these errors
will depend on the rate at which the variance
changes with the mean and may be confounded
by the distributional characteristics of the variates
sampled.

An Empirical Example

To illustrate the ideas presented, application of
Iwao's sequential procedure was simulated by
sampling from a population described by a nega-
tive binomial distribution with constant k. The lin-
ear relationship between mean crowding (~) and
the mean (~); ~ = a + h~ (Iwao 1968) was used to
describe the mean-to-variance relationship: 0'2 =
(a + 1)~ + (h - 1)~2. In this case, a was set to 0
and b to 1.2. The variable k was specified as ~2/
(0'" - ~) = 1/(h - 1) = 5. The working hypothesis
was that ~ < 5. Hence, we wished to determine

whether the mean of the sample population was
greater than or less than 5.

In the simulation, the decision rule was repli-
cated 500 times for each sample population mean.
These means ranged from 3.5 to 6.5. In addition,
all means were sampled using a variable minimum
number of samples (nmin) prior to initiating the
sequential decision process. As nmin increased, the
assumptions of normality were more closely met.
Simulations were replicated for minimum sample
sizes of 1, 5, 10, and 20. The variable nmax, which
is the maximum number of samples taken before
making a terminal decision, was arbitrarily set at
80. The entire decision rule is outlined in Fig. 1.
To summarize the simulation results, the following
statistics were computed: the frequency of sequen-
tial and terminal errors, the proportion of terminal
decisions, and the average sample size.

Frequencies of sequential decision errors are
presented in Fig. 2. When the population mean is
less than 5 or greater than 5 the assumed nominal
error rate is less than 0.025. When the sample pop-
ulation mean equals 5, the assumed sequential error
rate is 0.05. Obviously, significant deviations from
these rates occurred. Small improvements were
made in the error rates as nmin increased from 1
to 20. Of course, the average sample size also in-
creased (Fig. 3). Much of the remaining difference
between the nominal error rates and the actual
error rates is attributable to the incorrect use of a
confidence interval as a sequential test and a non-
constant variance. Note that the sequential error
probabilities are not symmetrical about 5. When
~ is some positive deviation from 5, these error
probabilities are less than those for the same neg-
ative deviation from 5. This is because the sample
population is positively skewed.

The frequency of terminal decisions and the
frequency of errors with these decisions are por-
trayed in Fig. 4. Here, the frequency of errors are
adjusted for the number of terminal decisions made
to portray them better. As nmin increased, the
percentage of decisions that were terminal deci-
sions increased slightly. Error rates for the termi-
nal decisions are not affected by nmin since they
result from a fixed sample size decision rule. The
variation in these curves is due to variation in the
random number generators of the simulation.
These error rates could be reduced by increasing
nmax.

Discussion

As expected from the theoretical analysis of
errors that arise when using Iwao's sequential pro-
cedure, the simulation clearly shows that the se-
quential portion of this decision rule does not op-
erate in the manner proposed by Iwao nor in the
manner assumed by those who have used the rule.
It is apparent that the procedure cannot be ac-
cepted as originally formulated since the actual
error rates deviate considerably from the assumed
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Fig. 4. Frequency of terminal decisions (upper lines) and frequency of terminal decision errors (lower line)
for Iwao's decision rule when the minimum number (nmin) of samples taken before applying the decision rule
ranges from 1 to 20. Terminal decision errors were adjusted for the number of terminal decisions made. The X,
were distributed as negative binomial variates with k = 5, the null hypothesis was /A. :5 5.0 and terminal decisions
were made if the number of samples taken exceeded 80. Values are meaningless for /A. = 5 and are not presented.

ones. This does not mean the error rates are un-
acceptable. It does indicate however, that they must
be examined for each instance in which the pro-
cedure is to be used and evaluated with respect to
the consequences of making an incorrect decision.
Such an analysis must rely on simulation. The use
of the procedure should be dictated by the costs
incurred when making a mistake, i.e., classifying
a pest population as less than an economic thresh-
old when it actually exeeds it, the costs incurred
through sampling, and the performance of this se-
quential decision rule compared with other se-
quential rules. Even in instances when the as-
sumptions of these other rules are violated, they
may perform better in terms of error and sample
size than Iwao's procedure.
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