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ON THE ELEMENTARY THEORY OF PAIRS 
OF REAL CLOSED FIELDS. II 

WALTER BAUR 

§0. Introduction. Let jg? be the first order language of field theory with an ad­
ditional one place predicate symbol. In [B2] it was shown that the elementary 
theory T of the class Si of all pairs of real closed fields, i.e., jgf-structures <AT, L>, 
K a real closed field, L a real closed subfield of K, is undecidable. 

The aim of this paper is to show that the elementary theory Ts of a nontrivial 
subclass of ^ containing many naturally occurring pairs of real closed fields is 
decidable (Theorem 3, §5). This result was announced in [B2]. An explicit axiom 
system for Ts will be given later. At this point let us just mention that any model 
of Ts is elementarily equivalent to a pair of power series fields (R0((T

A)), i?1((r
B))> 

where R0 is the field of real numbers, Rx = R0 or the field of real algebraic num­
bers, and B c A are ordered divisible abelian groups. Conversely, all these pairs 
of power series fields are models of Ts. 

Theorem 3 together with the undecidability result in [B2] answers some of the 
questions asked in Macintyre [M]. The proof of Theorem 3 uses the model theoretic 
techniques for valued fields introduced by Ax and Kochen [A-K] and Ershov [E] 
(see also [C-K]). The two main ingredients are 

(i) the completeness of the elementary theory of real closed fields with a dis­
tinguished dense proper real closed subfield (due to Robinson [R]), 

(ii) the decidability of the elementary theory of pairs of ordered divisible abelian 
groups (proved in §§1-4). 

I would like to thank Angus Macintyre for fruitful discussions concerning the 
subject. The valuation theoretic method of classifying theories of pairs of real 
closed fields is taken from [M]. 

§1. Pairs of ordered groups. By a pair of ordered groups % = (A, B} we mean 
an ordered abelian group A together with a distinguished subgroup B. Our first 
goal is the following: 

THEOREM 1. The elementary theory P of pairs of divisible ordered abelian groups 
is decidable. 

REMARKS. 1. The language of P of course is the language of ordered groups with 
an additional predicate symbol for the distinguished subgroup. 

2. The theory of pairs of ordered abelian groups (not necessarily divisible) is 
undecidable. A proof of this will be given at the end of §4. 
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670 WALTER BAUR 

From now on "group" means "divisible torsionfree abelian group". Thus a 
group is just a vector space over the rationals. 

DEFINITION. A pair of ordered groups 8( = (A, By is called simple if 
(Dl) A # 0 and B = 0, or 
(D2) A = B * 0, or 
(D3) B is dense in A and B # A. 
It is well known (and easy to prove) that for each /, 1 <, i ^ 3, the theory 

P U (Di) is complete and hence decidable. The theory P will be reduced to the 
theories P [j (Di) and a suitable theory of ordered sets with distinguished subsets. 
Since the latter theory is also decidable Theorem 1 will follow. 

We recall some notions from the theory of ordered groups. For more details 
see Fuchs [F]. A subgroup C of an ordered group A is called convex if for all 
y e C and all a e A, \a\ < \y\ implies cceC where \a\ = max{a, — a}. C is prin­
cipal, with generator y say, if C is the smallest convex subgroup containing y. If 
C is convex then the ordering of A induces an ordering of A\C making AjC into an 
ordered group. By a (convex) valuation of A we mean a function w from A onto 
an ordered set / with a maximal element oo such that (i) w(a) = oo if and only if 
a = 0, (ii) w(a + /3) > min{w(a), w(/3)}, (iii) w is convex, i.e. for all a, fie A, 
\a\ < |/3| implies w(($) < w(a). For uel put A(u) = {a e A \ w(a) > u} and for 
uel - {oo} put Ay(u) — {aeA\w(a) > u). A(u) and ^>(w) are convex sub­
groups of A. Therefore the quotient groups A^/A^u) are again ordered groups. 
If w(a) = u then a > 0 if and only if a + A^u) > 0 in A^/A^u). 

Now let 8( = (A, By be a pair of ordered groups and w: A -* I a valuation. 
For any subgroup A' <=, A and any convex subgroup C ^ A put 91 [A' = 
{A', A' fl B} and %jC = {AjC, (B + C)/Cy. Clearly both structures are pairs 
of ordered groups. Finally, for u e / - {oo} put £>(u) = (9tM(w))A4>(")-

§2. The natural valuation. Let 21 = {A, By be a pair of ordered groups and let 
/ be the set of principal convex subgroups of A. I is ordered by inverse inclusion. 
Define w: A -> I by w(a) = principal convex subgroup generated by a- w is a 
valuation of A, called the natural valuation (see [F]). All quotients /4(w)/^>(w) are 
archimedean, i.e. isomorphic (as ordered groups) to subgroups of the reals. There­
fore all quotients J?(w) are simple. 

For a e A put U(a) = {u e I \ a e A(u) + B) and let J be the smallest ordering 
extending / such that sup U(a) exists in / for all a e A. Put s(a) = sup U(a). For 
us J - I define A(u) and /l>(w) in the same way as for uel. Then J2(W) = 0 for 
u i I. Finally put 

L(u) = ( D (M»') + B))l(A{u) +B) (ue J). 
u'<u 

(L(u) = 0 if u = min J.) Note that L(u) =£ 0 for u e J - I. L(u) is just a group 
without ordering. 

Now we are ready to associate with % an ordering ^(21) with distinguished sub­
sets as follows 

^(91) = </; < , / , 5, /»!, P2, P3y 
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ELEMENTARY THEORY OF PAIRS OF REAL CLOSED FIELDS 671 

where J, < , / a re defined as above and S = {u e J\L(u) # 0} and P{ = {uel\ £(u) 
is simple of type (Di)}. 

We will show that the elementary theory of ,^"(§0 determines the elementary 
theory of 8(. 

§3. Elementary equivalence of pairs of ordered groups. We are going to axiomatize 
the situation of the last section. For this purpose we expand the language of pairs 
of ordered groups to a language appropriate for structures of the form 3t+ = <8(, 
w, ̂ "(Sl)> by adding predicate symbols for w, J, I, S and the P,. Let P+ be the theory 
(in the expanded language) with axioms expressing: 

Al 2( is a pair of ordered groups; 
A2 (i) J is an ordered set (disjoint from 20 with largest element oo; 
(ii) / - {oo} = Pi U Pz U -P3 (disjoint union); 
(iii) J = / U S; 
(iv) Vs e S[3u e J(u < s) &VueJ(u < s -• 3u' e P2 U P3(u < u' < s))]; 
A3 (i) w is a convex valuation of A onto / ; 
(ii) Vw e I(u e P{ <-• 2.(11) is simple of type (Di)) (i = 1, 2, 3); 

(iii) V w e 7 ( « e S « L(w) ^ 0); 
(iv) Va e A(s(a) = sup J/(a) exists in J). 
REMARKS. 1. The quotient structures g(u), L(u) and the set U(a) in A3 are defined 

with respect to the now arbitrary valuation w just as they were defined before with 
respect to the natural valuation. It should be clear that A3 is indeed an elementary 
statement. 

2. A2(iv) is a consequence of the remaining axioms. 
By the construction described in the last section any pair §( of ordered groups 

has an expansion 8(+ to a model of P+. Therefore Theorem 1 follows from 
THEOREM 2. P+ is decidable. 
We need the following lemma which will be proved in the next section. 
LEMMA \.Let%= <2l, w, $">, 8t' = <3f w', ST'y be models of P+. If ST and 

S" are elementarily equivalent then 2t and W are elementarily equivalent. 
Let i? 5 be the language of ordered sets with five distinguished subsets. 
COROLLARY TO LEMMA 1. For any model f =<2(, w, ST} of P+ the set P+ (J 

T h ^ ^ " ) is a complete axiom system for Th(8T). 
LEMMA 2. Let 3~ be a countable Substructure satisfying A2. Then there is a model 

S ofP+ of the form S = <«, w, ST}. 
PROOF. Let $" = </; <, I, S, Ph P2, P3> and let C = r „e// Cu be the lexico­

graphic product over the ordered index set / ' = / — {00} where C„ = R for all 
u e / ' . Let A0 be the subgroup of C of all elements of finite support and put 

B = (c«i + • • • + cu„e 4)1» e N> «i 6 p2 U ^3 . cu. e Cut, cu. e Q if w,- e P3}. 

For each M e S choose aueC such that sup{w(a„ - /3) | j3 e S} = u $ {w(au — /3)| 
j3efi} where w is the natural valuation of C. Finally put A = A0 + S«es 2«« 
and 8( = {A, B}. Clearly 8( = <2(, w , $~} is the required model. 

PROOF OF THEOREM 2. Since P+ is r.e. it suffices to show that P+ is co-r.e. Using 
compactness and Lowenheim-Skolem it follows from Lemma 2 and the Corollary 
to Lemma 1 that an arbitrary sentence <p in the language of P+ is satisfiable in 
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672 WALTER BAUR 

some model of P+ if and only if there exists an i f 5-sentence <jj consistent with A2 
such that P+ \— cj) -» <p. Therefore Theorem 2 follows from the fact that the if 5-
theory of ordered sets with five distinguished subsets is decidable (see [L-L]). 

§4. Proof of Lemma 1. Let 2T, 8t' be K0-s
aturated models of P+ satisfying the 

hypothesis of Lemma 1. We show that 2T, St' are partially isomorphic and hence 
elementarily equivalent. 

Let 0> be the set of all pairs </, A> such that: 
(1) there exist finite-dimensional subspaces A0, A'0 of A, A' such that / is an 

isomorphism from %\AQ = (A0, 2?0> onto W{A'0 = (A'0, B'0y; 
(2) h is a partial elementary map from ^" into ff" (i.e. ff~ \= <p(u) o &~' |= <p(h(u)) 

for all formulas p(x) and all u from dom(A)) with finite domain containing w(A0) U 

(3) for all a£A0: 
(i) hw(a) = w'f(a), 

(ii) hs(a) = s'fia), 
(iii) s(a) e U(a) o s'f(a) e £/'(/(«)), 
(iv) if s(a) e U{a) then w(a - B) = s(a) for some |3 e £„; 
(4) for all u s dom(h): the partial map /„ from 2.{u) into g'(h(u)) induced by / 

is elementary. (Note that/„ is well defined by (3)(i).) 
Since <0, {<oo, oo'>}> is a member of 3P, SP is nonempty and it remains to prove 

the extension property. So let </, h} e 0> and n&A (J / — (dom(/) U dom(h)). 
(The case n' e A' (J J' — (im(/) U im(h)) is symmetric.) If n e / then, by (2) and 
No-saturation, there exists ri e / ' such that hi «= h \J {<w, «'>} is elementary. Using 
A3(i), (ii) and completeness of the theories P (J (£>/), 1 < / < 3, it follows that 
</, Ai> satisfies (4), hence </, Z^) e 0>. Now let n = a.\ e ^4. Put /*! = A0 + Qai, 
B1 = A1f\B. 

Case \.BX± B0. 
Choose B s Bx — B0 such that u = w(B) is maximal. 
Case 1.1. w(B — cc0) < u for all a0

 e ho­
using K0-saturation, n r s t choose «' e / ' such that h = h [} {<«, w'>} is elemen­

tary. (If u e dom(/i) then A = h of course.) Then choose B' sB' fl ^ '(" ') such that 
/« U {<£ + ^>(w), B' + A>(u')}} is elementary. (If u $ dom(h) then fu denotes 
the O-map J2(M) -» J2'(H').) Define / : Ax ->• ^ ' by / s / and f(B) = B'. It is easily 
checked that </, h} e ^». Since we will prove the analogous statement in the next 
case the proof is left to the reader. 

Case 1.2. w(B — OCQ) > u for some a0
 e M-

Choose a0
 e ^o such that v = w(B — «o) IS maximal. Note that v < s(ao) £ U(ao), 

because otherwise w(Bi) > u for some /3i e B± — BQ, by (3)(iv) (take Bi = B — BQ 
where /30 e BQ such that w(ao — B0) = s(ao)). Using «0-saturation choose v' e / ' 
such that h = h \J {<v, v ' » is elementary. Again using N0-saturation choose 
B' e B' n ^'("') such that/„ U {<(^ - «o) + ^>(v). i3' + ><>(v')>} js elementary. 
Finally choose ^" e fi such that w'(^" - f(a0)) > v' and define / : Ax -+ /*' by 
/ c / , /(jQ) = /3' + /3". Choice of ^" is possible since s(a0) ^ ^(a0). Now we show 
that </, h) e ^>. 

(3)(i): Let a2 = qB - a e Au a e A0, q e g . If 9 = 0 then (3)(i) holds 
by hypothesis. Therefore assume q ^ 0. Since w(a2) ^ v and w(^ - a0) = v 
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ELEMENTARY THEORY OF PAIRS OF REAL CLOSED FIELDS 673 

by the choice of v and a0 we obtain w(a2) = w(q(B - a0) + (qcc0 - a)) = 
min{v, w(qa0 - a)}. On the other hand 

W'(f(a2)) = w'(q(B" -f(ao)) + qB' +f(qa0 - a)) 

= min{v\ w'(f(qa0-a))} 

by the choice of B' and because w'(B" — f(ao)) > v'. Therefore hw(a2) = w'f(a2) 
and hence (3)(i). Next note that if a e A and B e B then U(a + B) = U{a) and 
s(a + B) = s(a). This implies the remaining parts of (3) because Ax is generated 
over A0 by some element from B. (1), (2) and (4) are immediate consequences of 
(3) and the construction. 

Case 2. B^ = B0. 
Put u = m&\{s(a)\ae Ax - A0}. 
Case 2.1. There exists aeAi — A0 such that s(a) = we U(a). By extending 

</, hy according to Case 1 we may assume that 
(a) w(a - Bo) = u for some B0 e B0, 
(b) Va0 e AQ f] (B + A>(u)) 3B0 e B0 w(a0 - B0) > u. 

Replacing a by a — jQ0 as in (a) we may assume w(a) = u. Choose u' e / ' and 
a' e A'(u') such that the two maps h = h [) {<«, «'>} and /„ U {<« + ^>(«), 
a' + A>(u')}} are elementary. Define/by/£ /and/ (a) = a'. 

Caw 2.2. Not Case 2.1. 
Choose aeAx — A0 such that s(a) = u. Choose B e B such that 
(a) Va0 e /40 w(a - a0) < w(« — j3) = v, 
(b) Vw0 e dom(A) (v < uQ -* u ^ M0). 

Again by extending </, /»> according to Case 1 we may assume B e A0 (and (b) 
still holds). Replacing a by a — B we may assume w(a) = v. Using K0-

saturation 
choose u\ v' e J' and B'eB' fl ^'(v') such that h = h (J {< v, v'>, <w, u'}} and 
/» U K« + ^>(v), B' + A>(v')y] are elementary. Finally choose y' e /4>(v') such 
that 7"' e PIKV G4>(0 + 5') and f $ A'0 + A'(u') + B. This is possible because 
«' e S'. Now define/by/ s / , / («) = B' + f-

The verification of (l)-(4) for </, A) in Cases 2.1 and 2.2 is left to the reader. 
We close this section by proving Remark 2 after Theorem 1. Put C = ©,etuC, 

where each C, is an ordered cyclic group with generator c,-. As a subgroup of the 
lexicographic product P = [ ,e<u C, = n,-e<B C„ C is an ordered group. For any 
subset A" £ co define ax e P by a^(j) = c, if i e A' and ax(/) = 0 otherwise. Let 5" 
be an infinite set of pairwise disjoint infinite subsets of w and let / t, . . . , Ik E y be 
pairwise disjoint. Letp be a prime number and let D be the subgroup of P generated 
by the elements p'ax, where Xelj,\<j<,k. Finally let B be an arbitrary sub­
group of D and put A = C + D and 21 = <-d, By. It is easy to see that 

( ()(A(i) + p>A))/p»A * 0 {ZfpiZ)W 

where /t, = card //. Furthermore the quotient group on the left-hand side is 
definable in S( by means of 

aef] (A(i) + p*A) oVa'eA - {0} 3c e/>M(|a - c\ < \a'\). 
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674 WALTER BAUR 

Therefore, for any given pair <G, H> of countable abelian groups such that 
pkG - 0 we can find / j , . . . , Ik e. S? and B as above such that <(7, H> is definable 
in 2(. By [Bl] this implies undecidability of the theory of pairs of ordered abelian 
groups. 

§5. Separated pairs of real closed fields. 
DEFINITION. A pair of valued real closed fields is a structure JT = (K, L, A, B, v> 

such that (K, L}e@ = class of all pairs of real closed fields, v is a valuation of K 
(now of course in the sense of field theory) with value group A and B = v(Lx). The 
residue class fields of K, L are denoted by Kv, L„, or simply by K, h if there is no 
danger of confusion. X denotes the pair of fields (K, L>. If v is given by its valua­
tion ring V we also write Kv for Kv. As in the case of ordered groups v is called 
convex if for all a, a' e K, \a\ < \a'\ implies v(a') <. v(a), i.e. if the valuation ring 
associated to v is a convex subset of K. 0p is the class of all pairs X of valued real 
closed fields such that v is convex. 

REMARKS. 1. The groups A, B occurring in jf" are divisible: If a e K, 0 < a, then 
nv(aVn) = v(a). Therefore (A, B} is a pair of ordered divisible groups. 

2. If v is convex then Xeg?. 
3. Let {A, B} be an arbitrary pair of ordered divisible groups and <.K0, Rty e Si. 

Then j f = <RQ((TA)\ R^T*)), A, B,vye@+ where Ro((TA)) is the field of formal 
power series with coefficients in RQ and exponents in A, and v is the natural valua­
tion (see e.g. [P]). Also Jf^( R0, R{>. 

DEFINITION. Let <p(x) be the if-formula 

VXM < y < 2 \x\ -> 3z e Uy < z < y + 1)), 

and for (K, L) e<% let VQ be the set of all a e K satisfying <p(x). 
LEMMA 3. V0 is the largest convex valuation ring of K such that LVo is dense in KVo. 
PROOF. First we show 
(1) if ai £ V0 and 0 < a2 < 2a1 then a2 e V0. Let c2 < y <, 2a2. Since ax e V0 

there exists zxe.L such that ax < z1 < at + 1 and since ax < ax + y/4 <, 2a± 
there exists z2eL such that ax + y/4 < z2 < ax + y/4 + 1. Combining the 
inequations involving zh z2 we obtain y < 4(z2 — zx + 1) < y + 8 and hence y < 
4(z2 — zx + 1) + q < y + 1 for some qeQ. Since z = 4(z2 — zx + 1) + qeL 
it follows that a2 satisfies f{x), i.e. a2 e V0. 

Since a e V0 if and only if \a\ e VQ, (1) implies that V0 is a convex subgroup of the 
additive group of K. Furthermore 1 E V0. 

Let a, a' e V0. We show aa' e V0. Assuming 0 < a' < a it suffices to show a2 e V0, 
by (1). If a < 1 then a2 e V0, again by (1). If 1 < a let a2 < y <, 2a2. Then a <, V T 
<2a so there exists z jeL such that <y/T < zx< V7" + 1 hence 0 < zx — A / T < 1 . 
Since 0<z1(z1 - ^T) < zx < 2a + 1 e V0, (1) yields zx(zx- <JT) e V0. Hence 
there exists z2e L such that zi(z1 — \Z~F) < z2< zx(zx — V^) + 1 • So 

VT< zi + 1 ~Zz < VT+ — 
z i zi 

and 
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ELEMENTARY THEORY OF PAIRS OF REAL CLOSED FIELDS 675 

because 1 < */~y~ < zv Adding a suitable q e Q to the expression between the 
< -signs we find z e L such that y < z < y + 1. Hence a2 e V0. 

It follows from what we have shown so far that K0 is a convex valuation ring of 
K. In order to prove that Ly0 is dense in KVo let a, a' e V0 such that 0 < a < a' 
and a # a! modulo the maximal ideal of V0. Then (a' — a) - 1 e V0 so there exists 
ZieL such that (a' - a ) - 1 < zx < (a' — a) - 1 + 1. Now zx e K0 so azx e V0 hence 
there exists zzeL such that flzt < z2 < azx + 1, i.e. a < z2zx

l < a + zf1 < a'. 
Finally let Vx be an arbitrary convex valuation ring of K such that LVi is dense 

in KYv Let a e ^ and |a| < j < 2\a\. Then .y 6 Kx, by convexity, hence there exists 
z e L n ^i such that ^ < 2 < y + 1 where y is the residue class of y in ATKl. 
Therefore y < z < y + 1 and so a e K0. 

DEFINITION (CF. [B2]). Let JT = (K, L, A, B, v> e ^+ . A sequence <ax, . . . , a„> 
of elements from K is called (JT-) separated if for all bh . . . , b„ e L, v(£ , a,i,) = 
min,- v(a,-6,). (As usual v(0) = oo > A.) X is called separated if any finite-dimen­
sional L-vectorspace <=, K has a separated basis. 

Now we are ready to introduce the theory Ts mentioned in the introduction: 
Ts is the if-theory of all pairs (K, L}e@ such that (K, L, v0(K

x), v0(L
x), v0> is 

separated where v0 is the valuation with valuation ring V0. 
Clearly Ts is axiomatizable. For each n there is an axiom expressing separated-

ness for n-dimensional L-subspaces of K. Our main result is 
THEOREM 3. 1. Two models (K, L>, <#', Z/> of Ts are elementarily equivalent 

if and only if 
(i) LVo = KVa o LV'Q = Ky'0, and 

(ii) the associated pairs of value groups (v0(K
x), v0(L

x)> and <v0(J£'x), v0(Z.'x)> 
are elementarily equivalent as pairs of ordered groups. 

2. Any pair of power series fields (R0((T
A)), R^T11))} where {A, B} is a pair of 

ordered divisible abelian groups and R0 = field of real numbers, Rx = R0 or = field 
of real algebraic numbers is a model of Ts. Any model of Ts is elementarily equivalent 
to such a pair of power series fields. 

3. Ts is decidable. 
The proof follows the same pattern as the proof of Theorem 1. It is convenient 

to expand the language if to a language jgf+ appropriate for structures j f = 
(K, L, A, B, v> e <%+ by adjoining symbols for the valuation and the value groups. 

Let T+ be the if+-theory with axioms expressing 
(i) X = <K, L, A, B, v)e@+, 
(ii) j f is separated, 

(iii) Lv is dense in Kv. 
The crucial step in the proof of Theorem 3 is the following lemma whose proof 

is postponed to the next section. 
LEMMA 4. Let X = (K, L, A, B, v>, X" = (K', L\ A', B', v'> be models of T+ 

such that 
(i) I = K o U = K', and 

(ii) the pairs of value groups (A, B > and {A', B'} are elementarily equivalent. 
Then cf and X" are elementarily equivalent. 
An immediate consequence of Lemma 4 is 
COROLLARY 1. Any model of T+ is elementarily equivalent to a valued pair of the 
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676 WALTER BAUR 

form (R0((T
A)), R^TB)), A, B, v> where R0, Rh A, B are as in Theorem 3 and v is 

the natural valuation of R0((T
A)). Conversely any valued pair of power series fields 

of this special form is a model of T+. 
PROOF. It follows from [B2, Lemma 3] that any valued pair of power series fields 

as in the corollary is a model of T+. 
Combining Lemma 4, Corollary 1 and Theorem 1 we get 
COROLLARY 2. T+ is decidable. 
PROOF OF THEOREM 3. If <K, L} (= Ts then (K, L, v0(K

x), v0(Lx), v0> t= T+. 
Conversely, if (K,L,A,B, v> (= T+ then (K, L, v0(K

x), v0(Lx), v„> N T+ because 
V0 contains the valuation ring associated to v, by Lemma 3, and hence v0(K

x) is 
a quotient of A. So <J£, L> (= Ts. Therefore the models of Ts are precisely the 
i?-reducts of models of T+. Theorem 3 now follows from Lemma 4 and its corol­
laries. 

§6. Proof of Lemma 4. The following simple properties of separated sequences 
will be used: Let X = (K, L, A, B, v> and o = <aj, . . . , a„} be a sequence of 
elements from K. 

(51) If a is separated then any subsequence of a is separated. 
(52) If a is separated and b%, ... ,b„eL then <ai&i, . . . , a„b„} is separated. 
(53) If a is separated and a e J f then (aai, . . . , aa„> is separated. 
(54) If v{at) = 0, 1 < / < n, then a is separated if and only if glf . . . , g„ are 

linearly independent over L. 
(55) If a is separated and (an+1, . . . , am} is another separated sequence such 

that for all i, j , 1 < i < n, and n < j < m implies a,a; = 0 or v(a,) / v(a;) mod 5 
then <ax, . . . , am> is separated. 

(SI), (S2) and (S3) are immediate consequences of the definition. 
PROOF OF (S4). "Only if": Obvious. 
"If": Assume a not separated and let bx, ...,b„eL such that v(2^(a,bi) > 

min, v(a,bt). Multiplying by some b e L we may assume min,v(Z>,) = 0. Then 
HiSibi = 0 hence gh •-.,&„ are linearly dependent over L. 

PROOF OF (S5). 

v( 2 «.*.) = min(v( 2 «A)> v( 2 a A » = min v(a,-&,-). 
l<i'<m 1<|'<« «+l<i<m l<i'<m 

DEFINITION. Let jf, = <A:„ L„ ^4„ 5„ v,> e @+, i = 0, 1, X~0 a substructure of 
jfx, i.e. .K0 c /Tj, v0 = V^KQ, L0 = K0 f\ Lh B0 = A0 f] Bv JT0 is called an 
admissible substructure of X~\ if K0

 a n d L\ are linearly disjoint over L0. (In partic­
ular A'O n i\ = to-) 

LEMMA 5. Let JTQ, %~\ N= ^ + , J^o a w admissible substructure of cf\. 
(i) ^«^ X ^-separated sequence (ah . . . , a„> /row A'o « jf' ̂ -separated. 
(ii) AQ a / J^ ^ i a , - e linearly disjoint over L0. 
(i) is proved by induction on n. The cases n = 1 or o„ = 0 are trivial. Assume 

wlog that for some k, 1 < k < n, v(a„) = v(a,) mod 5 j if and only if / < k. Since 
B0 = ^ 0 f| 5 j there exist bh . . . , fe^j e L0 such that v(a„) = v(a,-6,), 1 ^ / < k. 
By (SI), (S2) the sequence <o1ft1, . . . , a ^ i ^ j , a„> is j f0- s ePa r a t ed- Therefore, 
by (S3), a = <fl161/a„, . . . , ak^lbi-ija„, 1> is j>fVseParated. a satisfies the hypothe­
sis of (S4). Using linear disjointness it follows from (S4) that «7 is .^-separated. 
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Again using (S3), (S2) we conclude that <a1; . . . , ak_h a„> is .^-separated. Ap­
plying the induction hypothesis to <aA, . . . , a„_{) we obtain, by (S5), that 
<aj . . . , a„} is jfyseparated. 

(ii) Let ah ..., a„ e K0 be linearly independent over L0. Since jf0 1= T+ the 
Lo-space 2], L^a, has a jT0-seParated basis (a[, ..., a'„}. By (i) this sequence is 
jfi-separated and hence linearly independent over Lv Therefore alt . . . , a„ are 
linearly independent over Lx. 

LEMMA 6. Let (K, A, v>, (K', A', v'> be valued real closed fields, v, v' convex. 
Let f: K -> K' and F : A -> A' be isomorphisms such that for some subfield L of 
ofK, v(Lx) = A and v'f\L = Fv\L. Then v'f = Fv. 

PROOF. Put vi = Fv, v2 = v'f. Both vx and v2 are convex valuations of K and 
VjlX* = v2|X*. Assume vx(a) < v2(a) for some aeK. Choose b&L such that 
vx(a) < Vi(6) = v2(b) < v2(a). Then \b\ < \a\ < \b\ by convexity, contradiction. 

LEMMA 7. Let (K, A, v>, <#' , A', v'> fee unsaturated valued real closed fields, 
v, v' convex. Let K0 E Ax E Kbe countable real closed subfields and letf0 : K0 -• K', 
g : Kx -* K', F : v(K?) -* A' be isomorphic embeddings such that v'f0 = Fv\K0 

andg\K0 =f0 where f0 is the induced map K0 -* K'. Then there exists an isomorphic 
embeddingfx: Kx -* K' extending f0 such that v'fi = Fv\Ki andg = fx. 

This is a very special case of the main step in the usual model theoretic proofs 
of the Ax-Kochen-Ershov theorem on henselian fields (see e.g. [A], or [C-K, p. 
271ff]). Details are left to the reader. 

PROOF OF LEMMA 4. Let jf, X" be Nx-saturated models of T+ satisfying the 
hypothesis of Lemma 4. We show that they are partially isomorphic. Let / be the 
set of all pairs </, F> such that: 

(i) </, F> is an isomorphism from a countable admissible substructure X0 |= T+ 

of j f onto an admissible substructure cf'0 of X" ; 
(ii) F is a partial elementary map from </L B} to (A1, B'}; 

(iii) the induced partial map/from X to X" is elementary. 
REMARK. It follows from Robinson's proof [R] that (i) implies (iii). We will not 

use this fact. 
7 ^ 0 : Let K0 (K'0 resp.) be the algebraic closure of Q in K (in K' resp.) and let 

f:K0-> KQ be the unique isomorphism. Clearly </, 0> € I. 
I has the extension property: Let </0, F0> e I be an isomorphism from X 0 onto 

X'0 and assume ax e K — K0. (The case a[e K' — KQ is symmetric.) 
Choose a countable elementary substructure X\ = <^i, Lx, Ax, Bh v\Kx} of X 

such that K0 (J {ax} c Kx. Obviously X\ \= T+ is admissible. First choose an 
extension F : Ax -> A' of F0 such that Fis elementary as a partial map from {A, B} 
to (A', B"). Next choose an extension g : Kx -* K' of f0 such that g is elementary 
as a partial map from X to X". Now apply Lemma 7 to get an extension f : Lx -* 
L' of/ofL0 such that Fv\Lx = v'/i and / i = g[Xi. Put LJ = im(yi). 

By Lemma 5, KQ and Lx (KQ and L\ resp.) are linearly disjoint over L0 (over LQ 
resp.). Therefore f extends to a field isomorphism f2 : AoLj -> #oLi s u c r i that 
72^0 =/o-

C/fl/wi. (a) v/2 = FVIKQL-L (and v((/sr0L1)
x) = ^ 0 + B{), 

(b)f2 = g\K0Lh 

(c)/2 is order preserving. 
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678 WALTER BAUR 

(a) Since K0Li is the quotient field of the set of all elements of the form 

(2) a = 2 «A-> a, e K0, b( e L1( 
i<><» 

it suffices to prove v'/2(a) = Fv(a) for elements a of this form. Furthermore, since 
jf0 is separated, we may assume that the sequence <a1; . . . , a„> is j f 0-separated 
and hence .^-separated, by admissibility. Since / 0 is an isomorphism the sequence 
</0(ai), ...,f0(a„)} is jfo-seParated, hence jf'-separated. Therefore 

v(a) = minv(a,6,) e A0 + B1 

and 

v'(/2(a)) = vXL/oCa,)/^,)) = min(v/0(fl,) + v'ftf,)) 

= min(Fv(a,) + Fv{b,)) = F^fl). 

(b) Since / 2 coincides with g on AQ and Lx it suffices to show that K0Li £ K0LV 

Let c e K0LX, v(c) = 0- Write c = a/a' where a, a' are of the form (2). By (a) there 
exist a0 e K0, b0 e Lx such that v(a0b0) = v(a) = v(o'). Dividing both a, a' by a0ft0 

we may assume v(a) = v(a') = 0 and a, a' are still of the form (2). Now it suffices 
to show that a e A"0£i (and similarly a' e KQLJ. AS above write a = Lis><« a A 
where <a1? . . . , a„> is jf-separated, a, e K0, bt e Lx. Dropping the summands apj 
with v(ajbj) > 0 we may assume v(atb,) = 0 for all /. Then v(a,) = — v(bt) e A0 f| 
5 j = 5 0 so there exist 6 -eL 0 such that v{a,b',) = 0. Writing a = ZXaXX^A-1) 
we conclude a = L f a A X M ' t 1 ) e A"o£a-

(c) Let 0 < a e J^QLJ. By (a) v(A 0̂L1) is divisible, hence there exists c e K^LX such 
that v{ac2) = 0. Then 0 < ac2 and so 0 < ac2. Since g is order preserving we obtain 
0 < g(ac2) = f2(qc2), by (b), hence 0 < f2(ac2) and finally 0 < f2(a). The claim is 
proved. 

From (c) it follows that / 2 extends to an embedding / 3 of the relative algebraic 
closure M of K0LX into K'. M is just a real closure of KQL^ By Lemma 6 v'/3 = 
Fv I'M, and / 3 = g I'M because M is a real closure of K0Li and therefore the exten­
sion of g \KQLi to M is unique. By Lemma 7/3 extends to an embedding/: Kx -» K' 
such t h a t / = g and v'f = Fv. Put K{ = /(A^i). In order to show < / F> e / i t remains 
to prove 

(d) K[ 0 L' = Li, 
(e) jTi = jf'f/ifi is an admissible substructure of jf'. 
(d) Assume there exists a e Kx — Lx such that f(a) e L'. Since jf\ \= T+ the 

Lrvectorspace Lx + Lxa has a jf>separated basis <o1? a2>. Since/(aj),/(a2) e L' 
we have v{a{), v(a2) e 5X hence there exist bx, b2 e L\ such that y(fl\b^ = v{a2b2) = 0. 
(a^x, a2b2} is jTi-separated and so wlog axbx $ Lx = Kx f] L ((S2), (S4)). There­
fore / ( a^ i ) = g(fli^i) $ U contradicting /(fli^i) e L'. 

(e) follows from the fact that jf"i is admissible and g is partial elementary. 
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