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ON THE ELEMENTARY THEORY OF PAIRS
OF REAL CLOSED FIELDS. II

WALTER BAUR

§0. Introduction. Let . be the first order language of field theory with an ad-
ditional one place predicate symbol. In [B2] it was shown that the elementary
theory T of the class £ of all pairs of real closed fields, i.e., ¥-structures (K, L),
K a real closed field, L a real closed subfield of K, is undecidable.

The aim of this paper is to show that the elementary theory T, of a nontrivial
subclass of # containing many naturally occurring pairs of real closed fields is
decidable (Theorem 3, §5). This result was announced in [B2]. An explicit axiom
system for T, will be given later. At this point let us just mention that any model
of T is elementarily equivalent to a pair of power series fields {(Ry((74)), Ry((TB))>
where R, is the field of real numbers, R; = Ry or the field of real algebraic num-
bers, and B = A are ordered divisible abelian groups. Conversely, all these pairs
of power series fields are models of T,

Theorem 3 together with the undecidability result in [B2} answers some of the
questions asked in Macintyre [M]. The proof of Theorem 3 uses the model theoretic
techniques for valued fields introduced by Ax and Kochen [A-K] and Ershov [E}
(see also [C-K]). The two main ingredients are

(i) the completeness of the elementary theory of real closed fields with a dis-
tinguished dense proper real closed subfield (due to Robinson [R]),

(ii) the decidability of the elementary theory of pairs of ordered divisible abelian
groups (proved in §§1-4).

I would like to thank Angus Macintyre for fruitful discussions concerning the
subject. The valuation theoretic method of classifying theories of pairs of real
closed fields is taken from [M].

§1. Pairs of ordered groups. By a pair of ordered groups A = {4, B) we mean
an ordered abelian group A together with a distinguished subgroup B. Our first
goal is the following:

THEOREM 1. The elementary theory P of pairs of divisible ordered abelian groups
is decidable.

REMARKS. 1. The language of P of course is the language of ordered groups with
an additional predicate symbol for the distinguished subgroup.

2. The theory of pairs of ordered abelian groups (not necessarily divisible) is
undecidable. A proof of this will be given at the end of §4.

" Received July 17, 1980.
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670 WALTER BAUR

From now on ‘‘group” means ‘‘divisible torsionfree abelian group”. Thus a
group is just a vector space over the rationals.

DEFINITION. A pair of ordered groups % = {4, B) is called simple if

(D) A #0and B =0, or

(D2) A =B #0,0r

(D3) Bisdensein 4 and B # A.

It is well known (and easy to prove) that for each i, 1 < i < 3, the theory
P |J (Di) is complete and hence decidable. The theory P will be reduced to the
theories P | (Di) and a suitable theory of ordered sets with distinguished subsets.
Since the latter theory is also decidable Theorem 1 will follow.

We recall some notions from the theory of ordered groups. For more details
see Fuchs [F]. A subgroup C of an ordered group A is called convex if for all
reCand all a4, |a|] < |y|implies a € C where |a| = max{a, — a}. C is prin-
cipal, with generator 7 say, if C is the smallest convex subgroup containing 7. If
C is convex then the ordering of A4 induces an ordering of 4/C making 4/C into an
ordered group. By a (convex) valuation of 4 we mean a function w from A4 onto
an ordered set 7 with a maximal element oo such that (i) w(a) = oo if and only if
a =0, (i) wle + f) = min{w(a), w(B)}, (iii) w is convex, i.e. for all o, fe 4,
lal < |8l implies w(B) < w(a). For uel put A(u) = {ac A|w(a) > u} and for
uel — {o} put A-(u) = {a € A|w(a) > u}. A(u) and A.(u) are convex sub-
groups of A. Therefore the quotient groups A4(u)/4-(u) are again ordered groups.
If w(a) = uthen @ > Oif and only if @ + A-(¥) > 0in A(u)/A-(1).

Now let % = (A4, B> be a pair of ordered groups and w: 4 —» I a valuation.
For any subgroup A’ € A and any convex subgroup Cc A4 put 1 A’ =
{A’, A" N B) and Y/C = {(A/C, (B + C)/C>. Clearly both structures are pairs
of ordered groups. Finally, for u e I — {co} put 2(x) = (A Au))/A-(w).

§2. The natural valuation. Let 9 = {4, B) be a pair of ordered groups and let
I be the set of principal convex subgroups of 4. I is ordered by inverse inclusion.
Define w: A - I by w(a) = principal convex subgroup generated by a. w is a
valuation of A4, called the natural valuation (see [F]). All quotients A(u)/A-(u) are
archimedean, i.e. isomorphic (as ordered groups) to subgroups of the reals. There-
fore all quotients 2(u) are simple.

For ae Aput U(e) = {uel|ac A(u) + B} and let J be the smallest ordering
extending 7 such that sup U(a) exists in J for all @ € 4. Put s(a) = sup U(«a). For
ueJ — I define A(u) and A-(u) in the same way as for u € I. Then 2(u) = 0 for
u ¢ 1. Finally put

L(u) = ( Q (A>w) + B)/(A) + B)  (uel).

(L(t) = 0 if u = min J.) Note that L(u) # 0 for ueJ — I L(u) is just a group
without ordering.

Now we are ready to associate with 9 an ordering 7 (%) with distinguished sub-
sets as follows

.7(91)=<J, <9I’S9P17P2vP3>
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ELEMENTARY THEORY OF PAIRS OF REAL CLOSED FIELDS 671

where J, <, I are defined as above and S = {u € J|L(x) # 0} and P; = {u e I|2(u)
is simple of type (Di)}.

We will show that the elementary theory of () determines the elementary
theory of 9.

§3. Elementary equivalence of pairs of ordered groups. We are going to axiomatize
the situation of the last section. For this purpose we expand the language of pairs
of ordered groups to a language appropriate for structures of the form 9%+ = (¥,
w, 7()) by adding predicate symbols for w, J, Z, S and the P;. Let P+ be the theory
(in the expanded language) with axioms expressing:

Al ¥ is a pair of ordered groups;

A2 (i) J is an ordered set (disjoint from ) with largest element oo;

(i) 7 ~ {0} = Py U P; |J P; (disjoint union);

Gi) J=1{ S;

(v) VseS[queJu < s)&VueJlu <s— Ju' e P, | P3(u < v < s));

A3 (i) wis a convex valuation of 4 onto /;

(ii) VYu e I(u € P; — 2(u) is simple of type (Di)) (i = 1, 2, 3);

(iii) YueJue S < L(u) # 0);

(iv) Va e A(s(a) = sup U(a) exists in J).

REMARKS. 1. The quotient structures 2(u), L(¢) and the set U(a) in A3 are defined
with respect to the now arbitrary valuation w just as they were defined before with
respect to the natural valuation. It should be clear that A3 is indeed an elementary
statement,

2. A2(iv) is a consequence of the remaining axioms.

By the construction described in the last section any pair % of ordered groups
has an expansion %* to a model of P+. Therefore Theorem 1 follows from

THEOREM 2. P+ is decidable.

We need the following lemma which will be proved in the next section.

LEMMA 1. Let A = (U, w, T, A =W w', ') be models of P*. If T and
T’ are elementarily equivalent then W and ' are elementarily equivalent.

Let %5 be the language of ordered sets with five distinguished subsets.

COROLLARY TO LEMMA 1. For any model A ={N, w, 9 of P* the set P+ |J
Th (7)) is a complete axiom system for Th(¥).

LEMMA 2. Let 7 be a countable ¥s-structure satisfying A2. Then there is a model
A of Pt of the form ¥ = (U, w, 7).

ProoF. Let 7 = {J; <, I, S, Py, Py, P3) and let C = [ ,;» C, be the lexico-
graphic product over the ordered index set I' = I — {co} where C, = R for all
uel'. Let A, be the subgroup of C of all elements of finite support and put

B={c, + - +c, e€AylneN uePyJ P3c,.eC,,c,eQif u;ePs}.

For each u € S choose a, € C such that sup{w(a, — B)|f € B} = u ¢ {w(a, — PI
B € B} where w is the natural valuation of C. Finally put 4 = 4y + X5 Qa,
and % = (4, B). Clearly % = (¥, w, 7 is the required model.

PROOF oF THEOREM 2. Since P+ is r.e. it suffices to show that P+ is co-r.e. Using
compactness and Léwenheim-Skolem it follows from Lemma 2 and the Corollary
to Lemma 1 that an arbitrary sentence ¢ in the language of P+ is satisfiable in
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672 WALTER BAUR

some model of P+ if and only if there exists an #5-sentence ¢ consistent with A2
such that P* |- ¢ — ¢. Therefore Theorem 2 follows from the fact that the %-
theory of ordered sets with five distinguished subsets is decidable (see [L-L]).

§4. Proof of Lemma 1. Let 9, %’ be 8j-saturated models of P+ satisfying the
hypothesis of Lemma 1. We show that 9, 9’ are partially isomorphic and hence
elementarily equivalent.

Let 2 be the set of all pairs (f, £) such that:

(1) there exist finite-dimensional subspaces 4, A4y of A4, A’ such that f is an
isomorphism from %A 4, = {4y, By> onto A'TAq = (A, By;

(2) his a partial elementary map from 7 into 7' (i.e. 7 = p(u) <> 7' = p(h(u))
for all formulas ¢(x) and all u from dom(#)) with finite domain containing w(4,) U
s(Ao);

(3) for all ¢ € Ay:

(@) hw(a) = w'fla),

(i) hs() = s'f(a),

(i) s(a) € Ule) <> 5" fla) € U'(f(a)),

(iv) if s(a) € U(a) then w(aw — B) = s(a) for some § € By;

(4) for all u € dom(h): the partial map f, from 2(u) into 2'(h(u)) induced by f
is elementary. (Note that £, is well defined by (3)(i).)

Since €0, {0, 00>}) is a member of 2, 2 is nonempty and it remains to prove
the extension property. So let{f, h> e 2 and ne 4 |J J — (dom(f) U dom(h)).
(The case n' € A’ |J J' — (im(f) U im(h)) is symmetric.) If n € J then, by (2) and
Ng-saturation, there exists n’ € J' such that by = h J {<n, n’)} is elementary. Using
A3(i), (ii) and completeness of the theories P |J (Di), 1 < i < 3, it follows that
{f, ) satisfies (4), hence {f, h)> e . Now let n = a; € A. Put 4; = Ay + Qay,
Bl = Al ﬂ B.

Case 1. Bl # Bo.

Choose € B; — By such that ¥ = w(f) is maximal.

Case 1.1. w(8 — ap) < ufor all ap € 4.

Using §¢-saturation, first choose u’ € J' such that & = A J {Cu, u')} is elemen-
tary. (If u € dom(k) then & = h of course.) Then choose 8’ € B’ (1 A’(«’) such that
fi U {KB + 45(w), ' + AL())} is elementary. (If u ¢ dom(h) then f, denotes
the O-map 2(u) » 2'(v').) Define f : 4; - A’ by f = f and f(8) = B Itis easily
checked that {f, &) € 2. Since we will prove the analogous statement in the next
case the proof is left to the reader.

Case 1.2. w(B8 — ap) > u for some a; € A.

Choose ag € Ay such that v = w(B — ap) is maximal. Note that v < s(ap) ¢ U(ay),
because otherwise w(8;) > u for some §; € B, — By, by (3)(iv) (take 5; = 8 —
where 8, € By such that w(ay — By) = s(ap)). Using No-saturation choose v' € J’
such that & = h |J {{v, v')} is elementary. Again using R,-saturation choose
g e B’ () A'(v) such that £, U {{(8 — ag) + A>(v), §' + AS(v'))} is elementary.
Finally choose 8" B such that w'(8" — flag)) > v’ and define f: 4, — A4’ by
fe /. /() =g + B Choice of 8" is possible since s(ap) ¢ U(ap). Now we show
that (f, k) € 2.

(3)(@): Let az =gf —ac Ay, acdy g€ Q. If g =0 then (3)(i) holds
by hypothesis. Therefore assume g # 0. Since w(az) < v and w(B — ap) = v
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ELEMENTARY THEORY OF PAIRS OF REAL CLOSED FIELDS 673

by the choice of v and &, we obtain w(az) = w(g(8 — ap) + (gap —~ a)) =
min{v, w(gay — a)}. On the other hand

w'(f(a))

w(g(8" — flag)) + g8 + flgap — @)
= min{v’, w'(f(qay— a))}

by the choice of 8’ and because w'(8” — f(ap)) > v'. Therefore hw(ay) = w'f(az)
and hence (3)(i). Next note that if o € 4 and g€ B then U(a + ) = U(a) and
s(a + B) = s(a). This implies the remaining parts of (3) because 4, is generated
over Ay by some element from B. (1), (2) and (4) are immediate consequences of
(3) and the construction.

Case 2. Bl = Bo.

Put u = max{s(a)|a € 4] — A}.

Case 2.1. There exists e € A; — A, such that s(a) = u € U(a). By extending
{f, h) according to Case 1 we may assume that

(@) w(ae — o) = u for some Sy € By,

(b) Vay € 4y N (B + A-(u)) 3By € By wlag — Bo) > u.
Replacing « by a — §y as in (a) we may assume w(a) = ». Choose #’' ¢ J' and
o' € A'(w’) such that the two maps A = h |J {<u, u")} and f, U {Ka + 4>(u),
o + AL(u))} are elementary. Define f by f < fand f(a) = o'.

Case 2.2. Not Case 2.1.

Choose a € Ay — A4, such that s(e) = u. Choose 8 € B such that

(@) Vage 4y wla — ag) < w(a — f) = v,

(b) Vuge dom(h) (v < uy — u < ug).
Again by extending (f, 4 according to Case 1 we may assume S € 4, (and (b)
still holds). Replacing a by a — § we may assume w(a) = v. Using 8q-saturation
choose ', v €J’ and f'e B' [ A'(v') such that A = h U {{ v, v'), <u, u')} and
f, U {Ka + 45(v), B’ + AL(v))} are elementary. Finally choose 7’ € AL(v") such
that ¢’ € (\cw (45(1) + B') and ¢’ ¢ 4y + A'(w’) + B. This is possible because
weS. Nowdefinefbyfsf,f(e) =8 +7.

The verification of (1)-(4) for {f, k) in Cases 2.1 and 2.2 is left to the reader.

We close this section by proving Remark 2 after Theorem 1. Put C = @®,.,C;
where each C, is an ordered cyclic group with generator ¢;. As a subgroup of the
lexicographic product P = [ ;., C; = II,., C;, C is an ordered group. For any
subset X c w define ay € P by ax(i) = c;if i € X and ax(i) = 0 otherwise. Let &
be an infinite set of pairwise disjoint infinite subsets of w and let I, ..., I, € & be
pairwise disjoint. Let p be a prime number and let D be the subgroup of P generated
by the elements piay, where X € I;, 1 < j < k. Finally let B be an arbitrary sub-
groupof Dand put 4 = C + Dand A = {4, B). It is easy to see that

(nu6 P Ipta = D (ZIpZ)

where #; = card I;. Furthermore the quotient group on the left-hand side is
definable in ¥ by means of

ae ﬂ (A@) + p*4) <> Va' e A — {0} Ac e p*A(la — ¢| < |a')).

t€w
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674 WALTER BAUR

Therefore, for any given pair (G, H) of countable abelian groups such that
PG = Owecanfind I, ..., I, = & and B as above such that (G, H) is definable
in Y. By [B1] this implies undecidability of the theory of pairs of ordered abelian
groups.

§5. Separated pairs of real closed flelds.

DEFINITION. A pair of valued real closed fields is a structure )¢ = (KX, L, 4, B, v)
such that (K, L) e # = class of all pairs of real closed fields, v is a valuation of K
(now of course in the sense of field theory) with value group 4 and B = v(L*). The
residue class fields of K, L are denoted by K,, L,, or simply by K, L if there is no
danger of confusion. " denotes the pair of fields (X, L). If v is given by its valua-
tion ring ¥ we also write Ky, for K,. As in the case of ordered groups v is called
convex if for all a, @’ € K, |a| < |a'] implies v(a’) < v(a), i.e. if the valuation ring
associated to v is a convex subset of K. #* is the class of all pairs J¢" of valued real
closed fields such that v is convex.

REeMARKS. 1. The groups A, B occurring in ¢ are divisible: If a € K, 0 < a, then
nv(al/?) = y(a). Therefore {A, B) is a pair of ordered divisible groups.

2. If v is convex then /" € &.

3. Let (A4, B) be an arbitrary pair of ordered divisible groups and (R, R;) € #.
Then o7 = {Ry((T4)), Ry((T®)), A, B, v) e s+ where Ry((T4)) is the field of formal
power series with coefficients in Ry and exponents in 4, and v is the natural valua-
tion (see e.g. [P]). Also o' < Ry, Ry).

DEFINITION. Let ¢(x) be the #-formula

V(x| <y <2x|->Fzel(y<z<y+ 1),

and for (K, L) € # let ¥ be the set of all a € K satisfying ¢(x).

LEMMA 3. V,, is the largest convex valuation ring of K such that Ly is dense in Ky, .

Proor. First we show

(1) if a;e Vogand 0 < a, < 2a;, then a, € V. Let a; < y < 2a,. Since a; € V)
there exists z; € Lsuch that a; < z; < a; +1 and sincea; < a; + y/4 < 2q;
there exists zy € L such that a; + y/4 < z; < a; + y/4 + 1. Combining the
inequations involving z;, z, we obtain y < 4(z, — z; + 1) < y + 8 and hence y <
4zg—z1+ 1) +g<y+ 1for some ge Q. Since z =4(z; —z;+ 1) + qe L
it follows that a, satisfies ¢(x), i.e. a, € V.

Since a € V, if and only if |a| € ¥y, (1) implies that Vj is a convex subgroup of the
additive group of K. Furthermore 1 € V.

Leta,a’ € Vy. Weshow aa’ € V. Assuming 0 < @’ < a it suffices to show a2 € V,
by (1).Ifa < 1 thena2 e V, againby (1). If 1 <aleta®? < y < 242 Thena< /7
<2aso thereexists zye Lsuchthat /7 < z;<4/7 + lhence0 < z; — /V <1.
Since 0<zi(z; — V/V) < 21 < 2a + 1€ Vy, (1) yields zy(z;— 4/ V) € V. Hence
there exists zo € L such that z;(z; — v/ V) <z < z4(zy — /7)) + 1. So

JT<n+i=% o gy L
2 21
and

1

— 2 v
y<(21+4722—><y+2‘/y !

2 +?f7<y+3>
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because 1 < 4/7 < z;. Adding a suitable g € Q to the expression between the
<-signs we find ze Lsuch that y < z < y + 1. Hence a2 e V),

It follows from what we have shown so far that Vj is a convex valuation ring of
K. In order to prove that Ly is dense in Ky, let a, a’e Vysuchthat 0 <a < a’
and @ # @’ modulo the maximal ideal of V. Then (a’ — a)~! € V; so there exists
zy€ L such that(a’ — @)1 < z; < (@’ — a)™! + 1. Now z; € V; so az; € V;; hence
there exists z; e L such that az; < z; < az; + [, ie.a < zyzil < a + zyl < d'.

Finally let V; be an arbitrary convex valuation ring of K such that L is dense
in Ky,. Letae V,and |a| < y < 2|a|. Then y € V', by convexity, hence there exists
zeL | Vy such that y < z < y + 1 where y is the residue class of y in K,
Therefore y < z < y + 1 and so ae ¥,

DEFINITION (CF. [B2]). Let #* = (K, L, A4, B, v> € #*. A sequence {a,, ..., a,>
of elements from K is called (o¢"-) separated if for all b;, ..., b,e L, v(X3; ab,) =
min, v(a;b;).(As usual »(0) = o0 > A.) ¢ is called separated if any finite-dimen-
sional L-vectorspace < K has a separated basis.

Now we are ready to introduce the theory T, mentioned in the introduction:
T, is the #-theory of all pairs (K, L) € & such that (K, L, vo(K*), vo(L*), vo) is
separated where v, is the valuation with valuation ring V.

Clearly T, is axiomatizable. For each n there is an axiom expressing separated-
ness for n-dimensional L-subspaces of K. Our main result is

THEOREM 3. 1. Two models (K, L), {(K', L) of T, are elementarily equivalent
if and only if

() Ly, = Ky, < Ly; = Ky and

(ii) the associated pairs of value groups {vy(K*), vo(L*}> and {vo(K'*), vo(L'¥)>
are elementarily equivalent as pairs of ordered groups.

2. Any pair of power series fields {Ry((T4)), R\((TB))) where {A, B) is a pair of
ordered divisible abelian groups and R, = field of real numbers, Ry = Ry or = field
of real algebraic numbers is a model of T,. Any model of T is elementarily equivalent
to such a pair of power series fields.

3. T, is decidable.

The proof follows the same pattern as the proof of Theorem 1. It is convenient
to expand the language % to a language ¥+ appropriate for structures ¢~ =
{K, L, A, B, v) € #* by adjoining symbols for the valuation and the value groups.

Let T be the #*-theory with axioms expressing

(Do =<K, L, A, B, v>eZ,

(ii) o is separated,

(iii) L, is dense in K.

The crucial step in the proof of Theorem 3 is the following lemma whose proof
is postponed to the next section.

Lemma 4. Let " = (K, L, A, B, vD>, 4" = (K', L', A', B', v') be models of T+
such that

OWL=K<L =K,and

(ii) the pairs of value groups (A, B> and {A’', B’) are elementarily equivalent.

Then X" and X" are elementarily equivalent.

An immediate consequence of Lemma 4 is

COROLLARY 1. Any model of T+ is elementarily equivalent to a valued pair of the
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Jorm {Ry((T4)), Ry((TB)), A, B, v) where Ry, Ry, A, B are as in Theorem 3 and v is
the natural valuation of Ry((T4)). Conversely any valued pair of power series fields
of this special form is a model of T+.

ProoF. It follows from [B2, Lemma 3] that any valued pair of power series fields
as in the corollary is a model of T'+.

Combining Lemma 4, Corollary 1 and Theorem 1 we get

COROLLARY 2. T is decidable.

PROOF OF THEOREM 3. If (K, L) = T, then (K, L, vo(K*), vo(L*), vo) k= T*.
Conversely, if (K, L, A, B, v) = T+ then (K, L, vo(K*), vo(L"), vyp = T because
V, contains the valuation ring associated to v, by Lemma 3, and hence vy(K*) is
a quotient of 4. So (K, L) = T,. Therefore the models of T, are precisely the
-reducts of models of T+. Theorem 3 now follows from Lemma 4 and its corol-
laries.

§6. Proof of Lemma 4. The following simple properties of separated sequences
will be used: Let ;" = (K, L, 4, B, v> and ¢ = {a,, ..., a,) be a sequence of
elements from K.

(S1) If ¢ is separated then any subsequence of ¢ is separated.

(S2) If ¢ is separated and by, ..., b, e L then {aiby, ..., a,d,) is separated.

(S3) If ¢ is separated and a € K then {aa, ..., aa,) is separated.

(S4) If v(g;) =0, 1 <i < n, then ¢ is separated if and only if a,, ..., g, are
linearly independent over L.

(S5) If ¢ is separated and <a,ys, - .., a,y is another separated sequence such
thatforalli,j,1 <i < n,and n < j < mimplies a,a; = 0 or v(a,;) # v(a;) mod B
then <ay, ..., a,) is separated.

(S1), (S82) and (83) are immediate consequences of the definition.

PRrOOF OF (S4). ““Only if”’: Obvious.

“If’: Assume ¢ not separated and let b;, ..., b, e L such that v(};,ab;) >
min, v(a;b;). Multiplying by some be L we may assume min,v(b,) = 0. Then
Y.ab;, = 0hence ay, ..., a, are linearly dependent over L.

PROOF OF (S5).

v( 2 ab) =min(v( X ab), v( ) ab)) = min v(ab).
1<i<m 1<i<n n+1<i<m 1<i<m

DErFINITION. Let o7, = (K, L;, A;, B, vi>e@t, i =0, 1, oy a substructure of
Ay, le. Ky Ky, vg=wnIKy Ly= Ky Ly, By = Ay ) By. oy is called an
admissible substructure of ¢, if Ky and L, are linearly disjoint over L,. (In partic-
ular Ky N Ly = Ly.)

LEMMA 5. Let 'y, A" = T+, 2"y an admissible substructure of A",.

(i) Any A y-separated sequence {a,, .. ., a,> from K, is A 1-separated.

(ii) Ky and L, are linearly disjoint over L.

(i) is proved by induction on n. The cases n = 1 or a, = 0 are trivial. Assume
wlog that for some k, 1 < k < n, v(a,) = v(a;) mod B, if and only if i < k. Since
By = A, [ B, there exist by, ..., b,_; € Ly such that v(a,) = v(a;h;),1 < i < k.
By (S1), (S2) the sequence {ayby, ..., a,_1bs_1, a,) is A y-separated. Therefore,
by (83), 0 = <Laiby/a,, ..., ay_1b,_i/a,, 1) is A y-separated. ¢ satisfies the hypothe-
sis of (S4). Using linear disjointness it follows from (S4) that ¢ is J¢"-separated.
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Again using (S3), (S2) we conclude that {a, ..., a,_1, a,) is K -separated. Ap-
plying the induction hypothesis to {a,, ..., @, ;> we obtain, by (S5), that
{ay ...,a,) is A "-separated.

(ii) Let ay, ..., a,€ K, be linearly independent over L;. Since ¢y = T the
Ly-space }3; Loa; has a ) y-separated basis {aj, ..., a,>. By (i) this sequence is
X y-separated and hence linearly independent over L,. Therefore ay, ..., g, are
linearly independent over L,.

LEMMA 6. Let (K, A, v), {K’, A’, v') be valued real closed fields, v, v' convex.
Let f: K— K’ and F: A~ A’ be isomorphisms such that for some subfield L of
of K, (LX) = A and v'f[L = Fy{L. Then v'f = Fv.

ProoF. Put v; = Fv, v, = v'f. Both v; and v, are convex valuations of K and
viIL* = vl L*. Assume vy(a) < vy(a) for some ae K. Choose be L such that
vi(@) < vi(b) = vy(b) < vy(@). Then |b] < la| < |b| by convexity, contradiction.

LEMMA 7. Let (K, A, v), (K', A’, v') be Ry-saturated valued real closed fields,
v, v' convex. Let Ky = K; © K be countable real closed subfields and let f : Ky — K,
g:Ki—- K', F:v(K])—> A be isomorphic embeddings such that v'fy = Fv}K,
and g| Ko = fo where fyis the induced map Ky — K'. Then there exists an isomorphic
embedding f: Ky — K' extending f, such that v'f, = Fv|K,and g = f.

This is a very special case of the main step in the usual model theoretic proofs
of the Ax-Kochen-Ershov theorem on henselian fields (see e.g. [A], or [C-K, p.
271ff]). Details are left to the reader.

PROOF OF LEMMA 4. Let ", &~ be R8;-saturated models of T+ satisfying the
hypothesis of Lemma 4. We show that they are partially isomorphic. Let 7 be the
set of all pairs {f, F) such that:

(i) {, F) is an isomorphism from a countable admissible substructure ¥y = T+
of ¢ onto an admissible substructure J¢" of ¢~ ;

(ii) F is a partial elementary map from (A4, B) to {(4’, B');

(iii) the induced partial map ffrom 2" to /¢ is elementary.

REMARK. It follows from Robinson’s proof [R] that (i) implies (iii). We will not
use this fact.

I # @: Let Ky (K, resp.) be the algebraic closure of Q in K (in K’ resp.) and let
f: Ky — K be the unique isomorphism. Clearly {f, 0> € I.

I has the extension property: Let {f;, Fy> € I be an isomorphism from ¢y onto
A pand assume g, € K — K. (The case a, € K’ — K is symmetric.)

Choose a countable elementary substructure 4", = (K, L;, A;, By, v/ K> of o7
such that K, U {a;} = K;. Obviously o) = T+ is admissible. First choose an
extension F : A; — A’ of F; such that Fis elementary as a partial map from {4, B)
to {A’, B"). Next choose an extension g : K, — K’ of f; such that g is elementary
as a partial map from " to . Now apply Lemma 7 to get an extension f; : L, —
L’ of fyl Ly such that Fy!L; = v'f; and f; = glL,. Put L; = im(f)).

By Lemma 5, K, and L, (K, and L] resp.) are linearly disjoint over L, (over L
resp.). Therefore f; extends to a field isomorphism f; : KoL, — KgL; such that
L2 Ky = fo

Claim. (a) v'f; = Fv!KyL, (and v((KoL))*) = Ay + By),

(b) f2 = gl KoLy,

(c) /> is order preserving.
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678 WALTER BAUR
(a) Since KL, is the quotient field of the set of all elements of the form

(2) a= Z (l,-b,-, a; € K, b,- €Ly,

1<i<n

it suffices to prove v'f)(a) = Fv(a) for elements a of this form. Furthermore, since
Ao is separated, we may assume that the sequence {a,, ..., a,) is X y-separated
and hence J7"-separated, by admissibility. Since f; is an isomorphism the sequence
{fa), .. ., fa,)) is A g-separated, hence s¢”'-separated. Therefore

v(a) = minv(ab,) e 4y + B,
and

V(@) = V(L fadfib)) = min(vfi(a) + v/fi(5))

min(Fv(a;) + Fv(b,)) = Fv(a).

(b) Since f; coincides with g on Kand L, it suffices to show that KoL, = KoL;.
Let ¢ € KyLy, v(c) = 0. Write ¢ = a/a’ where a, a’ are of the form (2). By (a) there
exist ag € Ky, by € L, such that v(aghy) = v(a) = v(a'). Dividing both a, &’ by azb,
we may assume v(a) = v(a’) = 0 and a, a’ are still of the form (2). Now it suffices
to show that @ € KL, (and similarly a’ € KyL;). As above writtea = 3},<;<, a;b;
where {ay, ..., a,) is A -separated, a; € K, b; € L,. Dropping the summands a;b;
with v(a;b;) > 0 we may assume v(a,;b;) = O for all i. Then v(a;) = —v(b;) € 49 N
B; = Byso there exist b; € Ly such that v(ab)) = 0. Writing a = Y(a,b})(b,b;7)
we conclude @ = X(ab)(b;b;71) € KyL,.

(c) Let 0 < a e KyL,. By (a) v(K,L,)is divisible, hence there exists ¢ € KyL; such
that v(ac?) = 0. Then 0 < ac?and so 0 < ac?. Since g is order preserving we obtain
0 < g(ac®) = fy(ac?), by (b), hence 0 < fac?) and finally O < fy(a). The claim is
proved.

From (c) it follows that f, extends to an embedding f; of the relative algebraic
closure M of KL, into K’. M is just a real closure of K,L;. By Lemma 6 v'f; =
FvIM, and f; = gl M because M is a real closure of KL, and therefore the exten-
sion of g KoL, to M is unique. By Lemma 7 f; extends to an embedding f : K; — K’
such that f = gand v'f = Fv. Put K| = f(K},). In order to show {f, F) € I it remains
to prove

@K nL =L,

(e) o'y = o[ Ky is an admissible substructure of .

(d) Assume there exists ae K; — L, such that f(a) e L'. Since " = T+ the
L,-vectorspace L, + L;a has a j#";-separated basis {a;, a,). Since f(a,), f(ay) € L’
we have v(a,), v(a;) € B hence there exist b,, b, € L, such that v(a;b;) = v(azb,) = 0.
{aby, azby) is A i-separated and so wlog a;b; ¢ Ly = K () L ((S2), (S4)). There-
fore f(a;b;) = g(a;b1) ¢ L’ contradicting flab) e L.

(e) follows from the fact that »¢"; is admissible and g is partial elementary.
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