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Structure and reactivity of small arteries in aging
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Abstract

Objective: Increased pulse pressure has been observed in aging subjects, but the impact on the structure and reactivity of small
arteries has been scarcely evaluated. Methods: This study presents the modifications of vascular structure and function observed in
female rats of 5, 18 and 32 months of age, and their relation to the prevailing hemodynamic status. Geometry and reactivity of perfused
and pressurized basilar and mesenteric small arteries were analyzed in vitro using a video dimension analyzer. Results: Mean arterial
pressure was similar in the three age groups, and only pulse pressure was increased in the oldest group. Media thickness and cross
sectional area increased in basilar and mesenteric arteries of the oldest rats and these structural abnormalities were positively related to
pulse pressure but not to mean, systolic or diastolic arterial pressure. Only minor changes of vascular reactivity were noted with age: there
was a decreased contraction to angiotensin II in mesenteric arteries and an enhanced contraction to endothelin-1 in the basilar arteries.
Conclusion: In conclusion, aging is associated with increased pulse pressure and hypertrophy of basilar and mesenteric resistance
arteries, suggesting that this hemodynamic variable may influence cerebral and peripheral vascular structure in aging. q 1998 Elsevier
Science B.V.
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1. Introduction

With age, the vascular wall of large peripheral vessels
undergoes structural changes that may contribute to the

w xage-related increase in systolic arterial pressure 1 . These
include increased stiffness, thickening of the media and

w xenlargement of the lumen diameter 2 . Few studies have
directed their attention at the structure of small arteries in

w xthe context of advanced physiological aging 3 . By differ-
ent means of investigation, an increased wall thickness has

w xbeen reported in the hindquarter of normotensive rats 4 ,
w xsmall muscular and ear arteries of rabbits 5 and small

arteries from several human vascular beds studied post-
w xmortem 6,7 . In contrast, one study reported an atrophy of

cerebral arterioles associated with a decreased distensibil-
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w xity of the vessel wall in aged rats 8 . However, in most
studies, the structural alterations have not been related to
the hemodynamic status prevailing in aging.

Similar to vascular structure, reports on vascular reac-
tivity of small arteries in the context of aging are also
scarce and none are available for the female sex. Indeed,

w xmost of the studies were performed in large arteries 3 and
it is known that resistance vessels differs in several impor-
tant aspects, most probably due to their different function
w x9 . Even in conduit arteries, regional differences have
been noted. Indeed, in a recent study, the release of nitric

Ž .oxide NO was reduced with age in the rat aorta, but not
w xin pulmonary circulation 10 . Since hemodynamic or vas-

cular structural changes present in aging may alter reactiv-
ity of resistance arteries, it will be evaluated in relation to
the structural and hemodynamic conditions prevailing.

Since pulsatile stretch has been shown to increase vas-
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w xcular smooth muscle cell proliferation 11 , it is of particu-
lar interest to determine if long term increased pulse
pressure can have an impact on the structure of smaller
resistance vessels. In addition, pulse pressure has been

Žassociated with an increased cross-sectional area CSA, an
.index of vascular wall hypertrophy of pial arterioles in the

w xcontext of hypertension 12 , but it is not known if this can
happen independently of changes in mean arterial pressure.

Ž .In this study, we examined the effect of aging 18 months
Ž .and advanced aging 32 months , characterized by a selec-

tive increase in pulse pressure, on vascular remodeling and
reactivity of the rat basilar and small mesenteric arteries,
as directly assessed in perfused and pressurized in vitro
conditions.

2. Materials and methods

Rats of the RORO strain were purchased from Biologi-
Ž .cal Research Laboratories Fullinsdorf, Switzerland at 5¨

Ž . Ž . Ž . Žadult , 18 old and 32 very old months of age ns7
.per age group; female sex . These rats, originally of the

Wistar strain, were outbred for twenty years in Hoffmann-
La Roche laboratories. Their life expectancy is approxi-

Žmately 36 months. The rats were anesthetized thiopental,
.50 mgrkg, intra peritoneal and a short polyethylene

Ž .catheter internal diameter: 0.58 mm was inserted in the
left femoral artery and connected to a pressure transducer
Ž .Letica PRI 256r2, Letica SrA, Hospitalet, Spain to
allow for the determination of systolic, diastolic arterial
pressure and heart rate. During the anesthesia, the average
of a 15 min recording was used to calculate mean and
pulse pressure. All these procedures were approved by the
Commission for Animal Research of the canton of Bern,
and conform with the Guide for the care and use of
laboratory animals of the NIH.

The animals were then decapitated and the basilar artery
as well as a segment of a fourth branch of the mesenteric

Ž .arterial bed closest segment to the ileum were isolated
under a dissecting microscope in cold Krebs solution of

Ž .the following composition in mmolrl; control solution :
NaCl 118.6, KCl 4.7, CaCl 2.5, KH PO 1.2, MgSO2 2 4 4

1.2, NaHCO 25.1, edetate calcium disodium 0.026, glu-3

cose 10.1. The arteries were then inserted and sutured on
two small glass cannula positioned in a vessel chamber
Ž .Living Systems Instrumentation, Burlington, VT, USA
and superfused with control solution maintained at 378C

Ž .and oxygenated 95% O , 5% CO . The vessel perfusion2 2

chamber was positioned on the stage of an inverted micro-
Ž .scope Nikon, TSM-F and the amplified image was trans-

mitted, by a video camera, to a monitor and a video
Ž .dimension analyzer V91, Living Systems Instrumentation ,

allowing for the measurements of lumen diameter and wall
thickness. With this technique it is possible to distinguish

between the adventitia and the media, and the latter was
used for calculations and comparisons. Longitudinal stretch
was controlled by adjusting the vessel length to a value
slightly superior to the one required to produce a small

w xbending of the vessel 13 .
The mesenteric arteries were allowed to equilibrate for

60 min with a perfusion of control solution containing 1%
bovine serum albumin at a constant and optimal perfusion

w xpressure of 30 mmHg 14 and their resting lumen diame-
ter and media thickness were recorded. The basilar arteries
were equilibrated for 60 min in a calcium free control
solution to prevent myogenic tone. The perfusion pressure
was then increased from 25 to 55 mmHg in 10 mmHg
steps and the efferent pressure was adjusted to maintain a
constant flow. In basilar arteries, the vascular structure was
determined at each of the four pressure steps in maximally

Žrelaxed conditions confirmed by the inefficacy of pa-
.paverine to further relax the artery .

In the functional experiments, all drugs were applied
extraluminally and each section of the protocol was pre-
ceded by a washout period of 45 min. In the mesenteric

Ž .artery, the following protocol was performed: 1 a single
Ž y7 . Ž .dose of angiotensin II Ang II, 10 molrl , 2 a concen-

Ž y9tration–response curve to norepinephrine NE, 10 –3=
y5 . Ž .10 molrl , 3 a concentration–response curve to

Ž y9 y5 .acetylcholine Ach, 10 –10 molrl after a 40% pre-
Ž .contraction of the vessel with norepinphrine, 4 similar

Ž y10 y6experiment with sodium nitroprusside SNP, 10 –10
. Ž .molrl and 5 a concentration–response curve to endothe-
Ž y11 y8 .lin-1 ET-1, 10 –10 molrl . In the basilar artery,

Ž y11 y8only a concentration–response curve to ET-1 10 –10
.molrl was studied since contractions to serotonin were

very weak.
All the drugs were obtained from Sigma Chemicals

Ž .Buchs, Switzerland , except for ET-1 which was obtained
Žfrom Calbiochem-Novabiochem Laufelfingen, Switzer-¨

.land . The CSA and the growth index were calculated
w x Žaccording to the formulas previously described 15,16 see

.legend of Table 2 . Since CSA does not change with
changes in pressure, a mean of the values obtained at four

Ž .different pressures see above was calculated for the
Ž .basilar artery Fig. 2 . The distensibility of the basilar

artery is expressed as mm changes per mmHg of pressure
increase and represents the slope of the pressure–lumen
diameter curve. Contractions are expressed as the percent-
age of decrease in lumen diameter from the baseline
diameter. Relaxations are expressed as the percentage of
increase in lumen diameter from the extent of precontrac-
tion. For each individual concentration–response curve,
the maximum response and the half maximum effective

Ž .concentration expressed as negative logarithm, pD were2

calculated by non-linear regression. Values are expressed
as mean"S.E.M, except for correlation analysis which
show the actual data. Statistical evaluation was done by
one-way ANOVA with Bonferroni’s correction for multi-

w x Žple comparisons 17 or by one sample analysis growth
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Table 1
Characteristics of the adult, old and very old rats studied

Ž . Ž . Ž .Adult 5 months Old 18 months Very old 32 months

Number of rats 7 7 7
) )Ž .Body weight g 222"5 316"5 294"4

Ž .Mean arterial pressure mmHg 86"5 103"8 88"6
)Ž .Pulse pressure mmHg 21"1 21"1 25"1

Ž .Heart rate beatrmin 311"12 330"11 303"11

Arterial pressure and heart rate were measured in anesthetized conditions.) P -0.05 as compared to 5 months old rats.

Table 2
Morphological characteristics of basilar and small mesenteric arteries in adult, old and very old rats

Ž . Ž . Ž .Adult 5 months Old 18 months Very old 32 months

( )Basilar artery 35 mmHg
Ž .Lumen diameter mm 302"5 316"14 316"14

aŽ .Media thickness mm 24.8"1.0 29.5"2.5 35.6"1.7
aŽ .MediarLumen ratio % 8.2"0.3 9.6"1.1 11.4"0.8

b bŽ .Growth index % from control - 24.1"8.7 54.2"9.7
Mesenteric artery

Ž .Lumen diameter mm 233"9 271"8 279"21
aŽ .Media thickness mm 16.4"1.0 17.1"1.3 20.2"0.6

Ž .MediarLumen ratio % 7.0"0.3 6.4"0.5 7.5"0.6
bŽ .Growth index % from control - 19.3"10.4 46.3"12.3

For the basilar artery, the data is presented only at 35 mmHg of perfusion pressure. Similar results and statistics were obtained at other pressures. The
Ž . Ž .growth index is calculated as a ratio of the difference between the treatment cross-sectional area CSAt, Fig 2 and the control CSA CSA over CSAcc

Ž . a Ž . bCSA -CSA rCSA . Thus, the control group has a growth index of zero. P -0.05 as compared to 5 months old rats ANOVA . The 95% Confidencet c c

interval does not include 0.

.index . Pearson’s correlation coefficients were calculated
by linear regression. P-0.05 was considered significant.

3. Results

3.1. Animals

Ž .Body weight was higher in old 18 months and very
Ž . Ž .old 32 months rats than in adult animals Table 1 .

Probably due to their very old age, the 32 months old rats
were lighter than 18 months old animals and seemed to

Ž .have reduced general activity subjective observation .
Mean arterial pressure tended to be higher in rats of 18

Ž .months of age Table 1 , as did systolic and diastolic
Ž .arterial pressures n.s., data not shown . Pulse pressure was

significantly enhanced only in very old rats and was
Ž .similar in the 5 and 18 months old groups Table 1 . Heart

rate was not different among the groups.

3.2. Vascular structure

Aging had no influence on the lumen diameter of the
basilar or small mesenteric arteries, although there was a
tendency for mesenteric arteries to have a larger lumen

Ž .with age Table 2 . Different perfusion pressures applied to
the basilar arteries gave similar increments in the lumen

Ždiameter for adult, old and very old rats, respectively Fig.

.1 . Indeed, the slope of the relationship between perfusion
pressure and lumen diameter was very similar among the

Ž .groups Fig. 1, inset . The media thickness and media CSA
were significantly increased in both vascular beds of very
old rats, but the mediarlumen ratio was augmented only in

Ž .the basilar artery Fig. 2A, Table 2 . Indeed, in the mesen-

Fig. 1. Change of lumen diameter as a function of in vitro perfusion
Ž . Ž .pressure in basilar arteries from 5 months I , 18 months G and 32

Ž . Ž .months B old rats. Please note that the curves from old 18 months
Ž .and very old rats 32 months are superimposed. The inset represents the

Ž .slope mmrmmHg obtained from the linear regression of the curves
shown in the graphic. The order of the bars is the same as the symbol
description above. There was no statistical difference between the three
groups.
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. Ž .Fig. 2. A Cross-sectional area CSA of the basilar and small mesenteric
Ž . Ž . Žarteries of adult 5 months, I , old 18 months, G and very old 32

. Ž .months, B female rats ns7rgroup . The CSA was calculated with the
media thickness and not with the total wall thickness. ) P -0.05 as

.compared to 5 months old rats. B Relationship between the mean CSA
Ž . Ž .of the basilar artery and in vivo pulse pressure of 5 ` , 18 ( and 32

Ž .v months old rats. Similar results were obtained in the mesenteric
arteries.

teric artery, the increase in lumen diameter prevented the
mediarlumen ratio to be different in very old as compared
to adult rats. The growth index was significant in both 18
and 32 months old groups for the mesenteric artery, but
only in the very old group for the basilar artery.

There were positive correlations between pulse pressure
Ž .and CSA rs0.55, p-0.05, Fig. 2B or media thickness

Ž .rs0.53, p-0.05 in basilar arteries. Similar findings
Žwere obtained in mesenteric arteries rs0.47 and rs0.55

Ž . Ž .Fig. 3. Maximal relaxation A and sensitivity B of preconstricted
Ž .mesenteric arteries stimulated with acetylcholine Ach and sodium nitro-

Ž . Ž . Ž .prusside SNP in adult 5 months, I , old 18 months, G and very old
Ž . Ž .32 months, B female rats ns7rgroup .

.respectively, p-0.05 . However, pulse pressure was not
Žcorrelated with mediarlumen ratio basilar: rs0.45, ps
.0.05; mesenteric: rs0.36, ps0.12 . Structural parame-

ters were not related to any other hemodynamic variable
such as mean, systolic or diastolic arterial pressure.

3.3. Vascular reactiÕity

Maximal endothelium-dependent relaxations to Ach and
endothelium-independent relaxations to SNP of mesenteric
arteries were not significantly different among the groups,
but a similar tendency for reduced relaxations with aging

Ž .were noted with both agents Fig. 3 . In terms of sensitiv-
ity, the concentration–response curve to SNP was shifted

Table 3
Reactivity of small mesenteric arteries to vasoconstrictors in adult, old and very old rats

Ž . Ž . Ž .Adult 5 months Old 18 months Very old 32 months
y7 )Ž .Angiotensin II 10 M 67.6"4.5 53.8"5.3 50.5"5.8

Norepinephrine Max 85.1"2.2 80.2"5.8 85.9"1.5
pD 6.02"0.08 6.19"0.10 6.23"0.142

Endothelin-1 Max 84.1"0.9 83.0"3.2 84.5"2.1
pD 9.29"0.07 9.12"0.09 9.13"0.042

Max.: Maximum contraction; pD : negative log of the concentration producing half of the maximal contraction. Both were calculated for each animal2

using non linear regression and the mean"s.e.m. is presented for each group. Due to tachyphylaxis, only one dose of angiotensin II was applied to the
) Ž .vessels. P -0.05 as compared to 5 months old rats ANOVA .
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Ž .Fig. 4. Concentration-response curves to endothelin-1 ET-1 of basilar
Ž . Ž . Žarteries in adult 5 months, ` , old 18 months, ( and very old 32

. Ž . )months, v female rats ns7rgroup . The maximum contraction in
the very old group is significantly different from the 5 months old rats.

Ž . Ž .to the right less sensitive only in the old rats Fig. 3 and
Ž .relaxations to Ach followed a similar pattern n.s. .

In mesenteric arteries, there was a selective decrease in
contractions to Ang II in very old rats, while NE and ET

Žconcentration–response curves were not modified Table
.3 . In contrast, however, the maximal contraction to ET-1

Ž .were enhanced with age in the basilar artery Fig. 4 .
There were no relationships between reactivity and either

Ž . Žvascular structure CSA or hemodynamic changes pulse
.pressure .

4. Discussion

Advanced age in rats was associated with increased
pulse pressure without changes in MBP. There was a
tendency for MBP to rise in 18 months old rats, but this
subsided in older animals. A similar hemodynamic pattern

w x w xhas been observed with aging in rabbits 5 , rats 4 and
w xman 3 , although MBP remained significantly elevated in

the animal species. Our study, therefore, offers the advan-
tage of having a selective increase in pulse pressure in
comparison to previous studies, thus making it possible to
isolate the effect of this important hemodynamic parameter
on vascular structure and reactivity.

Advanced aging was also associated with an increased
media thickness in both vascular beds studied, as well as
an increased mediarlumen ratio in the basilar artery.
These structural changes do not appear to be the result of

w xeutrophic remodeling 16 as there was no reduction of
lumen diameters. Furthermore, the media CSA was signifi-
cantly increased indicating hypertrophic remodeling.
Changes in vascular geometry cannot be imputed on
changes in distensibility, as this parameter remained un-
changed in basilar arteries at the study pressures. Our
results, therefore, add precision in terms of nature of
vascular remodeling during aging to the previous studies

reporting weight increase of arterial segments in old rab-
w xbits 5 , as well as increased vessel wall thickness of small

arteries evaluated at autopsy from a heterogeneous human
w xpopulation 7 . However, they are at variance with a study

of 24–27 months old Fisher 344 rats, showing a relative
w x Ž .atrophy of the cerebral arterioles 8 see below . The

intermediate results obtained in the 18 months old group
confirms modest changes of the geometry of resistance
arteries in the hindquarter of 21 months old rats as com-

w xpared to younger controls 4 . It is noteworthy that, al-
w xthough there exists exceptions such as Fisher 344 rats 8 , a

w xstudy by Burek and Hollander 18 , suggested that rats
older than 30 months seem to better represent old age
Ž .)70 years of age in man.

Vascular CSA and media thickness were positively
related to pulse pressure and not to any other pressure
parameter in this study of advanced aging. A simple
correlation does not necessarily imply any causal relation-

w xship 19 . However, it is well accepted that hemodynamic
changes can induce modification of the vascular structure
w x16,20 . Accordingly, at least two studies in experimental
models of hypertension that have used different ap-
proaches to alter the local or systemic hemodynamic con-
ditions have suggested that pulse pressure could be an
important factor to induce adaptive changes in the vascular

w xgeometry 12,21 . In addition, pulsatile stretching has been
shown to promote growth of vascular smooth muscle cells
in culture, again lending support for a role of pulse pres-

w xsure to induce hypertrophy of the vessel wall 11 . Further-
more, Fisher 344 rats showed a relative atrophy of cerebral

w xarterioles and pulse pressure was slightly reduced 8 . It is
therefore reasonable to suspect a causal link between pulse
pressure and the vascular hypertrophy. It must be noted,

Ž .however, that correlation coefficients r around 0.55 sug-
Ž 2 .gest that 30% r of the changes of CSA could be

w xexplained by the variability of pulse pressure 19 . Thus, it
is not possible to exclude the participation of other factors
in the hypertrophy of small arteries that we observed.
Alternative or additional explanations include a decreased
force generated by vascular smooth muscle cells with age
requiring a thicker media, or a slight reduction in cardiac

w xoutput requiring a greater peripheral resistance 3 . On the
other hand, body weight does not appear to contribute to
the alterations, since the old rats had a greater body weight

Ž .than the very old rats p-0.05 , without marked changes
in their vascular structure. One limitation of our study is
the fact that pulse pressure was measured at the level of
the femoral artery, but not directly at the level of smaller
arteries. However, in the very old rats, it is tempting to
assume that the form and velocity of the pressure wave
reaching the small arteries is altered, as it has been gener-

w xally suggested in aging 3,22 .
Maximal relaxations generated by endogenous forma-

Ž .tion of NO or other EDRFs with Ach or by exogenous
Ž .application of NO with SNP as well as sensitivity to

Žthese agents were slightly altered p-0.05 for the sensi-
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.tivity to SNP , but with a consistent pattern. These obser-
vations, more apparent in old rather than in very old rats,
suggest that the alterations may result from a decreased
responsiveness of vascular smooth muscle cells to NO, but
not to a decreased production of NO or other EDRFs by
endothelial cells. This is in contrast to a report using 14
months old rats and showing reduced sensitivity to a

w xmuscarinic agonist but not to SNP 23 . However, consis-
tent with our results, most studies in resistance arteries do
not support a marked alteration of endothelial function

w xwith age 1,24,25 , in contrast to studies looking at conduit
w xarteries 23,26 . It must be noted, however, that resistance

vessels seem to depend more on an endothelium-derived
Ž .hyperpolarizing factor EDHF, also stimulated by Ach for

w xtonic vasorelaxation than do conduit arteries 27,28 . This
may help to explain the discrepancy between small and

w xlarge vessels in the context of aging 23 .
There was regional heterogeneity in the responsiveness

of small arteries to exogenous ET-1. Indeed, contractions
were enhanced in the basilar, but not in the mesenteric
arteries. Contractions to ET-1 have also been reported to

w xbe increased in the coronary circulation with age 24 . In
contrast, previous experiments in mesenteric arteries from
aging Fischer 344 rats showed a reduced sensitivity to

w xET-1 29 . In most studies on small arteries, including the
present, stimulation of the a1-adrenoceptors have not

w xdemonstrated any difference in contraction 23,25,30 . In
w xcontrast to previous studies 24,30 , however, contractions

to Ang II were reduced in very old rats. This discrepancy
may relate to the sex of the animals as contractions to the

Ž .peptide are markedly greater in adult female 68% than in
Ž . w xmale rats 30% 31 .

We have previously shown in N v-nitro-L-arginine
Ž .methyl ester L-NAME -induced hypertension that systolic

arterial pressure per se was responsible for the increased
mediarlumen ratio of the basilar artery through eutrophic

w xremodeling 15 . Our present results suggest that a selec-
tive pulse pressure increase, in the context of physiological
advanced aging, is associated with vascular hypertrophy of
small arteries of the peripheral and cerebral circulations
with very limited alterations of vascular reactivity. The

Ž .process eutrophic or hypertrophy remodeling involved in
the adaptation of the vessel wall may therefore depend on
the nature of the hemodynamic changes to which the
vessels are exposed. However, there is a common goal;
that is to minimize the impact of hemodynamic alterations,
and associated changes in wall tension, on small artery
function.
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