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Nonlinear decay of a large-ampitude ion-acoustic wave

By NGUYEN THE HUNG
Eoole Polytechnique F6d6rale de Lausanne, Switzerland,

Centre de Reoherches en Physique des Plasmas

(Received 13 January 1975 and in revised form 16 June 1975)

This paper studies the nonlinear coupling between an ion-acoustic wave and two
Alfve'n waves. On the basis of the MHD equations, this three-wave interaction is
described within the coupled normal-mode theory. It is shown that a large-
amplitude acoustic wave can decay into a pair of Alfve'n waves in a high-/? plasma.
Calculations of the threshold condition and the maximum growth rate suggest
that this decay process may occur both in the laboratory and in the ionosphere.

1. Introduction
Under various conditions, a plasma can become unstable against the buildup

of large-amplitude ion-acoustic waves. So far, nonlinear studies of such waves
have been focussed on the effects of self-coupling (harmonic generation, amplitude
modulation) and wave-particle interaction (particle trapping). Nonlinear decay
of a finite-amplitude acoustic wave, to our knowledge, has not been investigated.
The purpose of this paper is, accordingly, to study the coupling between ion-
acoustic and Alfve'n waves in a high-/? plasma.

In § 2 a set of coupled equations for the waves under consideration is obtained,
using a fluid description. In § 3 it will be shown that, when the sound velocity is
greater than the Alfve'n velocity, a large-amplitude acoustic wave, acting as a
pump, can decay parametrically into a pair of Alfv6n waves. The physical
mechanism for this decay process can be described as follows. At frequencies well
below the ion-cyclotron frequency, the plasma is frozen in the magnetic field
lines. Accordingly, the Alfven waves can be considered as the transverse motion
of these field lines, in which the magnetic pressure provides the restoring force,
while the plasma mass acts as an inertial force. In fact, Alfven waves are simply
the transverse waves on a string of tension Hl/ln and mass density p0. Thus, by
modulating the mass density of the plasma along the magnetic field lines, an
acoustic wave just provides the necessary mechanism for the parametric excita-
tion of these Alfve'n waves. As we shall see, this process requires a rather low
threshold, and can occur both in laboratory plasma (e.g. pinch plasmas) and in the
ionosphere (solar wind).
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2. The coupled equations
Let the equilibrium state of a uniform, unbounded plasma be characterized by

a mass density p0, a pressure p0, and a steady magnetic field Ho = Ho z. On the
basis of the MHD equations, we shall consider the interaction between an acoustic
wave and two Alfven waves (denoted by indices 1 and 2), all propagating along
the magnetic field.

By neglecting terms corresponding to the self-coupling of these waves, the
governing nonlinear equations can be expressed as

dp dv .„ ,
-ZT+Poj- = 0, (la)

dv cldp 1 d , „ „ .

Here, p and v are the perturbed density and velocity due to the acoustic waves,
Hlt 2 and V1 2 are the perturbed magnetic fields and velocities associated with the
Alfven waves (1,2). cs and cA are the velocities of the acoustic and Alfven waves,
respectively, v represents the phenomenological damping coefficient for the ion
wave, while TJ is the plasma resistivity.

In linear theory, the right-hand sides of (1 a-d) obviously vanish. As it stands,
(lcir-d) is a formidable nonlinear system, whose solutions can be sought only
within various approximations. For a low-/? plasma (cs <^ cA), one can neglect the
first terms on the right-hand sides of (1 c, d) because of their smallness compared
to the second terms. In this case, Sagdeev & Galeev (1969) have found that a
large-amplitude Alfve"n wave can decay into a daughter Alfv6n wave and an
acoustic wave. Hung (1974) showed that, in fact, an Alfven wave can give rise to
two distinct types of parametric instabilities, namely the oscillating and the
purely growing waves.

In the case of high-/? plasmas (cA < cs), one has not only to keep all the terms on
the right-hand sides of (1 c, d), but also to note that the foregoing decay process is
no longer possible. However, it is now the acoustic wave that will decay into a
pair of Alfven waves.

This phenomenon can be described by various methods. Here, the coupled-
mode theory will lead in a simple way to a set of first-order differential equations,
and show clearly the coupling mechanism of the waves under consideration.
Let us first introduce the eigenfunctions of (1) defined as (Hung 1974)

V. (2)

The coefficients cx and c2 are chosen so that, in the linear limit,
da . 8b _.. . , .„.

+ + Tb = -io)Ab. (3)— + ya = -iu)sa, —
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cos, (oA, y and V are the frequencies and linear damping rates of the acoustic and
Alfv6n waves, respectively.

It is simple to show that, for a given wave vector k§, there exist two eigen-
functions of the sound wave (Hung 1974)

a± = p± + (pokslws) v± ~ exp{iksz + iwst-yt}, (4)

with o)s = \csks\, y = \v.

Obviously, a+ and ar correspond to the forward and backward propagating waves
with respect to the wave vector ks. For the Alfven waves, we obtained

bi,2 = Htz + (Hoh,2M,2) 1̂*2 ~ exP{**i,2Z + *Wi,2'- ri,2*}' (5)
with o)h 2 = I cA ft1# 21, rx> 2 = \rjk\ 2.

The perturbed quantities /o, v, V and .ff can be expressed in terms of these eigen-
functions by the relations

p± =
7 1c 1>2>

20 " 1 , 2

1,2 — 2°1,2- (6)

It is now easy to show that (la-d) is equivalent to

~5T±c^"ir + r2&2 =^2 + - T

(7)

P, Q, i2 are expressed in terms of the eigenfunctions a, b through (6). In a weak-
coupling process, (7) can be readily solved by assuming solutions of the form

a± = A±(t) exp{iksz + ia)st} + complex conjugate,
6f2 = Btztt) e xP {*̂ i, 2Z + *wi, 2O + complex conjugate,

(8)

with ±
Then, keeping only terms with approximately the same oscillating exponentials
on both sides of (7) and taking a space average of the resulting equations, we
finally arrive at the following coupled system for the amplitudes of the waves
under consideration:

dA+

+ exp {- iSt}.

(9)

(Similar equations can be obtained for the backward waves which, however, do
not interfere with the forward waves in the case w1} w21> 8 considered here.)
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Note that, in obtaining (9), use has been made of the matching condition

#, 8<^(i)vw2. (10)

Thus, (9) represents the resonant coupling between three waves treated on the
same footing. In § 3 we shall study the case of parametric coupling, in which one
of the waves has an amplitude much larger than the others, and can be con-
sidered as constant.

3. The decay of a large-amplitude acoustic wave
In many cases, a large-amplitude acoustic wave can be generated either by the

plasma itself, or by some external source. Nonlinear effects then play an important
role in its evolution. On the one hand, wave-particle interactions will lead the
wave-plasma system to a quasi-steady state. On the other hand, the wave may
decay into a pair of Alfven waves through the resonant interaction described
above. Conditions for this decay process, and growth rates of the excited waves
can be determined from (9), considering the acoustic wave as a pump wave of
constant power.

By introducing the variables

x = B\, y = B\ exp { — i8t} (11)

in (9), and assuming solutions of the form x, y ~ exp { — iojt}, we readily obtain

\) x = (*/4p0) (k2cA - kscs) A+y,\

This yields the dispersion relation

From (13), it is easily shown that growing solutions exist if

Equation (14) is just the threshold amplitude for the decay of an acoustic wave
into a pair of Alfven waves.

Under the perfect matching condition, the threshold amplitude assumes its
minimum value . _, _, . ,

4» = 4po(rir2/w1w2)i (15a)
or Pm = A^K/cl) (1 -ei/cj)*, (156)

if use is made of the linear dispersion relations (4)-(5), together with the resonant
condition (10). Above this minimum threshold, both Alfv6n waves are excited
with a growth rate

Well above threshold, we have

i (17)
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For cs = 2cA, and an average damping rate (F^ F^/o^a^i = 10~3, these formulae
predict a minimum threshold pm/po = 4 x 10~3 and a maximum growth rate
TJws ~ pllOpQ.

From these results, it appears that the threshold amplitude required for the
parametric decay of an acoustic wave is rather low, while the growth rate of the
excited Alfve"n waves is directly proportional to the modulation density. Conse-
quently, we believe that this decay process can be easily observed both in the
laboratory (e.g. in high-/? pinch plasmas) and in the ionosphere. In this latter case,
it provides an alternative explanation for the emission of Alfven waves in the
solar wind, when the temperature anisotropy is too weak to excite the fire-hose
instability (Kennel & Scarf 1969).

Finally, it is interesting that the high-/? limits (cA <̂  cs) of our (15) and (17)
(minimum threshold and maximum growth rate) are identical with the results
of Vahala & Montgomery (1971), and Lashmore-Davies & Ong (1974), in the
opposite limit. In fact, these analyses apply to the experimental situation of
Lehane & Paoloni (1972), where Alfve'n waves were parametrically excited by
modulating the background magnetic field in a low-ft plasma (cA > cs).

The author thanks Dr F. Hofmann for reading the manuscript. This work was
performed under the auspices of the Swiss National Science Foundation.
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