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ABSTRACT

Motivation: The question of how to best use information from known
associated variants when conducting disease association studies
has yet to be answered. Some studies compute a marginal P-
value for each Several Nucleotide Polymorphisms independently,
ignoring previously discovered variants. Other studies include known
variants as covariates in logistic regression, but a weakness of
this standard conditioning strategy is that it does not account
for disease prevalence and non-random ascertainment, which can
induce a correlation structure between candidate variants and known
associated variants even if the variants lie on different chromosomes.
Here, we propose a new conditioning approach, which is based
in part on the classical technique of liability threshold modeling.
Roughly, this method estimates model parameters for each known
variant while accounting for the published disease prevalence from
the epidemiological literature.
Results: We show via simulation and application to empirical
datasets that our approach outperforms both the no conditioning
strategy and the standard conditioning strategy, with a properly
controlled false-positive rate. Furthermore, in multiple data sets
involving diseases of low prevalence, standard conditioning
produces a severe drop in test statistics whereas our approach
generally performs as well or better than no conditioning. Our
approach may substantially improve disease gene discovery for
diseases with many known risk variants.
Availability: LTSOFT software is available online
http://www.hsph.harvard.edu/faculty/alkes-price/software/
Contact: nzaitlen@hsph.harvard.edu; aprice@hsph.harvard.edu
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1 INTRODUCTION
The NHGRI catalog of Published Genome Wide Association
Studies (GWAS) (Hindorff et al., 2009) lists thousands of single
nucleotide polymorphisms (SNPs) associated with several hundred
complex phenotypes. However, it is currently unknown how to
optimally use these discovered SNPs when conducting additional
GWAS. Typically, known variants are ignored and SNPs are tested
independently for association via logistic regression for case–
control phenotypes and linear regression for quantitative phenotypes
(McCarthy et al., 2008). Occasionally, known variants are used as
covariates in the regression models to determine additional signals
exist in the data beyond those already discovered, as in recent
studies of Type 2 diabetes (Voight et al., 2010). We show that
for standard case–control studies neither one of these strategies,
testing SNPs marginally or standard conditioning on associated
variants, is optimally powered to discover new loci. Surprisingly,
standard conditioning will often dramatically decrease power (Kuo
and Feingold, 2010). For example, in the Welcome Trust Case
Control Consortium (WTCCC), Type 1 diabetes (T1D) dataset
(WTCCC, 2007b), conditioning on a known variant on Chromosome
6 decreases the one degree of freedom (df) χ2 statistic from
a logistic regression likelihood ratio test by an average of 27%
at independent known associated variants on entirely different
chromosomes relative to the same test without conditioning on the
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Chromosome 6 variant. However, we find that if used properly,
known variants can substantially improve study power and therefore
represent an important resource in conducting future GWAS.

In this work, we thoroughly examine the use of known associated
variants in the analysis of GWAS and their effects on SNPs that
are completely unlinked to the known variants (i.e. on different
chromosomes or distant loci). Previously, (Neuhaus, 1998) showed
that in the case of logistic regression, including a covariate increased
power when it was uncorrelated to the random variable being
tested, but decreased power when it was correlated. Our extensive
simulations and analysis of real gene expression and case–control
data indicate that for randomly ascertained individuals such as those
in a cross-sectional study, the practice of standard conditioning on
known variants does indeed improve the power to discover new
variants (Ma et al., 2010; Neuhaus, 1998), with larger gains in
power as the fraction of variance explained by the conditioned
SNPs increases. However, in a balanced case–control study in which
an equal number of cases and controls are ascertained based on
disease status, standard conditioning on known variants significantly
decreases power when the disease prevalence is low. This power
loss is due to an induced non-independence between associated
variants in case–control datasets. That is, SNPs that were completely
uncorrelated in the population become correlated when individuals
are collected in a case–control study design, and as predicted by
Neuhaus (1998), there is a corresponding loss in power due to
this correlation. This is true regardless of whether the data are
generated under a liability threshold model of disease or the logit
model of disease assumed by logistic regression. We show that the
effect of standard conditioning on known variants is a function of
prevalence, sample ascertainment, and the total phenotypic variance
explained by the known variants. We give full analytic derivations of
the non-centrality parameter of the conditioned and unconditioned
tests detailing the scenarios when each improves or diminishes
power.

To address this power loss in the case–control setting, we develop
a new statistic, called LTSCORE, based on the liability threshold
model (Dempster and Lerner, 1950; Falconer, 1967). LTSCORE
properly accounts for study design and disease prevalence while
still leveraging the known associated SNPs. The basis for the
improvement of our statistic is the incorporation of external
prevalence information, which is readily available. The liability
threshold model models individuals as having an unobserved
continuous phenotype called the liability (Dempster and Lerner,
1950; Falconer, 1967). Cases are individuals whose liability
exceeds some threshold while all other individuals are controls.
We compute the posterior mean of the residual of the liability
given an individual’s disease status, the disease prevalence and
the known associated variants. This posterior mean is then treated
as a continuous phenotype and tested for association via linear
regression while easily incorporating covariates such as principal
components (Price et al., 2006) (see Supplementary Material). The
crucial distinction between our approach and previous applications
of liability threshold modeling (Duggirala et al., 1997; Falconer,
1967; Jewell, 2004; Yang et al., 2010) is that we incorporate
ascertainment strategy and disease prevalence, which is the source
of the power loss for logistic regression with covariates when
estimating the parameters of the model. We show that accounting
for ascertainment can also be done in a relative risk framework, but
the liability threshold approach is more versatile.

In practice, our disease model changes dichotomous phenotypes
to continuous ones. Cases are assigned positive-valued phenotypes
and controls negative-valued phenotypes. Individuals carrying a
smaller number of risk alleles are given a larger phenotype.
The size of these shifts are a function of SNP effect size and
disease prevalence, which is not accounted for in standard logistic
regression. Our approach, unlike standard logistic regression, does
not suffer any loss of power when the disease prevalence is low.
This is not an issue with the logit model, which may also be
adapted to account for ascertainment, but with the commonly used
approach of adding genetic covariates to standard logistic regression
in ascertained data, without accounting for disease prevalence (see
Section 4).

Results on empirical data, including a large Type 2 diabetes (T2D)
case–control study and the (WTCCC, 2007b) T1D, Rheumatoid
Arthritis (RA), and T2D GWAS, demonstrate the pitfalls of using
logistic regression with covariates as well as the power gains of
LTSCORE when compared with both logistic regression with and
without covariates. The gain in power is a function of prevalence and
total variance explained by the known SNPs. Our method matches
or outperforms conditioned or unconditioned linear or logistic
regression for nearly all values of prevalence or ascertainment
examined. Its performance relative to these methods will continue to
increase as more variance in disease risk is explained by risk variants
that are identified. We release a software package implementing
LTSCORE for use in future association studies.

2 METHODS
Given a normally distributed continuous phenotype Y or a case–control
phenotype Z , we want to test candidate SNP s0 for association with
the phenotype. There are K independent SNPs s1,...,sK with genotypes
g1,...,gK and minor allele frequencies p1,...,pK known to be associated
with the phenotype and in complete linkage equilibrium (e.g. on different
chromosomes) with SNP s0. SNP s0 has genotypes g0 and minor allele
frequency p0. In this work, we explore three classes of statistical tests
of association: NOCOND, STDCOND and LTSCORE. NOCOND-log is
logistic regression of the genotypes g0 against the phenotypes without
conditioning on any known genetic covariates. STDCOND-log is logistic
regression where the genotypes g1,...,gK are included as covariates.
LTSCORE is linear regression applied to the posterior mean of the
residual of the liability threshold model described below. NOCOND-lin
and STDCOND-lin refer to linear instead of logistic regression. Each test
generates a χ2 one df test statistic by performing a likelihood ratio test.
Under the alternate hypothesis the effect size of s0 is a free parameter and
under the null hypothesis the effect size of s0 is fixed at 0. The details of
logistic and linear regression models are described in (Wasserman, 2005).
For reasons of simplicity, the derivations below all use linear instead of
logistic regression. Linear regression is commonly used in place of logistic
regression in association studies (Armitage, 1955; Price et al., 2006; Wallace
et al., 2006). Furthermore, we perform simulations and experiments under
both linear and logistic regression frameworks to demonstrate that the theory
described below holds under both models in practice (see Section 3). The
extension of these tests to recessive and dominant models is straightforward.
LTSCORE is publicly available in the LTSOFT software package.

2.1 Randomly ascertained case–control phenotypes
We begin with the case of cross-sectional dichotomous phenotypes
(see Supplementary Material for Continuous phenotypes). We create a
dichotomous phenotype Z under a liability threshold model (Falconer, 1967)
by labeling all N individual cases when Y ≥ t, for a threshold t, and controls
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otherwise. We consider the simple case of conditioning on one SNP i.e.
K =1. In this case, the non-centrality parameter of NOCOND-lin is

N ∗corr(g0,Z)2. (1)

The non-centrality parameter of STDCOND-lin is

N ∗ corr(g0,Z)2

(1−corr(g1,Z)2)
, (2)

where corr(g0,Z) is the correlation between the genotypes g0 and the
phenotypes Z . The full details of the derivation are given in Supplementary
Material S1. The non-centrality parameter increases in proportion to the
inverse of (1−fraction of variance explained by s1). That is, as the known
variants explain more of the phenotype, the greater our power to discover new
variants by conditioning in randomly ascertained study designs (Robinson
and Jewell, 1991). The non-centrality parameter for STDCOND-lin is also
larger than that of NOCOND-lin in the case of randomly ascertained
continuous phenotypes (see Supplementary Material).

2.2 Non-randomly ascertained case–control phenotypes
A key assumption in the derivations above is that candidates SNP s0 and SNP
s1 are independent. However, in an ascertained case–control study, especially
one for a disease of low-prevalence this assumption no longer holds. That
is, candidate, SNP s0 and SNP s1 that are independent in the population
will become correlated in the study cohort. Consider the extreme example
of drawing cases from one tail of Y and controls from the other. Under both
a logit and liability threshold model of disease, controls will have relatively
fewer copies of g0 and g1, while the cases will have relatively more, and so
in the study, g0 and g1 will be correlated. This exaggerated example provides
the intuition for why we see correlation in the ascertained study as we are
drawing all of our cases from an extreme tail of an underlying distribution.
As shown in Section 3 below, this correlation and the corresponding effects
of conditioning exist under both the liability threshold model of disease and
the logit model assumed by logistic regression.

The covariance between g0,g1 in the case of haploid individuals (this is
easily extended to the diploid case) is

cov(g0,g1)=E[g0 ∗g1]−p0 ∗p1. (3)

The expectation of the product of g0 ∗g1 is

P(g0 =1,g1 =1|Z =1)+P(g0 =1,g1 =1|Z =0)

=P(Z =1|g0 =1,g1 =1)p0p1FS/F

+P(Z =0|g0 =1,g1 =1)p0p1(1−FS )/(1−F), (4)

where FS is the frequency of cases in the study and F is the frequency of
cases in the population. In the case of random ascertainment, FS and F are
the same and so the covariance will be 0. However, in a disease of low
prevalence, FS and F will be different and so s0,s1 will be correlated in the
study due to ascertainment-induced correlation.

When we test SNP s0 marginally (NOCOND-lin), the non centrality
parameter is

N ∗ α2
0 +2α0α1cov(g0,g1)

var(Z)
(5)

When we test s0 conditioned on s1 (STDCOND-lin), the non-centrality
parameter is

N ∗ α2
0

var(Z)−α2
1

, (6)

where α0,α1 are the expected SNP effect sizes in the study (as opposed to
β0,β1 the effect sizes in the population). The full details of the derivation are
given in Supplementary Material S1. In the marginal case (NOCOND-lin),
the shared signal of s0 and s1 is added to the non-centrality parameter. This
implies that the power to detect s0 in the marginal case is greater if there
exists another SNP s1 that explains a significant fraction of the variance.

In the conditioned case (STDCOND-lin), the numerator is decreased because
the shared signal of s0 and s1 is conditioned out. However, the denominator
is also smaller since the variance of Z conditioned on s1 is smaller than
the unconditioned variance of Z . The power of STDCOND-lin relative
to NOCOND-lin is therefore a function of effect size, prevalence and
ascertainment. Yang and colleagues (Yang et al., 2010) provide alternative
derivations of the non-centrality parameter in the unconditioned case for both
quantitative and case–control phenotypes based on the liability threshold
model. In the case of non-randomly ascertained quantitative phenotypes,
two associated variants s0 and s1 that are independent in the population will
be correlated in the study for the reasons given above. We do not consider
this case in detail in this work but note that in many cases, STDCOND-lin
will reduce power significantly and we therefore caution against this statistic
for non-randomly ascertained quantitative phenotypes.

2.3 LTSCORE statistic
We model a case–control phenotype as arising from an underlying normally
distributed phenotype

φ=−m+ε;ε∼N (0,1) (7)

called the liability (Falconer, 1967). Cases are those individuals with φ≥0
and controls are those individuals with φ<0. There is a relationship between
this liability scale and the relative risk model of disease described in detail
previously in Wray et al. (2010) and Yang et al. (2010). If F is the prevalence
of the disease in the population then m=�−1(1−F), where �−1(x) is the
inverse of the cumulative normal distribution function with mean 0 and
variance 1 evaluated at x, so that the expected proportion of individuals
with φ≥0 is F . A SNP s1 associated with the disease and having mean
adjusted genotypes g1 ∈{0−2p,1−2p,2−2p} is incorporated into the model
as φ=−m+β1g1 +ε, where ε∼N (0,

√
1−var(β1 ∗g1)) so that the total

variance of φ is 1. Given a case–control study where SNP s1 has frequency
p+

1 in the cases and frequency p−
1 in the controls, we estimate β1 via a

method (described below) that relies on published prevalence data for the
disease. This prevalence represents a source of external data not available to
STDCOND-lin.

The estimation procedure is repeated for independent known associated
SNPs s2,...,sK giving a final model

φ=−m+X β+ε, (8)

ε∼N (0,σe =√
1−var(X β)), (9)

where X are the genotypes of the K known SNP, and β is a vector of the
effects size β1,...βK .

To use both the prevalence information and the effects of the known
associated variants s1,...,sK when testing a new candidate SNP s0, we
compute the posterior mean of the residual of the liability given the genotypes
of the known variants X , their effect sizes β, the disease prevalence F and
the case–control status Z E(ε|X ,β,F,Z):

E(ε|X ,β,F,Z =Case)=
∫ ∞

m−X β
ε 1√

2πσ 2
e

e
( −ε2

2σ2
e

)
dε

∫ ∞
m−X β

1√
2πσ 2

e
e

( −ε2

2σ2
e

)
dε

, (10)

E(ε|X ,β,F,Z =Control)=
∫ m−X β

−∞ ε 1√
2πσ 2

e
e

( −ε2

2σ2
e

)
dε

∫ m−X β

−∞
1√

2πσ 2
e

e
( −ε2

2σ2
e

)
dε

, (11)

where σ 2
e is 1−var(X β) the residual variance of φ after subtracting the

variance from the known SNPs. The prevalence-aware liability threshold
based statistic is then computed by running standard linear regression
between the genotypes of the new SNP s0 and the posterior mean of the
residual of the liability of each individual as calculated above. Although
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the posterior mean is not normally distributed, the use of linear regression
in place of logistic regression is common practice in association studies
(Armitage, 1955; Price et al., 2006; Wallace et al., 2006).

Intuitively, the above integrals have the following effect. Cases without
risk alleles at other loci are assigned more extreme phenotypes than cases
with risk alleles at other loci (and analogously for controls). Consider a case
with no risk alleles at any of the known associated variants. To exceed the
liability threshold, such an individual will require a large value ε relative
to a case with many risk alleles at the known associated variants. Another
implication of this model (as well as the relative risk model) is that the odds
ratio at s0 will be higher when computed with cases having no known risk
alleles (Guey et al., 2011).

For fixed effect sizes β, as the prevalence of the disease approaches
0, the computation of E[ε|X ,β,F,Z] is dominated by the threshold m.
All of the case individuals will have approximately the same value of
E[ε|X ,β,F,Z =1] (Ecase), and all of the controls will have approximately
the same value of E[ε|X ,β,F,Z =0] (Econtrol). Since the LTSCORE statistic
is linear regression applied to E[ε|X ,β,F,Z], it is equivalent to the marginal
test NOCOND-lin in this case of near 0 prevalence.

The liability threshold model is not the only model of disease and
we also derive a prevalence aware statistic from the relative risk model
of disease (RRCOND)(Jewell, 2004). The RRCOND model is presented
in Supplementary Material S1, but we primarily focus on the LTSCORE
because the relative risk model does not easily handle non-SNP covariates
such as principal components.

2.4 Estimating β using published prevalence
We require an estimate of the disease prevalence F taken from the literature.
In the liability threshold model, any estimates β̂1 of β1 and p̂1of p1 give
an expected frequency of s1 in the cases and controls. Our estimate of the
population minor allele frequency is

p̂1 =p+
1 F +p−

1 (1−F), (12)

where p+
1 and p−

1 are the observed frequencies of s1 in the cases and controls.

Given an estimated effect size β̂1 of s1

P(Z =1|g1 =0)= (1−�(m,β̂1(−2p̂1),σ 2
e )) (13)

P(Z =1|g1 =1)= (1−�(m,β̂1(1−2p̂1),σ 2
e )) (14)

P(Z =1|g1 =2)= (1−�(m,β̂1(2−2p̂1),σ 2
e )), (15)

where �(x,y,z) is the cumulative normal distribution evaluated at x, with
mean y and variance z. Then

P(g1 =0|Z =1)= P(Z =1|g1 =0)(1− p̂1)2

F
(16)

and similarly for g1 =1,2. Finally, we compute the frequency of s1 in the
cases given β̂1 and p̂1 as

p̂1
+ =P(g1 =1|Z =1)+2P(g1 =2|Z =1) (17)

and similarly for controls. Using these frequencies, we can compute the
squared error between the observed and expected frequencies in the cases
and controls Se = (p+

1 − p̂1
+)2 +(p−

1 − p̂1
−)2. We perform a binary search for

10 iterations to identify the β̂1 that minimizes Se. For multiple known SNPs,
the β̂i are estimated independently and combined, and only one associated
SNP from any locus can be used.

3 RESULTS
The theory presented in Section 2 above modeled case–control
phenotypes under a liability threshold model and estimated the
power of linear regression with no covariates (NOCOND-lin),
linear regression conditioned on known variants (STDCOND-lin)
and our liability threshold model-based LTSCORE, under various

ascertainment scenarios. Here, we examine the relative benefits
of the three classes of statistical tests NOCOND, STDCOND
and LTSCORE over simulated and real data. For NOCOND and
STDCOND, we conduct most of our analyses using the logistic
regression versions NOCOND-log and STDCOND-log, but we have
verified that NOCOND-lin and STDCOND-lin produce very similar
results (see below). There are many equivalencies between the logit
model, the liability threshold model and the multiplicative relative
risk model (So et al., 2011; Wray et al., 2010). To be maximally
conservative and to demonstrate that the results derived in Methods
section hold for different disease models, we simulate our case–
control phenotypes under a logit model. This prevents our method
from having an unfair advantage due to testing the same model that
generated the data. As shown below similar results were obtained
when using linear instead of logistic regression and the liability
threshold model instead of the logit model.

LTSCORE computes posterior mean of the residual of the
liability, using liability threshold model parameters that account
for disease prevalence and study design, and then uses posterior
mean as input to linear regression (see Section 2). The LTSCORE
parameters are estimated from published disease prevalence data.
This external information, unavailable to either NOCOND-log or
STDCOND-log, is the basis of the improvement of LTSCORE.
We are interested in the effects of known associated SNPs on
association tests for undiscovered SNPs that are in complete linkage
equilibrium (e.g. those on completely different chromosomes) with
the known associated SNPs in the population. In both the simulated
and real datasets below, we never condition on SNPs that are in
LD with the candidate SNP. The derivations above assumed a
liability threshold model of disease. However, both the STDCOND-
log and NOCOND-log tests assume a logit model of disease as
they are applications of logistic regression. We compare the the
performance of the methods by measuring the ratio of the average
χ2 test-statistics produced by each method. This has a natural
interpretation of the increase in sample size needed to obtain the
equivalent power (Pritchard and Przeworski, 2001). For example,
if LTSCORE gives 10% increase in test-statistic over STDCOND-
log, this corresponds to adding 10% more individuals to a study
analyzed with STDCOND-log to achieve the power of the original
study analyzed by LTSCORE.

3.1 Simulated datasets
3.1.1 Randomly ascertained case–control phenotypes To
examine the effect of conditioning in randomly ascertained (cross-
sectional) case–control phenotypes, we generated case–control data

from a logit model P(Disease)= eg0α+X β+z

1+eg0α+X β+z .
The affine term z determines the prevalence F of the disease in the

population. To test the effects of conditioning we tested candidate
SNP s0 under NOCOND-log, STDCOND-log and LTSCORE. We
ran 5000 simulations of 1000 cases and 1000 controls. In each
simulation, there was one candidate SNP with effect size α and
one known variant with effect size β. The fraction of variance
explained with K SNPs of effect size β/

√
(K) is the same as the

fraction of variance explained by one SNP with effect size β.
LTSCORE with K SNPs of effect size β/

√
(K) produced equivalent

results to using LTSCORE with one SNP of effect size β (see
Supplementary Material) and so we chose to use one SNP for
simplicity. The genotypes were generated as random draws from
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a binomial distribution for each simulation. We examined a range
of known variant effect sizes β, a fixed candidate SNP effect
size α=0.35, minor allele frequencies p0 =p1 =0.2 and z (the
affine term in the logit model) corresponding to a prevalence of
F =50%. The results are presented in Figure 1a. STDCOND-
log always improves on NOCOND-log and the improvement is
a function of the total variance explained by the known variants.
LTSCORE assumes the data were generated with a liability threshold
model. Despite generating data under a logit model, LTSCORE
and STDCOND-log perform similarly. Reducing the prevalence
F (the fraction of case individuals in the population) decreases
the number of cases and increases the number of controls, but
both LTSCORE and STDCOND-log still outperform NOCOND-
log. Results for the liability threshold-based simulation are presented
in Supplementary Figure S2 (a) and are similar to those presented
in Figure 1(a) Standard conditioning also improves power for
randomly ascertained continuous phenotypes in simulations (see
Supplementary Material and Fig. S1).

3.1.2 Non-randomly ascertained case–control phenotypes We
have seen that STDCOND-log improves the power to detect new
variants at independent loci relative to NOCOND-log. Surprisingly,
in a balanced case–control study, this is not always the case and
STDCOND-log often significantly decreases the power to detect
new loci. The reason for this reduction in power is the non-
random ascertainment of the samples which induces a correlation
between all the causal variants. The strength of the correlation
between associated variants is a function of disease prevalence.
The STDCOND-log test on any set of associated variants will not
only remove their signal but also some of the signal from the SNP
being tested. We simulated a low-prevalence case–control phenotype
under a logit model as in the randomly ascertained experiments
described above with F =0.1%, α=2.0 and β =2.0. We then
sampled 1000 cases and 1000 controls and measured the correlation
between candidate SNP s0 and SNP s1. The average correlation in
5000 simulations was r2 =0.11 (χ2 =220 via Armitage trend test).
We used an extreme β to demonstrate the effect with a small number
of simulations.

To examine the relative behaviors of the three classes of tests in
case–control data, we simulated a case–control phenotype under a
logit model as in the randomly ascertained experiments described
above with F =4.0%, α=0.35 and minor allele frequency MAF=
0.20 for both SNPs. We then sampled 1000 cases and 1000 controls.
The results are presented in Figure 1(b). When β is small, LTSCORE
is nearly identical to NOCOND-log losing 0.5% in the worst case.
The improvement of LTSCORE relative to NOCOND-log increases
as the known variant β explains more the population phenotypic
variance. STDCOND-log decreases in performance relative to
NOCOND-log until the known variant explains at least 35% of
the population phenotypic variance, at which point STDCOND-log
starts to improve. However, even after the known variant explains
50% of the in study phenotypic variation, STDCOND-log achieves
only 96.8% of the NOCOND-log statistic. Note that the results
presented in Figure 1(b) refer to the fraction of study variance
not population variance explained. Because of the ascertainment
strategy, there is a significant difference between the effect sizes
of the SNPs in the study and their effect size in the population.
In the population, only 4.0% of individuals are cases, while in
the study, 50% of individuals are cases. This skew causes the

Fig. 1. NOCOND-log, STDCOND-log, and LTSCORE simulations on
case–control phenotypes. Results of NOCOND-log (logistic regression),
STDCOND-log (logistic regression with covariates) and LTSCORE tests
for simulated case–control datasets from a logit model. Study variance
explained is the proportion of phenotypic variance explained in the study by
the known association variant. For randomly ascertained data (a) both the
LTSCORE and STDCOND-log tests improve over the NOCOND-log tests
and have similar performance. However, for non-randomly ascertained case–
control data (b) with prevalence of 4.0% the STDCOND-log test performs
significantly worse than the NOCOND-log test

variance explained by a SNP in the population to be much smaller
than the variance explained in the study (Guey et al., 2011; Yang
et al., 2011). Results for the liability threshold based simulation are
similar and presented in Supplementary Figure S2b. We repeated the
experiments for Figure1a and b replacing logistic regression with
linear regression and found nearly identical results, Supplementary
Figure S3a and b. We conclude that replacing linear with logistic
regression makes little difference in this context and use only logistic
regression for the remaining experiments (McCarthy et al., 2008).

To examine the effects of prevalence on the three tests, we fixed
β =1.5, α=0.35 MAF = 0.2 and varied the disease prevalence F
under the same model as above. The results presented in Figure
2 show that the LTSCORE always outperforms STDCOND-log.
STDCOND-log reduces power compared with the NOCOND-log
test when the prevalence is low. However, as the prevalence
increases, the study becomes more like a randomly ascertained
study and the STDCOND-log test performance increases above
the NOCOND-log test. LTSCORE is slightly (<2%) worse than
NOCOND-log for very low-prevalence (0.1%) disease and improves
as the prevalence increases. This modest loss in power is removed
when the data are generated under a liability threshold model (see
Supplementary Fig. S4). In this case LTSCORE always outperforms
or matches NOCOND-log and STDCOND-log. It is unknown which
model better represents the truth about disease.

We tested the sensitivity of our model to the misspecification
of the prevalence F by generating data under the same model as
above for a disease with true prevalence of 3%. We tested under
our LTSCORE model for a range of ‘estimated’ prevalences. We
repeated the simulation 5000 times, with 1000 cases and 1000
controls. The results are presented in Supplementary Figure S6.
Changing the estimated prevalence between 1% and 5% had a
minimal effect and the performance in this case was greater than
either the NOCOND-log or STDCOND-log tests. The power was
greater than NOCOND-log until the specified prevalence was greater
than twice the true prevalence. The maximum power was not attained
at the true prevalence and we believe this is because the disease
model tested (liability threshold) is different than the disease model
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Fig. 2. Effects of prevalence on NOCOND-log, STDCOND-log and
LTSCORE Results of STDCOND-log versus NOCOND-log and LTSCORE
vs. NOCOND-log for simulated ascertained case–control phenotypes from
a logit model, as a function of disease prevalence. Under low-disease
prevalence, there is an induced correlation between associated variants
causing a sever loss of power for the STDCOND-log test relative to the
NOCOND-log test. As the prevalence increases, the design is more like
a randomly ascertained study and the STDCOND-log test outperforms the
NOCOND-log test. The LTSCORE always outperforms STDCOND-log. For
low-prevalence disease, LTSCORE is slightly worse than NOCOND-log and
improves as the prevalence increases

used to generate the data (logit). Results for the liability threshold-
based simulation are presented in Supplementary Figure S5 and in
this case, the maximum is attained at the true prevalence.

To examine the behavior of the tests under the null, we repeated
the experiments for a range of prevalences F =0.01,0.03,0.05,0.1
and setting the effect size α=0 and keeping β =1.5. For each
prevalence, we generated 1000 cases and 1000 controls 1000000
times. All three tests were well behaved maintaining a false positive
rate of 0.050 as desired.

To inform researchers about the potential gains available in their
case–control datasets, we include the average χ2 test statistics
for all three tests for a range of realistic disease parameters in
Supplementary Table S8.

3.2 Real data sets
3.2.1 Non-randomly ascertained datasets for low-prevalence
disease (T1D, RA) We begin with an analysis of low-prevalence
case–control phenotypes (see Supplementary Material for real
continuous phenotypes). We examined the performance of the
NOCOND-log, STDCOND-log and LTSCORE statistics on the
WTCCC T1D and RA datasets (WTCCC, 2007b). There were 1924
and 1860 cases for RA and T1D respectively, and the same set of
2938 controls for the two datasets. For T1D, we used a prevalence
of 0.125% (Cooper and Stroehla, 2003) and HLA SNP rs9273363

from Chromosome 6 as the known variant which explained 12.4%
phenotypic variation (Nejentsev et al., 2007) in the study. For RA,
we used a prevalence of 1% (Cooper and Stroehla, 2003) and
HLA SNP rs6457620 from Chromosome 6 as the known variants
which explained 7.1% phenotypic variation in the study. We filtered
out all SNPs with MAF <5% and applied the NOCOND-log,
STDCOND-log and LTSCORE, tests to all SNPs not found on
Chromosome 6.

Although the WTCCC studies identified a relatively small number
of risk loci due to limited sample size, for T1D and RA this includes
HLA, a locus of large effect. The prevalences of T1D and RA are low
so the expected improvement of LTSCORE relative to STDCOND-
log is not expected to be large (see Section 3.1). However, these
datasets demonstrate the potential for a severe loss in power of
using STDCOND-log and that LTSCORE is well behaved for low-
prevalence diseases. Indeed, for T1D, there was a greater than 27%
drop in test statistic using STDCOND-log relative to NOCOND-
log and a 4% increase using LTSCORE relative to NOCOND-log
as measured by the average change in test statistic at all published
GWAS variants according to the NHGRI (Hindorff et al., 2009) (see
Supplementary Tables S1–S8).

The Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE
are shown in Figure 3a and b and serve as one means of assessing
the relative performance of the methods. The significant SNPs lie
at the tail of the distribution and methods with larger values at the
tail are better powered. All of the test statistics had a similar λGC
and all were genomic control (GC) corrected before analysis (Devlin
and Roeder, 1999). On the RA dataset for example the λGC values
were 1.046, 1.047 and 1.041, for the NOCOND-log, STDCOND-
log and LTSCORE tests, respectively. It is clear that STDCOND-log
reduces the χ2 test statistic relative to NOCOND-log and LTSCORE
in T1D (Fig. 3a) and RA (Fig. 3b). The reduction in T1D is the most
dramatic because it has a very low-prevalence and the SNPs explain
a larger fraction of the variance.

As another means of assessing the relative performance of the
methods, we look at the test statistics of known associated variants
published in the NHGRI catalog (Hindorff et al., 2009). When the
known associated variant was missing from the dataset, we used
the best tag as measured by r2, removing any SNP where the best
tag had r2 <0.5. The results are presented in Supplementary Tables
S1,S2 and are analogous to the Q–Q plot results. STDCOND-log
performs poorly for T1D and RA with a reduction in the sum
of test statistics of roughly 27% in T1D equivalent to removing
27% of the individuals from the study (Pritchard and Przeworski,
2001). On the other hand, LTSCORE has slightly larger sum χ2 test
statistics relative to NOCOND-log. We simulated 1000 case–control
studies with effect sizes, prevalences and sample sizes matching the
WTCCC studies. We generated the data under a liability threshold
model and found expected gains for both studies close to 2% relative
to NOCOND-log.

3.2.2 Non-randomly ascertained datasets for high-prevalence
disease (T2D) We examined the performance of the NOCOND-
log, STDCOND-log and LTSCORE statistics over of 6142 cases
and 7403 controls genotyped at 19 known associated SNPs from the
Multiethnic Cohort (MEC) (African Americans, Latinos, Japanese
Americans, Native Hawaiians, and European Americans) (Waters
et al., 2010) and used a prevalence of 9% (Scott et al., 2007).
Unfortunately, the known associated variants together explain only
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Fig. 3. Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE on
WTCCC datasets Q–Q plots for the NOCOND-log, STDCOND-log and
LTSCORE tests applied to the WTCCC T1D, RA, T2D, and T2D+ datasets.
The tail of the plots serves as an empirical measure of improvement.
In T1D (a), the LTSCORE outperforms the NOCOND-log test and
the STDCOND-log test suffers significant power loss. In RA (b) the
LTSCORE matches the performance of the NOCOND-log test and again
the STDCOND-log test suffers significant power loss. In T2D (c) and
T2D+CONTROLS (d) LTSCORE and NOCOND-log perform similarly.
STDCOND-log improves significantly with the addition of controls, which
mimics a randomly ascertained design

4% phenotypic variation in the study. We simulated 1000 datasets
with the same sample size, a disease prevalence of 9%, and a known
associated variant that accounted for 4% of the phenotypic variation.
For an SNP with a minor allele frequency of 20% and an effect size
on the liability scale of 0.05 (corresponding to 1.6% of the variance
on the liability scale), the average improvement of LTSCORE was
3% with a standard error of 10% in the simulations. Using many
SNPs of small effect produced, the same result as one SNP of large
effect. The results on the MEC data are shown in Supplementary
Table S3 with LTSCORE slightly outperforming NOCOND-log,
but not significantly different from STDCOND-log. The variance
of the expected improvement is large and this improvement is
within the expected range. As expected, the relative performance
of STDCOND-log in this high-prevalence disease is much better
than it was in T1D and RA.

We examined the relative performance of NOCOND-log,
LTSCORE and STDCOND-log in the WTCCC T2D study with
1924 cases. We used the 2938 controls in the original study and
we created a large control set (+CONTROLS) for T2D containing
individuals in all other diseases with a sample size of 14255. We
note that the use of cases from other diseases as shared controls is
commonplace in WTCCC and other studies (WTCCC, 2007a, b).
The known variants explained 1.42% and 0.64% in the original
study and T2D+CONTROLS respectively. The results are shown
in Supplementary Tables S5 and S6. The expected improvement is

even smaller than in the MEC study above as a smaller fraction of the
variance is explained and LTSCORE performed slightly worse than
STDCOND-log but within the range predicted by simulations (1 ±
6%). The performance of STDCOND-log is affected by the addition
of controls as this simulates the properties of random ascertainment
where STDCOND-log is expected to perform better. In the original
study NOCOND-log had an 8% higher sum of test statistics than
STDCOND-log, while in the T2D+CONTROLS study, this was
reduced to 2%.

The Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE
are shown in Figure 3c and d. STDCOND-log reduces the χ2 test
statistic relative to NOCOND-log and LTSCORE in T2D 3(c). In
the case of T2D+CONTROLS, the large number of controls create
a study that is more similar to random ascertainment. As expected,
STDCOND-log improves over NOCOND-log in this case as shown
in Figure 3d. The LTSCORE method performs well in all instances,
matching or outperforming each of the other tests.

4 DISCUSSION
We have shown that the practice of standard conditioning on
known associated variants does not account for study design and
disease prevalence potentially leading to significant power loss. This
power loss is due to the induced correlation between associated
variants in case–control studies. The phenomenon of higher odds
ratios in cases with fewer risk alleles at other loci than in cases
with more risk alleles at other loci can be viewed as a gene–
gene interaction (Cordell, 2009). This is a statistical, rather than
biological, interaction. By properly modeling the ascertainment and
prevalence while still leveraging known associated variants, our
LTSCORE statistic improves study power relative to NOCOND-
log and STDCOND-log tests in case–control studies of mid-to-low
prevalence diseases. This increase in power is a function of the
total phenotypic variance explained by known variants and disease
prevalence. The datasets examined here had either a low-prevalence
or a small fraction of the variance explained and therefore we
did not expect a large improvement. However, as more associated
variants are discovered, the performance of LTSCORE will increase
giving rise to power gains as a function of covariate effect size and
disease prevalence. This approach can also be applied to clinical
covariates, and in this case, an average power gain of >17%
was achieved (Zaitlen et al., unpublished data). We have verified
that results similar to Supplementary Table S3 are obtained when
comparing genetic + clinical covariates to clinical covariates only
(see Supplementary Table S4). However, conditioning on clinical
covariates is a fundamentally different problem, both because a
different parameter estimation method is needed and because with
clinical covariates, it is often the case that samples are non-randomly
ascertained for covariate value as well as case–control status.

A recent T2D meta-analysis (Voight et al., 2010) uses the standard
conditioning statistic and shows a significant gain in power. Their
ratio of cases to controls is closer to a randomly ascertained study and
in this case we expect STDCOND-log to outperform NOCOND-log
and increase power. In addition to their beneficial study design, some
of the conditioned variants are proximal to the new discoveries. Both
of the elements serve to improve the power of standard conditioning.
(Yang et al., 2012) also examine the potential benefits of genome-
wide conditioning in T2D. However, we believe the use of our
LTSCORE statistic on these data could improve the power further
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by accounting for prevalence and ascertainment. In a recent meta-
analysis of GWAS height data (Lango Allen et al., 2010), a randomly
ascertained continuous phenotype, standard conditioning revealed
no new associated variants. This is due to the nature of their study
design and not a contradiction of our results (see Supplementary
Material S1). In their landmark T1D paper, Barrett et al. (2009)
find a correlation between disease risk computed from HLA SNPs
and disease risk computed from SNPs in the rest of the genome.
They suggest that this is due to a departure from a multiplicative
model of disease. However, this effect may also be explained from
the non-independence of the genotypes that we described in case–
control studies. That is, some or all of the effect that was described
(correlation between MHC major histocompatibility complex risk
score and non-MHC risk score) may be due to ascertainment-
induced correlation. We caution that in tests for epistatic interaction
(Moore and Williams, 2009), this induced correlation could give
rise to a spurious signal of epistatic interaction at true (marginally)
associated variants.

Adjustment for informative covariates is not unique to genetics
and the problem of estimation from case–control data has received
considerable attention in the epidemiological literature. It is well
known that regressing or stratifying on a covariate which is related
to disease but not exposure of interest causes a reduction in
power unless one matches on the covariate when sampling controls
(Hosmer and Lemeshow, 2000; Jewell, 2004; Moolgavkar et al.,
1985; Nam, 1992; Neuhaus, 1998). We derive this power loss in
terms of the liability threshold model. (Neuhaus, 1998) shows the
reduction in power under a logit model for any correlated covariate
(i.e. not just due to ascertainment). Although we focus on adapting
the liability threshold model to incorporate prevalence information,
it may be possible to achieve the same result in a logistic framework.
For example, if there is only one known variant, one could construct
a 2×2×2 table of case–control status, candidate SNP s0 and known
covariate s1. Much larger tables would be required as the number
of known variants increased.

We recently proposed (Monsees et al., 2009) a weighted
logistic regression method (IPW) in the case of conditioning on
environmental variables in case–control studies. Rose and van der
Laan (2008) also offer an efficient estimator for case–control studies
to account for ascertainment-induced biases. However, the focus
of these works is obtaining an unbiased estimate of effect size
while our concern is power (and a valid test under the null). In the
case of genetic association studies, the effect sizes are generally
small and the emphasis of the community is on discovery as
opposed to effect size estimation. In the case of IPW, unbiased
effect sizes are indeed obtained, but it under-performed relative to
STDCOND-log, NOCOND-log and LTSCORE in simulations so is
not considered. If the objective is to obtain unbiased effect sizes,
IPW is recommended over LTSCORE. Note that the basis for the
improvement of LTSCORE is the published prevalence data and not
published SNP effect sizes. It is not equivalent to using STDCOND-
log with an offset, which will perform similarly to STDCOND-log
in the presence of ascertainment. Including an explicit interaction
term in the logistic model introduces an extra df reducing the overall
power.

Although this paper focuses exclusively on the use of conditioning
to discover new loci that are completely unlinked to the known
variants, conditioning is also a widely used tool for SNPs in the
same locus. In this case, the purpose is to perform fine-mapping

and better understand the genetic architecture of the known
associated locus (Chang et al., 2009). Therefore, any drop in power
due to induced correlation should not prevent researchers from
using conditioning in this same-locus context. LTSCORE may
improve fine-mapping efforts in some situations (see Supplementary
Material). A discussion of usage and meta-analysis is given in the
Supplementary Material.
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