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Many important physical applications are governed by the wave equation. The formulation as time do-
main boundary integral equations involves retarded potentials. For the numerical solution of this problem,
we employ the convolution quadrature method for the discretization in time and the Galerkin boundary
element method for the space discretization. We introduce a senpfieri cut-off strategy where small
entries of the system matrices are replaced by zero. The threshold for the cut-off is determineal by an
priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect
of additional perturbations such as panel clustering and numerical integration on the overall discretization
error. This method reduces the storage complexity for time domain integral equations fNoAND to
O(MZN% log M), whereN denotes the number of time steps aids the dimension of the boundary

element space.
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1. Introduction

Boundary-value problems governed by the wave equation
o2u— Au= f

arise in many physical applications such as electromagnetic wave propagation or the computation of
transient acoustic waves. Since such problems are typically formulated in unbounded domains, the
method of integral equations is an elegant tool to transform this partial differential equation to an integral
eqguation on the bounded surface of the scatterer.

Although this approach goes back to the early 1960diédman & Shawl1962), the development
of fast numerical methods for integral equations in the field of hyperbolic problems is still in its infancies
compared to the vast of fast methods for elliptic boundary integral equatio@a(aer & Schwal2004
and references therein). Existing numerical discretization methods include collocation methods with
some stabilization techniques (&irgissonet al, 1999 Bluck & Walker, 1996 Davies 1994 1997,
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Davies & Duncan2004 Miller, 1987 Rynne & Smith 1990 and Laplace—Fourier methods coupled
with Galerkin boundary elements in spa@amberger & Ha-Duondl986 Costabel1994 Ding et al,,
1989 Ha-Duong 2003. Numerical experiments can be found, e.gHia-Duonget al. (2003.
In Erginet al. (2000, a fast version of the ‘marching-on-in-time’ (MOT) method is presented which
is based on a suitable plane wave expansion of the arising potential. The advantage of this approach is
that the computational complexity is reduced toNOM) operations. However, the class of applications
for which MOT is applicable is smaller compared to the direct discretization of the retarded bound-
ary integral equations, e.g. the sources of the incoming waves have to be properly separated from the
scatterer ‘and’ the observation points and the signals must be bandlimited. In addition, a stability and
convergence analysis which takes into account the effect of the various perturbations (such as plane
wave expansions) on the ‘overall’ discretization error is not available in a rigorous mathematical way.
We here employ the convolution quadrature method for the time discretization and a Galerkin bound-
ary element method in space. The convolution quadrature method for the time discretization has been
developed irLubich (1988ab, 1994 andLubich & Schneidef1992. It provides a straightforward way
to obtain a stable time-stepping scheme using the Laplace transform of the kernel function. A straight-
forward implementation results in an algorithm with a storage complexity(df k%) and a computa-
tional complexity of GN2M?2). In Haireret al. (1985, FFT techniques have been introduced where the
computational complexity is reduced tq®log? N M2), while the storage costs stay unchanged.
Note that also the classical Galerkin discretization of the retarded boundary integral equations (see
Bamberger & Ha-Duongl1986 Ha-Duong 2003 leads to a block @plitz system matrix where the
matrix blocksAj, 0 < j < N, are of sizeM x M and sparse. More precisely, the number of nonzero
entries in the system matrix is, for piecewise constant boundary elements, of ordév€) and, for

piecewise linear boundary elements, of ordeéMing%) for this approach. The total cost for the compu-
tation of a full Galerkin approximation by using this approach sums up for piecewise constant boundary
elements to @VI2N) operations, while the operation count for piecewise linear boundary elements is
O(N?M?%/2). A drawback of this approach, however, is that the numerical integrations for computing
the coefficients of the system matrix have to be carried out on the intersections of the boundary element
mesh with the discrete light cone. The stable handling of these intersections and the implementation is
especially complicated for curved panels.

In this paper, we introduce an alternative approach which is based on sparse matrix approximation.

We introduce a simple cut-off strategy which reduces the computational costéN%M)zlog M),

while the focus is on the storage consumptions which are reducec(iNc% @2 log M). Note that this
approach has been extende&ness & Saute(2006, where the computational complexity is reduced to
O(N¥2]og!! M) and the storage cost to(87/2log'! M). We emphasize that this analysis only shows
the ‘asymptotic’ behaviour of the complexity. For practical problems, the leading constants behind these
O(-) estimates are essential and we are currently starting to implement our approach in order to compare
the different approaches for practical problem sizes.

In Tablesl and?2, the asymptotic complexity of these methods is depicted. Note that the error anal-
ysis will show that the relatiolN &~ M™/4+3/8 petween the number of time stefisand the dimension
M of the boundary element space is balancing the spatial and temporal errors and we employ this re-
lation in both tables. As can be seen from these tables, our approach reduces the storage complexity
more significantly while the FFT approach has a better computational performance in most cases. The
direct Galerkin approximation of the retarded potentials also has a very good performance, while the
drawbacks are the complicated numerical integration and the fact that a general perturbation analysis
for the overall discretization is not available by now.
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TABLE 1 Storage requirements for the direct Galerkin discretization, the FFT approach,
the sparse approximation by cut-off and the panel clustering method. The casé®m
corresponds to piecewise constant boundary elements, whiteInindicates piecewise
linear elements

Direct Galerkin FFT Cut-off strategy Panel clustering + cut-of
m=0 O(NMME) ONM?) O(NM¥ZlogM)  O(NM%logl M)
m=1 O(NMM3) ONM? O(NMMIZlogM)  O(NM*islogll M)

TABLE 2 Computational complexity for the direct Galerkin approximation, the FFT approach,
the sparse approximation by cut-off and the panel clustering method. Again, the casém
corresponds to piecewise constant boundary elements, white inindicates piecewise linear
elements

Direct Galerkin FFT Cut-off strategy Panel clustering + cuit-of

m=0  ONM2  ONM2(logZN)) O(NMZ islogM)  O(NM2~3 logl M)
m=1  ONM2  ONNMZ3(log?N)) O(NMZ &slogM)  O(NM2+islogll M)

In this paper, we develop the theoretical framework for the analysis of the additional perturbations
in the space discretization for the convolution quadrature approach.

The remainder of the paper is structured into five sections. In Se2tiare briefly introduce the
formulation of the wave equation as an integral equation and recall its stability properties. Section
is devoted to the convolution quadrature method for the time discretization and the boundary element
method for the space discretization. We introduceapriori cut-off strategy to replace small matrix
entries by zero and discuss some algorithmic aspects. In Sd¢tvwem analyse the effect of the pertur-
bation introduced by the cut-off strategy and prove the convergence of the corresponding solution. In
Sectionb, we discuss the complexity of our method. We show that the storage complexity in terms of the
numberM of unknowns in space is reduced frdvt? to N=2M?2. Finally, in Sectiorb, we summarize
the results and give an outlook onto future research.

We emphasize that our simple cut-off strategy reduces the storage complexity of the method while
the computational complexity is not reduced. However, this paper paves the way to introduce and analyse
further perturbations in the space—time discretization. Forthcoming papers will be devoted to panel
clustering techniques for the retarded potential boundary integral equation which will also reduce the
dependence of the computational complexityMr(cf. Hackbusctet al., 2007, Kress & Sauter2006
Banjai & Sauter2007).

2. Integral formulation of the wave equation

Let 2 c RS be a Lipschitz domain with bounda#y. In this paper, we present efficient methods for
numerically solving the homogeneous wave equation

o2u= Au inQ x (0,T), (2.1a)

with initial conditions
u-,0 =au(,0=0 inQ (2.1b)
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and boundary conditions
u=g onl'x(0,T), (2.1¢c)

on a time interval(0, T) for someT > 0. For its solution, we employ an ansatz as a ‘single-layer
potential’

t
u(x,t) =/ / k(x—y,t —1)p(y, r)dlydr, (x,t)e 2 x (0, T), (2.2)
oJr
wherek(z, t) is the fundamental solution of the wave equation,
ot —llzll)
k(z,t) = ————, 2.3
) 4 ||z &5

J(t) being the Dirac delta distribution. The ansa?z satisfies the homogeneous equati?dri§ and
the initial conditions 2.1h). The extensiorx — I is continuous and hence, the unknown dengiin
(2.2 is determined via the boundary conditio%s1(©, u(x, t) = g(x, t). This results in the boundary
integral equation fop:

t
Vo) (x, 1) ::/O /Fk(x -y, t=1)¢p(y,r)dlydr =g(x,t) V(x,t) e I' x (0, T). (2.4)

Existence and uniqueness results for the solution of the continuous problem are priovieicih(1994).
To recall them, we introduce appropriate norms and spaces. We define the Soboled $gage > 0,
in the usual way (see, e.glackbusch1992 or McLean 2000. The range of for which HS(I") is
defined may be limited, depending on the global smoothness of the surfataroughout, we let
[—k, k] denote the range of Sobolev indices for whidfi(7") is defined with the negative-order spaces
defined by duality in the usual way. The norm is denoted 4iyis(r).

For realr ands € [—k, k], the anisotropic Sobolev spat¥ (R; HS(I")) is given by

o0
H' (R; HS(I)) := [g: I'xR— R: / A+ DX 17 9(, )1 Fsry doo < oo] ,

where.# denotes the Fourier transform with respect to the time variabl®. The norm in this space
is given by

B sy = [ @+ 10DZ 17 (0 s do
The spaceH (0, T; HS(1")) is defined by
Hy(O, T; H3(IM) :={g:[0,T] x I' > R: g =g*ljp,T]
for someg* € H" (R, H3(I")) with g* = 0 on ] — oo, O[}
and the HOFMI-IIH(g(o,T;HS(r)) is given by
||g|||2-|6(0,T;HS(1")) = min {Ilg*lng(R;HS(r)) 1g" e H'(R, H3(I)

with g = g*|jo,7; andg“ = 0 on ] — oo, O[} .
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THEOREM 2.1 Letg € H'+2(0, T; HY2(I")) for somer e R. Then, @.4) has a unique solution
¢ € H"(0, T; H=Y2(I")) with

||¢||H6(0,T;H—1/2(1“)) < CT ”g” H6+2(O,T;Hl/2(1"))'
Forr > 5/2, the pointwise estimate

(., l:)”H—l/z(l") < Crlall H6+2(0,T;Hl/2(1"))

holds for allt € [0, T].

For a proof, we refer tBamberger & Ha-Duongl1986 Proposition 3), respectivelizubich (1994
(2.23), (2.24)).

3. Numerical discretization
3.1 Time discretization via convolution quadrature

For the time discretization, we employ the convolution quadrature approach which has been developed
by Lubich (1988ab, 1994 andLubich & Schneidef1992. We do not recall the theoretical framework
here but directly apply the approach to the wave equation.

We split the time interval [0T] into N + 1 time steps of equal lengthit = T/N and compute an
approximate solution at the discrete time levigls= n4t. The continuous convolution operatdris
replaced by the discrete convolution operator

n
VA 0000 1= > /F ol (X = )l ()dTy, (3.1)
j=0
forn=1,..., N. The convolution weighte 't (x) will be defined below (se€3(6)). The semidiscrete
problem is given by
V" an(x) =gl (), n=1....N, xeT, (3.2)

whereg"; (x) is some approximation t9(x, tn), or g(x, tp) itself.

Following the approach ihubich (1988ab, 1994, the convolution quadrature method is based on a
linear multistep method which, for an ordinary differential equatitit) = f (u(t)), can be formulated
as

k k
D ajuttiT = At D7 gy f ), (3.3)
j=0 j=0
whereu" ~ u(ty). Let
7 ()= Zionct?
le(zo Bick]

be the quotient of the generating polynomials of the linear multistep meh8d (
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DEFINITION 3.1 The convolution weights/(x — y) of the convolution quadrature metha@l2) are

given by the coefficients of the power series of the Laplace transﬁljzmy )/ 4t) = (x| z|H~?t
exp( —%?Hz”) of (2.3, i.e.

R(z, %?) = gowﬁt(z)g”. (3.4)

We employ the second-order accuratestable BDF2 scheme which is given by

ag,DFz _ }’ aJI?DFZ -2 azBDFZ _ §’ IBEDFZ _ 1,
2 2
i.e.
BDF2 15
yPRAO) = (P - A 49, (35)

Because the kernel function only depends on the distdnee||x — y||, we writek(d, -) andw/t(d)
short fork(x — y, -) andof(x — y). The coefficients of the power serie&4) can be obtained by the

Taylor expansion olﬁ(d, %4;)) abouty =0,

1
op'(d) =

=0

~

Using the formula for multiple differentiation of composite functions (see,@rgdshteyn & Ryzhik
1965, we obtain the explicit representation

11 (d\" _au [2d
Moy .~ ~ (Y -3 “
on (@ =i 2rd (2At) e\ ) (36
whereH, are the Hermite polynomials.

3.2 Space discretization. Galerkin boundary element methods

In Section3.1, we have derived the semidiscrete problem: ifes 1,2, ..., N, find ¢}, € H-Y2(I)
such that
n .
Z/Fw;’ij X =yl (ydry =g%(x), n=1,...,N, xeT. (3.7)
j=0

For the space discretization, we employ a Galerkin boundary element methad. et regular (in
the sense o€iarlet 1987 boundary element mesh an consisting of shape regular, possibly curved
triangles. For a triangle € ¢, the (regular) pullback to the reference triangle= conv{(g), @) ((1’)}

is denoted by, : T — 7. The space of piecewise constant, discontinuous functions is

Sio:={uelL®):Vre¥ u|, € P},
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and, alternatively, we consider the space of continuous, piecewise linear functions
S1:={ueCl(I):Vre?: (Uoy)l Py},

for the space discretization. As a basis 1 o, we choose the characteristic functions for the panels
7 € ¢, while the basis fofy 1 consists of the standard hat functions, lifted to the surfacéhe general
notation isS for the boundary element space a(lbp)i"":l for the basis. The mesh width is given by

h := maxh,, whereh, := dianx.

te¥

For the space—time discrete solution at tigenve employ the ansatz

M
Phn¥) =D dnibi(y), (3.8)

i=1

whereg, = (¢n,i )iM:1 e RM are the nodal values of the discrete solution at time gtephe collection
of these solution vectors is denoted% = (¢, € RN+*DM Note that we always includgy in
this vector although it is always zero.

For the Galerkin boundary element method, we repw;gein (3.7 by someqﬁi“,h € Sand impose
the integral equation not pointwise but in a weak form: Fjfid ,, € Sof the form @.8) such that

n M
> 0] [ o= ybbeodrydr = [ dhoabaodr  (39)
iZ0im1 rJr r
foralll1< k< Mandn=1,..., N. This can be written as a linear system
n
D Anjj =0 n=1...N, (3.10)
j=0
with
Aods = [ [ o=y bodry dr
rJr
and

Gk = /F g (OB ()T k.

3.3 Algorithmic realization and sparse approximation

The linear systems irB(10 can be written in the compact block form

RNXN:ZHN, (3.11)
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where the block matriv& y € RNTDM » RINFDM and the vectorg y € RNTDM are defined by

Ao 0 ... 0
A1 Ao do
A, A1 . 01
RN:z 2 ! and ﬁN:z e (3.12)
. A2 . . :
ON
0
AN - Ay A1 Ao

The matricesA; have dimensiorM x M and are fully populated. The straightforward procedure for
solving this system is given by the following recursion.
Forn=1,2,..., one computes

n—-1
Wn = 0n — ZAn—i b (3.13)
i=0

and then solves the system
Ao, = Wp. (3.14)
If we assume that a fast iterative procedure is employed which s@v&4 {(n O(M?) operations, the
total amount of work is given by
O(N?M?) 4+ O(N M?).
——— ——
(3.13 (3.19

The quadratic growth of the computational complexity with respebt tmdM would make the numer-
ical solution of time domain boundary integral equations prohibitively expensive. Hence, a fast solution
method of the block-triangular systef®.{1) which is based on FFT has been proposedaireret al.
(1989. This reduces the computational complexity toM¥N log® N) while the storage complexity is
O(N M?).

In this paper, we present an alternative method which avoids the use of FFT but employs a sparse
approximation of the system matricAg.

We recall the definition of the matri&p,

An)ij = / / 0 (x = y)by (b (y)dTy dT, (3.15)
suppb;) v suppbj)

where supfb;) denotes the support of the basis functipnThe matriced\, are full matrices. However,
it turns out that a substantial part of the matrix entries is small and can be replaced by zero. In Section
4.3 we derive that for the interval

120 = [th — ¢, th + c5 L] N[O, diam/ ],
with
1
¢t = 34/ 4ty/thlog =, (3.16)
y -
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we have

&
lodt(d)] < g vd¢ 1. (3.17)
Let#! c {1,..., M} x {1,..., M} be defined by
2D ={(, ) :3(x,y) € supi Nsupm; : [x — y|| € I/L}. (3.18)
This induces a sparse approximatidp by

x (An)i,j, if (G, ])e 2],
Anij == ’ 3.19

(An)i {0, otherwise. ( )

In summary, the space-time discretization with sparse matrix approximation is given by replacing
the matricesA, in (3.12 by the sparse versions.09 and plugging the corresponding solution
(@0, b1, ..., ¢n) " into the basis representation

M
Phn =D bnibi. (3.20)

i=1
The following procedure is the algorithmic formulation of our sparse method for sol8iag)(

procedure blocktriang;
begin
for n:= 0to N do begin
S:=On;
fori :=0ton—1do 5 }
for (k,1) € 2]~ dosqc := s« — (An-ik,i il
solveAgd,, = S;
end;
end;

The solution of the sys}evﬁ()&n = sshould be realized by means of an iterative solver which takes
into account the sparsity @fo.

4. Convergence analysis

The convergence analysis consists of three parts. In Sedtiprihe analysis of the space—time dis-
cretization without sparse matrix approximation is given. The sparse approximation of the magrices
induces a perturbation in the space discretization and in Seti#®we analyse the effect of such per-
turbations on the overall discretization error. The size of the perturbation depends on the smallness of
the functionw® outside the interval{"t. In Section4.3, we determine the interval;’! such that the

arising perturbation error is in balance with the overall discretization error.

4.1 Error estimates for the space—time discretization without sparse matrix approximation

For the semidiscrete solutig#l}; of (3.2), the following theorem holdd.(ibich, 1994).
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THEOREM4.1 For smooth compatible dagafor 0 < At < At*, At* arbitrary, the error satisfies

1/2

N
(At D %) = B¢, tn)nzH_l/z(r)) < Cure 4219l ys o1 Hu2(r)-

n=0

The A-stability of the linear multistep method is inherited to the convolution quadrature method,
i.e. all At* are permitted in the above estimate.

Let (¢I?,h)r'1\l=0 be the sequence of solutions 8f9) at the time levels,, n =0, 1, ..., N. We quote
from Lubich (1994 the following convergence theorem.

THEOREM 4.2 For smooth compatible datg the fully discrete method3(9) (Galerkin in space, op-
erational quadrature in time) is unconditionally stable and the solkjﬁﬁ’rp1 € Sn—1m: 0< n<N,
m e {0, 1}, satisfies the error estimate

3
lp (-, tn) — ¢2t,h(')”H—l/2(r) <Gy (Atz + hm+?) .

As an immediate consequence of this theorem, we see that the spatial and temporal errors are
balanced if

At2 ~ A3 (4.1)

4.2 Perturbations in the space discretization

In this section, we study the influence of replacing the matrisedy the sparse approximatiohy,.
Our perturbation analysis is based on the theory which was develogadioh (1994. For this, we
introduce the time continuous, space discrete problem which is given by:ggind0, T] — Ssuch
that

t
/ / / K(X = Y.t — D) (Y, (AT dT de = / g Oyn(0dlx VyneS  (42)
oJrJr I

We recall the definition of the one-sided Laplace transform

f(s):=(Zf)(s) = /Ooo e St (t)dt.

(Convention: if a function depends on space and time variables, the Laplace transform is always applied
to the time variable.) Applying this transformation th%) and using the rule for the Laplace transform
of convolutions, we obtain (cf.ubich, 1994

/F /F K(X = v, 9)¢n(y. S yn(0dTy dIy = /F 00, 9wh(0dlx VyneS Vsel,,  (4.3)

wherel, := {o +iu: u € R} for somes > 0. The Laplace transform &fis given by

ezl

Az

k(z, s)
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anddy is the Laplace transform ofy,. Fors € |,,, we define the operatdf,(s): S— Shy
(Vn(S)en, wh) L2y = /F/F k(X = ¥, )on(Y)yn()dIy dIx  Von, yh € S

Let Py: HY2(I") - Sdenote the orthogonal projection, i.e.

(Pnf, yn) ey == (f,wn)2ry YwneS

With these notations at hand, the time continuous, spatially discrete protlgnedn be written in the
compact form: Find, : I, — Ssuch that

(Vh(S)éh(S)» yn)zry = (P, S), wh)zry Vyne S Vsel,.

The time discretization can be described by replasiimgVh(s) by y (€754Y)/ 4t: Find q@At,h: l, > S
such that

Vath(©Patn(S), vn) 2y = (PhG(.S), wh)i2ry Yyh €S, VSel,, (4.4)

whereV 4t h(S) := Vh(y (€734 / 4t).

REMARK 4.3 The solutios"; , attime stefi, = nAt (cf. (3.8)) can be written by means of the inverse
Laplace transform as

¢Zt,h = (L7 P an) ().

Next, we express the soluti@?ﬂ,tjh of (3.20 in a similar fashion. Our cut-off strategy is based on
the approximation of the coefficiemzﬁ“(d) in the power series

R (d Vé(lé;)) Zwﬁt(d)fn

n=0
by
At d , d |At’
oty = | @, delas (4.5)
0, d¢ In,F
Let

At
G, 9) = l%(d ”eA—S)) Zwﬁ't(d)e sdin,
(4.6)
G, s) = Zcbrf“(d)e‘smn.
n=0

Forse l,, Iet\7m,h (s) : S— Shbe the operator defined by

(Vatn(S)ph, wh) 2y = /F /F G(lIx = YI. 9on(Y)wh()dIydlx  VYon, yh € S.
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Consider the problem: Finﬁm,h(s) € Ssuch that

Vath(9P 4e.n(S), wh)rzry = (PhAC.9), wh) 2y Ywhe S Vsel,. (4.7)

Then, the solutiorjﬁjt n Of (3.20 can be expressed by means of the inverse Laplace transform

B = (L s (to).

By combining @.4) and @.7), we see that the Laplace transform of the eB@rn ‘= dit.n — datn
satisfies

(Vat,n(8)€t,n(S), wn) 2y = (Vat,n(s) — VAt,h(S))QEAt,h(S), )y Vyn €S Vsel,.

This leads to the estimate

lestn®l-vzcry < IV O u-v2(ry e mvzeny I (Vatn(®) = Vaeh )P s gz (4.8)

forallsel,.
In order to estimate the terms i4.8), we need the following estimate ¥ ~1(s)|| H-12()HY2(T)
(cf. Lubich, 1994 (2.20)): Lets > 0, then there exist¥ (o) such that

IV I g-v2(rynizry < M(@)Is® ¥ Re(s) > o. (4.9)

LEMMA 4.4 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then, fore > 0 there existg, > 0 independent of the discretization parametétsh such that

_ 1
”VAI:}h(S)P|1||H_1/2(F)FH1/2(F) < CUA_tZ VS (S Io-. (410)
Proof. FromLubich (1994 (5.17)), we deduce the estimate

IV 3n O Phll-12(ry vz = IV 1 (€734 /40 Pullg-very navz )

—SsAt 2
< M(o0) ‘M

— Vse l,, (4.11)

for og such that Ré“%:m)) > og for all s € 1. o9 can be chosen independently #f. The estimate

now follows due to the boundedness|pfe~S4Y)|. a

Next, we turn to the second factor in the right-hand sidetd)( For the following lemma, we need
an inverse inequality which holds for our boundary element space®#&tfmenet al, 2004, while
the constant depends on the quasiuniformity of the meshCl.et> 0 denote the smallest constant
such that

lwnllizcry < Civh™2llynllp-12ry YwheS (4.12)

holds.
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LEMMA 4.5 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then,
CASh_l

m”&m,h(s)HH*l/Z(r) Vsel,. (4.13)

1(Vat.0(S) = Vatn ()P 4t n( 2y <

The constant 4 is associated with the Laplace operator &g is independent of the discretization
parametersdt andh.

Proof. For anygn € S, the differenceV 4t h(S) — VAt,h(s))qASh (s) can be written in the form

I(Vat.0(S) = Vatn(S)dn(S)lyzy = Sup
pneS\{0}
lenlly-1/2y=1

/ / 3(1x = yDdn(y. SHon(x)dry ATy,
rJr

where (cf. .6))

5(d) := D (@y'(d) — @y (d))e™>"™.
n=0

From the construction of our cut-off strategy (3.17)), we deduce that

& s &
5 d g _ —o 4tn =
19(@)] 4z d nzz(:)e 4rd(1l— e oY)

By using the well-knowrl_2-continuity of the single-layer potential for the Laplacian, we obtain

: . ¢ |$n (Y S)llen ()]
1(Vat,n(S) = Var,h(SNdn Sz € ——— sup / drydr;
HY2(I) S 1 g4t oneS\(0) rJr  Ax|x =y yuu
lenlly-1/2py=1
1
Ceh™2
< m||¢h|||_2(r)
CASh_l
< mlWhHH—l/Z(r)-
O

REMARK 4.6 Note that the previous lemma holds under the more general assumption

&

lon (@) = 63 @) < 5

(4.14)

Finally, we investigate the existence and boundedness of the sohil,_t,ilqm We do not employ
the possible smoothness #fit,n with respect to time since only the constants in the convergence and
complexity estimates would be improved but not the rates.
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LEMMA 4.7 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then giverns > 0, for all cut-off parametersin (3.19 with 0 < ¢ < 2e 0 h 4t2, the solution 4 n

in (3.20 exists and satisfies the stability estimate

||¢Ath(s)||H “12(ry < 26 AT2G(9) 2y VSE s
Proof. We start with the splitting
Vath(S) = Vatn()(I = X(8))  with X(8) := V31 (9)(Vath(S) = Vatn(9)).
Lemmatad.4and4.5imply

1 eh™1

I XS I u-12(ryH-12(r) < C4ACo 21 _eodt

By choosing 0< ¢ < lZCeZ h4t2, we obtain|| X (s) || y-12(ry_p-12¢ry < 1/2 uniformly for all

s € l,. This directly |mpI|e§ the stability estimate

IIVZ}%h(S)PhIIH1/2(r)eH—1/2(r) < 2||V2t?h(5)Ph||H1/2(r)<_H—1/2(r) < 2c, 4172,

O
The combination of Lemmatd.4, 4.5 and 4.7 leads to the convergence estimate of the solution

‘Z)At,h-
THEOREM4.8 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
We assume that the exact solutigi-, t) is in H™1(1) for anyt e [0, T]. Then, for all cut-off

paramet_em in (3.19 with0 < ¢ < 125 Z h 4t2, the solutiong 4 1, in (3.20) exists and satisfies the
error estimate

||‘5?1t,h = ¢ t)lln-12¢r) < Cyltn) (8h a5 4 at? + hm+2)
whereCqy depends on the right-hand sideand ono .
Proof. We employ the splitting
‘ﬂt,h —p(tn) = € h + (¢Zt,h — ¢(tn)).

The estimatel{ubich, 1994 Theorem 5.4) implies, for the second summand,

3
||¢Zt,h - ¢(tn)||H—1/2(r) < Ch™z,

The first summand can be estimated by combining Lemehdtal.5and4.7

1846.0(S)I4-v2( ) < 265 C 40~ At~ 18C, )z

1 — e—o’At
<Coeh™ At™24C, 9)lq2ry VSE s

From this, the estimate of the perturbatiégt,h — ¢ 4t,n in the original time space follows from the
Laplace inversion formula. O
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COROLLARY 4.9 Letthe assumptions as in Theorér@be satisfied. Let
A% ~ h™3

and choose

m , 25
e~hz2t7,

Then, the solutior&gt’h exists and converges with optimal rate
1655 — ¢ Co t)lln-12) < Cgltn)h™ 2 ~ Cqlt) 4t2.

4.3 Approximation ofoy by cut-off

In this section, we analyse the approximation of the convolution functions

18" e7O%

At
on () = n! 6(” 4zd

>

¢=0

where
1
7O =574 +3).

We recall the explicit formula as ir8(6)

11 d \"? 2d
At _ — >t
on (@) =1 2rd (ZAI) e H”(V at |’ (4.15)

whereH, are the Hermite polynomials. Far= 0, we have

_3d

t(d) 2 4t

4rd

with a singularity ad = 0, and forn = 1,
3d
1 e 24t
Aty
“1 ) = At 2x

In Fig. 1, we plotodt(d) for 4t = 1 and differenth. The convolution functions are approximately
scaled and translated versions of each other. To find an estimatg/ftd), we employ the ansatz

0 @] < 3o @),

with some scaling factors,, some translation function§t(d) and a function@n(x) that converges
towards a functior2 (x) asn — oo.
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FiG. 1. The convolution weighte4't (d) for 4t = 1 and different values af.

LEMMA 4.10 Forn > 1, let

n/2 </h k
On(X) = ( +1) e 3 and on =

(2znyi

Ellls

with k &~ 1.086435. Then,

1 d-—t
At < = ononf 2= ).
w; (d)] 47[d6n n(\/m«/E

173

Proof. To obtain an estimate fdeZ(d)|, we use the following estimate (cAbramowitz & Stegun

1972 (22.14.17)):

IHn(X)| < €/2k2"2/n1
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with k ~ 1.086435. Applying this to4.15) yields

K ()" e

At

d)| <

(g)n/z

Forn > 1, Stirling’s formula leads te% < ~— and we obtain

o (@2rn)d

g/2(d\n/2 K 1
This estimate is illustrated in Fig.
LEMMA 4.11 There holds
. _v2
lim 2n(x) = x°/4,

Proof. The logarithm ofQ,, can be written as

log 2n(x) = g log (1+ %) - %ﬁ
(

o d—t,
"\ Vi,

n i —pk+l o x Nk xon
-2 k NG 2
k=1
0 k+1 k
- 25w ()
= i ,
4 = 3 2k ns-1
x 1078
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FIG. 2. Comparison 0“’%00(01) (solid line) andﬁan Qn (dashed line).

).
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from which we conclude that
nI|_)mOo log On(X) = —-
holds. Thus, the statement of the lemma follows. O

REMARK 4.12 Forx > 0, 2, (x) is decreasing for increasimg For—,/n < x < 0, 2,(X) is increasing
for increasingn.

In Section3.3, we have introduced a sparse approximatiomAgfby replacingwﬁ”(d) by zero
outside an interval "t = [t — c3'%, tn + c7/L]. To determinel 't such that

&
o' (@) < 7 vd ¢ 1L,

we first seek an intervafh,c such that
On(X) <Ce VX ¢ Ine. (4.16)

Simple analysis shows th&, has one maximum at = 0 and is strictly monotonously increasing
for x < 0 and strictly monotonously decreasing for- 0. Due to Remarkd.12 sufficient conditions

for On(x) < CeareQ1(X) = +/x+1 e_%x < Ce for positivex and limy_, oo Qn(X) = €~ 4 < Ce for
negativex. If we choose

c=3 Iog}, (4.17)
&

inequality @.16) is satisfied for alk ¢ I, := [—¢€, €] with C = /3e71/3,

LEMMA 4.13 Letn > 1 andcit = /At /B¢ with € as in @.17). For 1L = [tn — ¢t tn + ¢l
there holds

lodt(d)] < —d vd ¢ It

Forn = 0 andlg" := [0, £ Atlog 1], there holds
At ¢ At
<2 vde it

Proof. We have

k 1 d—t &
At n

0] d < Q <

| " ( )l |‘Zd(27rn)% n(VAt\/E) iz d

since = i ¢ [—&, & and -+/3e1/3 < 1. Forn = 0, we have
(27rn)4
_3d
d) 2 4t
( Az d
and the condition > £ 4t log 2 implies
_3d
e 24t fd
< —.
Az d Az d
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5. Complexity estimates

First, we determine the storage requirements for the matAge&or the boundary element mesh, we
assume that the dimension of the boundary element space satisfies

cth™2 < M < Cih™2 (5.1)

A further assumption is related to the surfaCeand the mesk/. We assume that there is a moderate
constantC such that forany K i < M, the subset
PN i={je(l...,M}: (i, ) e 2N,

with 2 as in B.19), satisfies

3
AR
2

2" < Cmax{ 1, logM ¢ . (5.2)

This assumption can be derived from two assumptions, namely, that the area of

Ron={yel :Ixesupm :x -yl el

3
satisfie§ R n| < Cv/4tt?|log(e)| and thath? < supp; < Ch?. Choosing: for the cut-off such that
it is balanced with the discretization error, we have

|[loge| ~ logM .

THEOREM5.1 The number of nonzero entries in the sparse approximAtida bounded from above
by

3
# nonzero entries; CM max[l, N_%tn2 M logM ] .

Proof. The number of nonzero matrix entriesAncan be estimated by using.),

M 3
>l < CMmax[l, \/Attnzh‘zlogM]. (5.3)
i=1
The theorem immediately follows when replacing andh by N—1 and M_%, respectively. g

Using relation 4.1), the following result is obtained.

COROLLARY 5.2 Under the assumptiod.(l), the number of nonzero entries in the sparse approxima-
tion Ay, is bounded from above

e for piecewise constant boundary elements by
3 13
CtZM 1 log M. (5.4a)
For the first time stepsy = q 4t, whereq = O (log M), we obtain the improved upper bound

CM*i log2 M. (5.4b)



SPARSE CONVOLUTION QUADRATURE 177
o for piecewise linear boundary elements by

ciiMH logM. (5.4¢)
For the first time steps, = q4t, whereq = O (log M), the improved upper bound is
CM. (5.4d)
Note that the solution of3(11) requires thalN linear systems of the form
Ao, =r.hs.

have to be solved. If the dimensid is large, iterative methods have to be employed for this purpose
which require a matrix—vector multiplication in each iteration step. In this light, the improved estimates
(5.4b) and 6.40) of the number of nonzero matrix entries g accelerate this solution process.

Next, we will discuss the computational complexity for procedure blocktriang from Seon

THEOREM5.3 The number of arithmetic operations needed in procedure blocktriang is bounded by
¢ operations< CNZMZ2log M.

Proof. By using the estimates(3), the number of arithmetic operations for performing the nested loop
overi, j, k, € in procedure blocktriang can be estimated by

N i—-1 N i-1 M N i-1
2> >l <23 > Sy < CMZZmax[l, N“5tZ M IogM]
i=0 j=0 i=0 j=0(=1 i=0 j=0
N—1N-—j 5
<cmy Zmax{l,f?N‘ZMlogM}
j=0 (=1

< CMNmax{N, NZM ||og|v||}

< CN3M2log M.

Note that the matriAg is positive definite (cfSauter & Schwal2004 Theorem 3.5.4) and its condition
number behaves like~! (cf. Sauter & Schwap2004 Section 4.5). FronBauter & Schwal{2004
Theorem 6.1.7), we deduce tha(ro% log h) iterations of a cg-algorithm suffice to compute a solution
so that the overall convergence rate is preserved. Due to the spaisiyaff Theorenb.3), the amount

of work is given by

M3 log?M, m=0,

C (h_% log h) NM*+7" logM < CN .
M*ilog?M, m=1.

Due to @.1), this is bounded by the operations necessary for the nested loop. Thus, the assertion
follows. O
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6. Conclusions

In this paper, we have followed the convolution quadrature approach by Lubich and combined it with
a Galerkin boundary element method for solving the retarded potential boundary integral formulation
of the wave equation. We have presented a siragdgori cut-off strategy where the number of matrix
elements which have to be computed is substantially reduced and a significant portion of the matrix is
replaced by zero. A perturbation analysis established the stability of the perturbed problem.

The analysis in this paper paves the way for further complexity reductiondatkbuschet al.
(2007 andBanjai & Sauter(2007), we develop a variant of the panel clustering method for the wave
equation in order to further reduce the storage requirements and also reduce the computational costs.
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