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ABSTRACT

Motivation: Elementary flux modes (EFMs)—non-decomposable
minimal pathways—are commonly accepted tools for metabolic
network analysis under steady state conditions. Valid states of the
network are linear superpositions of elementary modes shaping
a polyhedral cone (the flux cone), which is a well-studied convex
set in computational geometry. Computing EFMs is thus basically
equivalent to extreme ray enumeration of polyhedral cones. This is
a combinatorial problem with poorly scaling algorithms, preventing
the large-scale analysis of metabolic networks so far.
Results: Here, we introduce new algorithmic concepts that enable
large-scale computation of EFMs. Distinguishing extreme rays from
normal (composite) vectors is one critical aspect of the algorithm. We
present a new recursive enumeration strategy with bit pattern trees
for adjacent rays—the ancestors of extreme rays—that is roughly
one order of magnitude faster than previous methods. Additionally,
we introduce a rank updating method that is particularly well suited
for parallel computation and a residue arithmetic method for matrix
rank computations, which circumvents potential numerical instability
problems. Multi-core architectures of modern CPUs can be exploited
for further performance improvements. The methods are applied to a
central metabolism network of Escherichia coli, resulting in ≈26 Mio.
EFMs. Within the top 2% modes considering biomass production,
most of the gain in flux variability is achieved. In addition, we compute
≈5 Mio. EFMs for the production of non-essential amino acids for a
genome-scale metabolic network of Helicobacter pylori. Only large-
scale EFM analysis reveals the >85% of modes that generate several
amino acids simultaneously.
Availability: An implementation in Java, with integration into
MATLAB and support of various input formats, including SBML, is
available at http://www.csb.ethz.ch in the tools section; sources are
available from the authors upon request.
Contact: joerg.stelling@inf.ethz.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Systems biology investigates a biological system as a whole because
characterizing and understanding single parts or subcomponents
often is not sufficient to explain the system behavior. Developing
mathematical models for such large-scale systems, however, is a
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major challenge. Various modeling approaches have been used for
studying biological networks to understand interactions at different
levels. However, simple approaches like graph analytical methods
may lack behavioral predictability and significance (Arita, 2004).
Detailed (e.g. deterministic or stochastic dynamic) modeling is
mainly limited by insufficient knowledge on mechanisms and
parameters (Klamt and Stelling, 2006). At an intermediary level,
constraint-based approaches exploit that reaction stoichiometries are
often well known even for genome-scale metabolic networks. They
gain popularity, for instance, because they allow to predict fluxes
for various organisms using linear or quadratic programming (Price
et al., 2004).

Constraint-based modeling starts with the m×q stoichiometric
matrix �N , with q reactions as columns of �N , each converting some
of the m metabolites (negative entries) into others (positive entries).
Thermodynamic conditions constrain the flux rates of irreversible
reactions to non-negative values. Since every reversible reaction
can be decomposed into two irreversible reactions, we get

�r ≥�0 (1)

where �rq×1 represents a flux distribution or flux mode. A common
assumption is furthermore that the system is in steady state because
metabolism usually operates on much faster time scales than the
corresponding regulatory events. At steady state, production and
consumption of metabolites are balanced and concentrations of
(internal) metabolites remain constant:

�N ·�r =�0 (2)

Equations (1) and (2) constrain the solution space for possible
flux modes to a polyhedral cone called flux cone (see Section
2.2 for formal definitions). Optimization techniques such as flux
balance analysis (FBA) define objectives, for instance maximizing
for growth or energy production, to predict a single flux distribution
(Schuetz et al., 2007). Related methods such as minimization of
metabolic adjustment include (experimentally derived) reference
flux values to predict the adjustment under different conditions or
of knockout mutants (Segrè et al., 2002).

For comprehensive analysis of metabolic network behavior,
however, the entire flux cone has to be considered. Minimal
functional pathways—elementary flux modes (EFMs)—are desired,
into which all operational modes of the network can be decomposed.
Moreover, EFMs constitute a unique set of generators for the flux
cone (Gagneur and Klamt, 2004). They correspond to extreme
rays of the polyhedral cone. Computing EFMs is equivalent to the

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85209902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.csb.ethz.ch


M.Terzer and J.Stelling

extreme ray enumeration problem from computational geometry.
Most algorithms are variants of the double description method
(Motzkin et al., 1953) and for EFMs, two versions are most relevant:
the canonical basis approach by Schuster and Hilgetag (1994) and
the nullspace approach by Wagner (2004). However, little is known
about the complexity of the algorithm, and it is not known whether
an algorithm exists with running time polynomial in the input
and output size. According to empirical observations, the running
time is approximately quadratic in the output size. Unfortunately,
the number of EFMs grows exponentially with network size,
which currently restricts the application to small- and medium-scale
networks of limited connectivity.

Many aspects have to be considered for any successful
implementation of an EFM algorithm. After summarizing the most
recent and in our opinion the most relevant achievements in
Section 2.1, we provide terminology and fundamentals in Section
2.2. The standard implementation of the EFM algorithm with
important crunch points is discussed in Section 2.3. In Section 3.1,
new methods are introduced, starting with bit pattern trees (Terzer
and Stelling, 2006) and its advancement, recursive enumeration of
adjacent rays. A new rank updating method using residue arithmetic
is developed, and we show how to exploit multi-core architectures
of modern CPUs with bit pattern trees. Finally, we demonstrate the
power of the new concepts for comprehensive network analysis of
Escherichia coli and Helicobacter pylori metabolism (Sections 3.2
and 3.3).

2 METHODS

2.1 Overview
The concept of EFMs for biochemical reaction networks was introduced by
Schuster and Hilgetag (1994). The solution space for feasible flux modes
shapes a polyhedral cone, thus, extreme ray enumeration algorithms from
computational geometry can be used to compute a minimal generating set for
the solution space. For EFM computation, variants of the double description
method (Motzkin et al., 1953) are most often used. The complexity of the
algorithm is poorly understood, but it performs quite well especially for
degenerate cases (Fukuda and Prodon, 1995). Performance and memory
requirements are both critical for difficult problems. Apart from constraint
ordering (see Section 2.3.3), initial matrix and number of iterations have most
influence on performance. Mainly geared for EFM computation, Wagner
(2004) proposed to use a nullspace initial matrix, leading to algorithm
simplifications and improved performance. Subsequently, Gagneur and
Klamt (2004) proposed to use binary vectors to store flux values of processed
reactions (see Section 2.3.2). This binary approach not only reduces memory
demands, but also facilitates set operations during elementarity testing (see
Section 2.3.1), another performance-critical aspect of the algorithm. Klamt
et al. (2005) use rank computations to test elementarity, and they outline a
divide and conquer strategy for parallel computation. In Terzer and Stelling
(2006), we introduced bit pattern trees as indexing technique for optimized
searching of subsets during elementarity testing. Furthermore, we introduced
the concept of candidate narrowing, which is extended here by a new
recursive enumeration approach (see Section 3.1.2).

2.2 Definitions
Definition 1. A set C of points in Rd is convex if the line segment between
any two points in C lies in C. A set C is called a cone if for every �x∈C, its
non-negative multiple lies in C. Combined, we have a convex cone iff

λ1 �x1 +λ2 �x2 ∈C for every �x1, �x2 ∈C and λ1,λ2 ≥0.

Definition 2. A convex cone P is called polyhedral cone if it is defined as
the solution set of finitely many linear equalities and inequalities, that is, as
the intersection of a finite number of hyperplanes and halfspaces:

P={�x : �A�x=�0, �B�x≥�0}.
Definition 3. A vector �r of a polyhedral cone P is called ray if

�r �= �0 and α�r ∈P for every α>0.

Two rays �r and �r ′ are equivalent, i.e. �r ��r ′, if �r =α�r ′ for some α>0.

Theorem 1 (Minkowski’s Theorem for Polyhedral Cones). For every
polyhedral cone

P={�x : �A�x=�0, �B�x≥�0}
there exists some �R such that it generates P:

P={�x : �x= �R�c for some �c≥�0}.
Every ray of the cone is a non-negative combination of columns in �R. If we
require �R to be minimal, the columns in �R are called extreme rays. Minimality
or elementarity of rays is essential for the algorithm. Hence we need a formal
definition for extreme rays, which is derived in the remainder of this section.
We exploit the special structure of the flux cone, leading to simpler definitions
and with it often to simpler algorithms.

Definition 4. Given the stoichiometric matrix �N, the flux cone is a
polyhedral cone defined as

F ={�r : �N �r =�0,�r ≥�0}
A ray �r of the flux cone is called flux distribution or flux mode, extreme rays
are called elementary flux modes or extreme pathways.

The flux cone coincides with the solution space for the constraints given
by Equations (1) and (2). Distinctions between EFMs and extreme rays
arise from slightly different treatments of reversible reactions [see Wagner
and Urbanczik (2005) for exact definitions]. Here, we use the general term
extreme rays, assuming that all reactions are irreversible (reversible reactions
are already decomposed). The inequality matrix (�B in definition 2) is an
identity matrix for the flux cone, leading to the subsequent specialized
definitions. General definitions for arbitrary polyhedral cones are given in
Fukuda and Prodon (1995).

Definition 5. For any ray �r ∈F, the set Z(�r) with indices i corresponding
to zero fluxes in �r is called the zero set of �r:

Z(�r)={i :ri =0,1≤ i≤q}
Definition 6. Let �r and �r ′ be rays of F. If one of the following holds, both
hold and �r is called an extreme ray:

a) rank( �N.Z(�r))+|Z(�r)|=q−1

b) there is no �r ′ ∈F with Z(�r ′)⊇Z(�r) other than �r ′ ��r
where q is the number of reactions and �N.Z(�r) are the columns of �N
corresponding to non-zero fluxes, represented by Z(�r)={i :ri �=0,1≤ i≤q}.

2.3 Double description method
Most algorithms for EFM computation are variants of the double description
method invented by Motzkin et al. (1953). Starting with an initial cone that
contains the final cone, some constraints are already considered and the
remaining constraints are iteratively added. Each constraint is represented
by a halfspace, which is intersected with the intermediary cone (Fig. 1).
The intersection removes some of the extreme rays. New extreme rays
are created from adjacent kept/removed extreme ray pairs using Gaussian
elimination. The newly created extreme rays lie in the hyperplane separating
kept from removed rays. Wagner (2004) proposed a special form of the
kernel (or nullspace) matrix of �N as an initial cone, namely �K =[�I; �K∗]T ,
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Fig. 1. Iteration step of the double description algorithm. A new extreme ray
h is created from adjacent rays a and g. Descendants of non-adjacent rays,
such as i from c and g, are not extreme rays.

where �I is the identity matrix. If �Nm×q has full rank m, the kernel matrix
�K has dimensions q×(q−m) and �K∗ consequently m×(q−m). All steady-
state constraints (Equation 2) are satisfied by the nature of the kernel matrix.
Furthermore, q−m irreversibility constraints (Equation 1) are fulfilled due
to the identity matrix in K , leaving m inequalities to be solved in the iteration
phase. Inequality constraints of the flux cone involve only one variable, the
reaction for which only positive flux values are desired. Let us assume that
we are in the iteration phase and have already considered j irreversibility
constraints. To add constraint j+1, extreme rays of the flux cone Fj are
partitioned into three groups, �R+, �R0 and �R−, which correspond to rays with
positive, zero and negative flux value at reaction j+1, respectively. Extreme
rays of the cone Fj+1 are those in �R+ and �R0 plus new extreme rays generated
from ray pairs (�r+,�r−)∈ (�R+, �R−). New rays are created by canceling out
the flux value at position j+1 using Gaussian elimination, i.e.

�rnew =r+
j+1�r− −r−

j+1�r+ (3)

Note that the new ray is a non-negative combination of old rays, and thus
by definition 1 surely a ray of the cone. Combining all elements of (�R+, �R−)
would generate a quadratic number of new rays measured in terms of
intermediary extreme rays. However, only pairs of adjacent rays generate
extreme rays (a and g in Fig. 1), thus adjacency testing or better directly
enumerating adjacent rays is essential for any feasible implementation.

2.3.1 Elementarity testing Principally, one could use the definition of
extreme rays to test elementarity of newly generated rays. Hence, either
the rank of a submatrix of �N is computed according to definition 6a, or the
new ray is tested against all other extreme rays as imposed by 6b. Instead of
constructing new rays first to discard most of them via the elementary test,
it is advantageous to know about elementarity of the new ray beforehand.
Only adjacent extreme rays generate new extreme rays, and the definition
of adjacency descends from definition 6.

Definition 7. Let �r, �r ′ and �r ′′ be extreme rays of F. If one of the following
holds, both hold and �r and �r ′ are said to be adjacent:

a) rank( �N
.Z(�r)∩Z(�r ′))+|Z(�r)∩Z(�r ′)| = q−2

b) if Z(�r ′′)⊇Z(�r)∩Z(�r ′) then �r ′′ ��r or �r ′′ ��r ′

Both (a) and (b) can be used to test adjacency of two extreme rays. Test (a)
does not depend on the number of intermediary extreme rays and thus is not
decelerating during computation, which is advantageous. Furthermore, it can
be easily applied for distributed computing since it only depends on the rays
to be tested and on the stoichiometric matrix—a system invariant. Klamt et al.
(2005) actually suggest using the rank test for that purpose. However, for
larger networks, rank computation time is not negligible, especially if exact
arithmetic is used. It is a cubic algorithm using Gaussian elimination, i.e.
O

(
mm(q−m)

)
for a full-rank stoichiometric matrix �Nm×q. In Section 3.1.3

we suggest a new rank update method that circumvents these problems and
makes (a) a competitive strategy especially for large networks. Apart from
that, it is worth mentioning that rule (a) constrains the minimum number of

elements in Z(�r)∩Z(�r ′) to q−2−rank( �N), and it is always a good idea to
check this condition first.

2.3.2 Data structures and compression Zero sets (definition 5) can be
implemented as bit sets using one bit per set element. This requires only
little space in memory, and set operations such as intersection and union can
be computed with bitwise and/or functions—a single CPU operation for set
sizes 32(64). Subset (superset) testing is not as obvious, but can be easily
derived from the following basic set property:

Z1 ⊆Z2 ⇐⇒Z1 ∩Z2 ≡ Z1 (4)

Gagneur and Klamt (2004) showed that storing only binary values for
processed reactions is sufficient. Intermediary extreme rays consist of a
binary and a numeric part. After enforcing irreversibility constraints, flux
values corresponding to the processed reaction are converted from numeric to
binary. Consequently, only binary extreme rays are left after the last iteration
step, from which numerical flux values can be reconstructed.

Another important technique to reduce the size of data structures is
to remove redundancies beforehand. This saves memory, but also affects
performance since operations on smaller structures are faster, and compacted
stoichiometric matrices typically lead to fewer iteration steps. Good
overviews of compression techniques are given in Gagneur and Klamt (2004)
and in the Appendix B of Urbanczik and Wagner (2005).

2.3.3 Constraint ordering The double description algorithm is known
to be very sensitive to constraint ordering. In Fukuda and Prodon
(1995), different row ordering heuristics are compared, favoring simple
lexicographical ordering of matrix rows. Using the nullspace approach, the
kernel matrix in row-echelon form serves as initial extreme ray matrix.
The identity part of the matrix has to be preserved, but remaining rows
can (and have to) be sorted to optimize performance. Unfortunately, no
mathematical insight is available so far. In practice, we observed good
performance with the following orderings: maximum number of zeros
(mostzeros), lexicographical (lexmin), absolute lexicographical (abslexmin),
fewest negative/positive pairs (fewestnegpos, reducing the set of adjacent
pair candidates) and combinations thereof.

3 RESULTS

3.1 Algorithmic improvements
3.1.1 Bit pattern trees In the iteration phase of the double
description method, new extreme rays are generated from adjacent
ray pairs. According to definition 7b, we can enumerate all ray pairs
(�r+,�r−) and test adjacency by ensuring that no superset Z(�r)⊇
Z(�r+)∩Z(�r−) exists. This is guaranteed with an exhaustive search
over all �r ���r+,�r−, but an indexed search strategy is preferable.
Zero sets are q-dimensional tuples, hence multi-dimensional binary
search trees (kd-trees) can be used for optimized searching (Bentley,
1975). Therefore, we adapted kd-trees to binary data and invented
the concept of bit pattern trees (Terzer and Stelling, 2006).

Figure 2 illustrates superset search on a bit pattern tree. Pseudo
code for tree nodes and search method are given in Supplementary
Material. The fundamental idea of bit pattern trees is very simple:
a binary search tree is constructed, each node separating zero sets
containing a certain bit (right child tree) from those not containing
the bit (left). Searching a superset of Z∩ =Z(�r+)∩Z(�r−), we
traverse the tree and test at each node whether Z∩ contains the bit
used for separation of zero sets in the subtrees. If Z∩ contains the bit,
only the right child node can contain supersets, if not, both children
are recursed.

Since the tree will never contain all 2q possible sets, not all
bits will be used for separation in the nodes. We can exploit this
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Fig. 2. Bit pattern tree with union patterns on the right of every tree node and
leaf nodes at the bottom of the tree with zero sets in the boxes. Bold values
are common for the whole subtree since they were used to separate left and
right tree sets. The set in the dotted box at the top of the tree represents an
exemplary intersection set Z∩. Searching a superset of Z∩, the tree is traversed
along the blue arrows. Dotted arrows are not traversed and truncation of
searching is indicated by crosses next to the union pattern causing abortion.

to balance the tree by selecting particular bits at tree construction
time. Moreover, we store the union pattern ZU (T )=⋃

Zi for every
tree node T , unifying all zero sets Zi ∈T . We can abort searching a
superset of Z∩ at node T if Z∩ �⊆ZU (T ).

3.1.2 Recursive enumeration of adjacent rays The simplest
approach to use bit pattern trees enumerates all ray pair candidates
and tests adjacency as described in the previous section. However,
enumerating all pairs is still an elaborate task in O(n2), where n is the
number of intermediary modes. To improve this enumeration step,
we construct three bit pattern trees, T+, T− and T0 for rays with
positive, negative and zero flux value for the currently processed
reaction, respectively. To enumerate all adjacent ray pair candidates
(r+,r−)∈ (T+,T−), we perform four recursive invocations on the
subtrees of the nodes T+ and T− [see Step (i) in Fig. 3].

The cut pattern ZC =ZU (T+)∩ZU (T−) unifies all intersection
sets Z∩ =Z(r+)∩Z(r−), and hence can be used as test set covering
all candidates of the subtrees (Terzer and Stelling, 2006). Note that
meetsPrerequirement is called on each recursion level, and thus
efficient tests are preferable. Any necessary condition for adjacency
can be used. Here, we applied minimum set size q−2−rank( �N)
deduced from adjacency test 7a. A recursion occurs if at least one
tree node is an intermediary node. If both nodes are leaves, all pairs
are tested, first again using meetsPrerequirement and then by testing
for adjacency. If the combinatorial test 7b) is used to implement
is Adjacent, we search for supersets in all three trees T+, T− and
T0 (see Supplementary Material for a simple case study).

3.1.3 Lazy rank updating Instead of the combinatorial adjacency
test, as explained in the previous section, we can use the rank test 7a.
This has the advantage that testing does not depend on the number of
intermediary modes and easily allows for distributed computation.
However, for large networks, rank computation is an expensive
procedure and some care has to be taken.

Considering that we are recursively traversing two trees with little
change between two recursion steps, we can think of an update
strategy for the examined matrix. Using Gaussian elimination to
compute an upper triangular matrix to derive the rank, we extend
the triangular part with every recursion step. Lower recursion levels

Fig. 3. Pseudo code for recursive enumeration of adjacent rays using bit
pattern trees. Steps (i) and (iii) contain the recursions, in (ii), adjacent pairs
are found and added to the pairs list.

can then benefit from the precomputed matrix part and only need to
perform triangularization of the remaining part.

Let us consider two consecutive recursions of addAdjPairs with
parent nodes (P+,P−) and child nodes (C+,C−), e.g. assuming
the first recursion of Step (i) in Figure 3. Descending the tree,
union patterns can only have fewer or equally many elements. Thus,
the parent cut pattern is a superset of the child cut pattern, i.e.
CP ⊇CC . Adjacency test 7a consists of two parts: the rank of a
column submatrix of �N , and the size of the test set T =Z(�r)∩Z(�r ′).
Here, T coincides with the cut pattern, and since the child set CC
contains at most all elements of CP , the submatrix �N

.CC
contains at

least all columns of �N
.CP

. The elements CC\CP =CP\CC are thus
exactly those columns which are added to the triangularized part of
the matrix at this recursion step. A single step of the rank update
method is illustrated in Figure 4. Note that adjacent enumeration
aborts early for many node pairs due to the meetsPrerequirement
test. Therefore, we execute triangularization of the matrix lazily,
that is, not before a real rank computation is requested.

3.1.4 Floating point versus exact arithmetic Gaussian
triangularization with floating point numbers typically uses
full pivoting to minimize numeric instability effects. Rank updating
uses the same matrix for various rank computations, and instability
becomes a serious issue. To circumvent this problem, the non-
triangularized matrix part is initially stored at each update level.
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Fig. 4. One step of the rank update method: partially triangularized matrix
before the current step (left) and continuation after triangularization of
columns two and four (right). × stands for non-zero pivot elements,
⊗ for any value. Triangularized columns are reflected by elements in the
complementary cut patterns CP and CC , respectively. Exemplary patterns are
given in binary (square brackets) and standard set notation (curly brackets),
R stands for any remainder of the sets, R0 for its binary representation. Note
that column three and four are swapped during the update step to put the
pivots in place, and rows might have been swapped to find non-zero pivot
elements. If all remaining elements of an added column are zero, it is put to
the end of the matrix and ignored at subsequent steps.

It is restored before each rank computation and before branching
to the next update level. Neglecting that this procedure uses some
more memory, it has still two main disadvantages: (i) restoring
significantly affects performance, and (ii) instability might still be
an issue for large or ill-conditioned matrices.

Rank updating was therefore implemented with exact arithmetic,
using rational numbers with large integer numerators and
denominators. Opposed to the floating point variant, small pivot
elements are chosen to avoid uncontrolled growth of integers. The
downside of fraction numbers is 2-fold: arithmetic operations such as
addition and multiplication are much more expensive, and integers
are possibly still growing, even if fractions are continually reduced.
Using store and restore as described for floating point arithmetic
improves control of integer growth and leads to better overall
performance.

3.1.5 Rank computation using residue arithmetic A powerful
method to implement rank computation is to work with integer
residues u modulo a prime m. The residues u are constrained
to the interval 0≤u<m using unsigned, and to −m<u<m with
signed arithmetic (Knuth, 1997, Section 4.3.2). Assuming that
the stoichiometric matrix is rational, we compute the residue
matrix �N ′ =[n′

ij] by multiplying each numerator nij with the
multiplicative inverse of the denominator dij (modulo m), that is,
n′

ij = ((nij mod m)(d−1
ij mod m) mod m). Note that multiplicative

inverses are defined for numbers being coprime with m. They are
computed using the extended Euclidean algorithm. If any of the
denominators is not coprime with m, that is, it is a multiple of
the prime—which is actually very unlikely for large primes—we
multiply the whole column of the matrix with m (or a power of it if
necessary) and reduce the fractions.

For the triangularization of the matrix, no inverses are needed.
Suppose we have chosen pivot element n′

rc. The new values n′′
ij of

subsequent rows are then calculated as

n′′
ij = ((n′

ijn
′
rc −n′

rjn
′
ic) mod m) for all i>r,j≥c

resulting in zeros for values n′′
ic below the pivot element. If we want

to use CPU arithmetic operations, the difference of two products

in the above equation has to fit into a register, that is, it has to be
below 2e with e=32(64). We can ensure this by choosing our prime
m<

√
2e−1.

Suppose that we have reached the point where no non-zero values
are left when scanning for the next pivot row/column. This is where
rank computation normally stops, but in the residue case, one of the
zero elements could theoretically be a multiple of our prime, unequal
to zero in the non-residue world. That is, the rank computed by
residue arithmetic is at most equal to the real rank. The probability
of any non-zero value being zero (mod m) is m−1, which could cause
a problem if many different rank computations were executed. The
probability can be improved to

∏
m−1

i by simultaneously computing
the rank for different primes mi, which can indeed be performed in
parallel in modern processors by using SIMD instructions (single
instruction multiple data, e.g. SSE instructions of an Intel processor).
However, in practice, even a single small prime around 100 did a
perfect job.

3.1.6 Exploiting multi-core CPUs Most current processors have
multi-core architectures, allowing multiple threads or processes to
run concurrently. We made use of this extra power with the help of
semaphores at Step (i) in Figure 3. The semaphore maintains a set of
permits, one per CPU core, with efficient, thread safe operations to
acquire and release permits. The algorithm tries to acquire a permit
to start a new thread. If the permit is received, the four recursive
invocations are split into two parts—two invocations for the current,
two for the newly created thread. If no permit is acquired, the current
thread executes all four recursions. If a thread completes by reaching
the leaves of the tree, it releases the permit, triggering a new thread to
start soon after. Note that it is important to have very efficient acquire
and release operations since they are called very often. The second
critical point is the concurrent write access to the pairs set. Either the
set itself is made thread safe, or the new thread gets its own set and
the parent thread is responsible for merging after completion of the
child thread. This dynamic concurrent tree traversal strategy can be
improved by primarily collecting recursive invocations to a certain
recursion depth if permits are available. A new thread is started
for each available permit and all threads concurrently process the
collected recursions. Noteworthy, this fine-grained parallelization
technique is applicable to both adjacency test variants. It can be
applied simultaneously with other parallelization approaches, for
instance, the coarse-grained approach given in Klamt et al. (2005)
where the computational task is divided into disjunct subtasks that
can be run in parallel.

3.2 Benchmarks
For benchmarking, we analyzed an E.coli central metabolism
network with 106 reactions and 89 metabolites that was also used
in (Klamt et al., 2005). All tests were performed on one or two
dual-core AMD Opteron processors of a Linux 2.6.9 machine,
using a Java 64-Bit runtime environment (version 1.6.0) with
30 GB maximum heap memory size. For all tests, only the iteration
cycle time of the algorithm was taken, excluding preprocessing
(compression, etc.) and post-processing (from binary to numeric
EFMs). Computation times for the different algorithmic strategies
are compared in Figure 5A. Combining recursive enumeration of
adjacent rays on bit pattern trees and a combinatorial adjacency test
shows best performance for the selected examples. Standard rank
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Fig. 5. Benchmark results on a system with two dual-core AMD Opteron
processors for different configurations for an E.coli central metabolism
network. (A) Computation times with four threads for combinatorial test
(−·◦·−), standard rank test (··×··), rank updating with exact arithmetic
(– � –) and with residue arithmetic (−�−). Dashed gray lines indicate linear
and quadratic computation time. (B) Speedup with two and four threads
compared to single thread computation. Line colors indicate the problem
size: red, blue and black stand for 0.5, 2.45 and 26 Mio EFMs, respectively.
Line styles correspond to different computation methods: combinatorial test
(——), rank updating with exact arithmetic (···) and with residue arithmetic
(−−). The thin gray diagonal represents ideal speedup.

computation combined with recursive enumeration of adjacent rays
and rank updating with residue arithmetic have similar performance
for these examples. The superiority of the rank test in Klamt
et al. (2005) may be caused by their unoptimized linear search
method for the combinatorial test. Here, we make use of pattern
trees for an optimized search (Terzer and Stelling, 2006). However,
rank tests might be more efficient for larger networks, since
rank testing decelerates probably much slower with increasing
stoichiometric matrix size than combinatorial testing, which depends
on the exponentially growing number of intermediary modes. For
larger networks, we observed better performance for the rank
updating method (data not shown). Rank updating is definitely a
good choice especially if parallel computation is considered. We
recommend residue arithmetic for matrix rank computations in
parallelized versions, but rank updating performs remarkably well
when exact arithmetic is used instead. Speedup factors for one,
two and four threads using two dual core CPUs are shown in
Figure 5B. Exploiting multi-core CPUs is particularly effective for
large problems, where the speedup factors approach the optimum.
For our examples, all methods—even exact arithmetics for the
large problems—are faster than CellNetAnalyzer/Metatool (Klamt
et al., 2005). For 507 632/2, 450 787 EFMs, we timed 2 min
57 s/92 min 09 s for Metatool (5.0.4) and 1 min 30 s/19 min 39 s for
the combinatorial test with one and 40 s/8 min 08 s with four threads,
respectively (see Supplementary Material for network configuration
details and all computation times).

3.3 Large-scale EFM computation
For our first large-scale computational experiment, we used different
configurations of the central metabolism network of E.coli (Stelling
et al., 2002) with growth on glucose. Besides uptake of glucose,
six central amino acids from different biosynthesis families are
available, only one at a time in a first experiment. This results in
six sets of elementary modes for the amino acids alanine, aspartate,
glutamate, histidine, phenylalanine and serine. The sets contain
between 321 431 (alanine) and 858 648 (glutamate) EFMs. In a
second evaluation, we computed the set of EFMs for combined
uptake that consists of 26 381 168 modes.
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Fig. 6. (A) Number of EFMs for different amino acid uptake configurations,
namely modes without biomass production (nb) and modes with 0–6
concurrently enabled amino acid uptake reactions. Only EFMs on the
left of the dashed line can be computed from single amino acid uptake
configurations. (B) CV for reaction fluxes of different uptake configurations,
considering only top yield EFMs. The configurations are: glucose without
amino acid uptake (dashed line), with phenylalanine (dotted), with glutamate
(dash-dotted) and with all selected amino acids (solid line).

Figure 6A shows the number of elementary modes per amino
acid uptake configuration in terms of the number of simultaneously
enabled uptake reactions. The total number of EFMs with at most one
amino acid uptake is 1 714 691, only 6.5% of the EFM set enabling
simultaneous ingestion of up to six amino acids. Conversely, by
computing EFM sets for one amino acid uptake per simulation, and
combining the resulting sets afterwards, adding up to 1.7M EFMs,
simultaneous uptake cases are missed. These correspond to >90%
of the metabolic pathways.

A major disadvantage of single-objective optimization techniques
such as FBA is the restriction to one optimal flux mode. Robustness
reflected by a certain degree of flexibility is disregarded. We
therefore analyzed flux variability for modes with suboptimal
biomass yield (Fig. 6B). We observed no flux variation for zero
deviance from the top biomass yield since single EFMs reach
optimality. With increasing suboptimality, the number of reactions
with coefficient of variation (CV) over 50% grows rapidly. Around
2% below top yield, reaction variation reaches a saturation point.
Interestingly, we find a similar saturation point for different CV
threshold values (see Supplementary Material for other thresholds).
Hence, the cell can achieve high flexibility (robustness) with only
little decrease in metabolic efficiency.

Next, we applied our methods to a possibly more realistic,
genome-scale metabolic network of H.pylori. In their study, Price
et al. (2002) computed the much smaller set of extreme pathways
(EPs) for the formation of all non-essential amino acids and
ribonucleotides. Here, we focus on the amino acids and compute
EFMs for all non-essential amino acids simultaneously. Allowable
inputs are d- and l-alanine, arginine, adenine, sulfate, urea and
oxygen; outputs are ammonia, carbon dioxide and the carbon
sinks succinate, acetate, formate and lactate [in correspondence
to case 4 in Price et al. (2002)], together with all non-essential
amino acids. Focusing on the production of a specific amino
acid, only a small fraction of EFMs is found with typical small-
scale simulations, preventing the simultaneous production of other
amino acids (between 3% for proline and 16% for asparagine,
respectively). Altogether, only 815 576 of 5 785 975 EFMs are found
with single amino acid simulations—as for the E.coli case, over
85% of the modes are missed (see Supplementary Material for
details). Furthermore, allowing for simultaneous production of all
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Fig. 7. Path length distributions of EFMs for glycine production in H.pylori
when glycine is produced alone (dark bars) or possibly jointly with other
amino acids (light bars).

amino acids yields EFMs with larger path lengths as shown in
Figure 7 for glycine production. Path length distributions are similar
for the other amino acids (see Supplementary Material) and the
more complex pathways are not reflected in simplified single amino
acid experiments. Hence, our computational methods allow for
investigation of combined production of amino acids at a genome-
scale level for the first time. Still, applicability to larger networks
and more complex environmental conditions has to be shown.

4 CONCLUSION
Currently, the computation of EFMs is restricted to metabolic
networks of moderate size and connectivity because the number of
modes and the computation time raise exponentially with increasing
network complexity. Here, we introduced new methods which
are several times faster than traditional algorithm variants for
medium problem sizes, and even higher speedups are expected
for larger problems. We proved the efficiency by successfully
competing with alternate implementations, and through large-scale
computations for example networks. However, it remains open
whether EFMs can be computed for the most recent genome-
scale networks. It can possibly be achieved in the near future with
intelligent modularization strategies and parallelized algorithms.
Memory consumption becomes a major challenge and one might
have to consider out-of-core implementations that store intermediary
modes on disk. The current in-core implementation requires a lot of
memory for large computations. However, our examples with up to
2.5 M EFMs can be run on a normal desktop computer with 1–2 GB
memory. We anticipate that porting the code from Java to C will
result in rather marginal performance and memory improvements
at the cost of reduced interoperability and maintainability. We
therefore prioritize out-of-core computation and parallelization. We
already applied fine-grained parallelization by exploiting multiple
cores of modern CPUs and our rank update method with residue
arithmetic is readily applicable to parallel computation. Coarse-
grained parallelization complements our multi-core technique and
can be applied simultaneously.

To investigate the potential of large-scale EFM computation to
yield new biological insight, we first focused on the analysis of
E.coli central metabolism. The enhanced computation potential
enabled the calculation of over 26 million elementary modes for
growth on glucose and simultaneous uptake of selected amino acids.
Only a small fraction of these EFMs and none of the maximum
yield modes are found with typical small-scale computations. Next,

we analyzed the CV for all reactions. Interestingly, flux variation
increases rapidly when gradually decreasing optimality of biomass
production to 2% below maximum yield. After this saturation
point, we observed only little gain of variation. This gives a
marginal value where the cell can easily gain robustness at a small
price of biomass production. Importantly, such multi-objective flux
phenotypes cannot be explained with single objective optimization
techniques such as FBA. In a second application, we analyzed the
simultaneous production of non-essential amino acids in a genome-
scale metabolic network of H.pylori. Most of the more than 5
million EFMs generate multiple amino acids concurrently, and they
have significantly larger path lengths than those producing only a
single amino acid. These more complex cellular functions are missed
with simplified setups considering only one amino acid at a time.
Altogether, our study shows both the potential and necessity of large-
scale computation of elementary modes, an important step toward
universal genome-scale applications.
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