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Adequate antibiotic treatment of bacteri-
al infections is one of the most impor-
tant problems of our time, not only
because of the incessant development of
antibiotic resistance, but also because of
diminished development of novel anti-
bacterial products. Attention has been
focused on this problem by the recent
United Nations World Health Day in
April 2011, which highlighted antibiotic
resistance and issued calls for urgent
action by expert scientific panels tasked to
establish priorities and solutions [1].
Among the proposals is a call for enhanced
understanding of resistance, including
mechanisms and means of predicting its
emergence. Obtaining this knowledge
will clearly affect the prudent use of anti-
biotics and drive novel antibiotic discov-
ery and development strategies.

Cationicantimicrobialpeptides(CAMPs)
are compounds of great pharmacologic
and biologic interest, especially because
they have nonspecific and multiple modes

of action, which are believed to thwart or
forestall the development of resistance.
CAMPs are widely distributed in nature
and constitute key effectors in innate
immune responses to infection in organ-
isms ranging from mammals to plants.
CAMPs share cationic and amphipathic
properties but vary in sequence, second-
ary structures, and size. Their antimic-
robial activity is initiated through a
nonspecific electrostatic interaction with
the anionic heads of membrane phospho-
lipids, leading to membrane depola-
rization or pore formation. Increasing
evidence indicates that some CAMPs are
probably internalized, leading to interac-
tion with intracellular targets, suggesting
that membrane damage alone might not
be the principal antimicrobial mechanism
of CAMPs [2–4].
Although CAMPs are considered

promising candidate templates for devel-
opment of novel antimicrobials, it has
recently been shown that bacteria are
capable of adapting and resisting CAMPs,
perhaps because of co-evolution within
their host. These resistance mechanisms
include production of peptidases and
proteases that degrade antimicrobial
peptides, production of compounds that
inhibit the action of CAMPs, and reduc-
tion of net anionic charge of the bacteri-
al cell envelope [5].
Daptomycin, a calcium-dependent

antimicrobial lipopeptide, is used to

treat certain skin infections resulting
from various gram-positive organisms
and especially bloodstream infections
due to Staphylococcus aureus. In some
respects, daptomycin resembles CAMPs
because of its peptide content, charge,
and mode of action targeting membrane
function. S. aureus strains displaying
reduced susceptibility to daptomycin
have been observed both in vivo and in
vitro [6–8]. Of interest, cross-resistance
between daptomycin and other CAMPs
that target the bacterial cell membrane
has also been reported. These studies
suggest that exposure to
daptomycin could confer reduced
susceptibility to endovascular host
defense antimicrobial peptides, notably
thrombin-induced platelet microbicidal
proteins (tPMPs) and human neutrophil
peptide-1 (hNP-1) [9]. A natural exten-
sion of these findings concerning cross-
resistance evolution is to consider the
consequences of the reciprocal order of
exposure.

In this issue of the Journal, Mishra
and coworkers address this important
aspect by asking whether there is a po-
tential priming role of preexposure to
endovascular host cationic peptides in
the development of early stages of bacte-
rial resistance to daptomycin. Their
study relied on a carefully selected set of
47 independent methicillin-resistant S.
aureus (MRSA) strains collected from
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bacteremic episodes, excluding isolates
obtained from patients with clinical evi-
dence of endocarditis. Of importance,
the archived strain set chosen for the
study predated the commercial introduc-
tion of daptomycin in 2003, and all
strains were, therefore, deemed “dapto-
mycin naive.” Since exposure to vanco-
mycin can evoke measurable changes in
daptomycin susceptibility, the authors
were also careful to test the MRSA strain
set for vancomycin susceptibility. All
strains were vancomycin susceptible.

As a first step, in vitro assays establish-
ed that bacterial survival following expo-
sure to tPMP and hNP-1 was strongly
correlated. In other words, an increased
survival after exposure to one peptide was
statistically linked to increased survival
after exposure to the other peptide in this
MRSA strain cohort. Given this correla-
tion, they next asked whether strains
showing increased survival to host cation-
ic peptides concomitantly displayed
altered daptomycin-susceptibility profiles.
A positive correlation would provide evi-
dence that prior exposure to these pep-
tides could conceivably drive selection of
daptomycin-resistant strains. Indeed, the
authors found that higher daptomycin
MICs tracked with increased resistance to
killing by one host defense peptide, tPMP,
suggesting that exposure to CAMPs could
drive selection of strains with reduced
susceptibility to daptomycin. These find-
ings are in accordance with previous
observations that genetic changes respon-
sible for reduced susceptibility to dapto-
mycin are also implicated in resistance to
CAMPs. These changes involve reported
alterations in membrane fluidity, thick-
ened cell-wall, and increased positive cell-
wall charge [9–11].

A significant point to emerge from
the present study involved data exposing
the possibility that S. aureus encounters
with an endovascular platelet-derived
CAMP could conceivably prime altered
susceptibility to daptomycin and evoke a
phenomenon similar to the so-called
MIC creep described for vancomycin.
MIC creep is an important issue to

pursue in detail, especially with the doc-
umented tendency of vancomycin MIC
creep to correlate with suboptimal treat-
ment outcomes [12]. Whether this phe-
nomenon occurs with daptomycin will
be an important issue to address in
future studies. An additional point
raised in the study by Mishra et al was
the hypothesis that the ability of S.
aureus to survive within the bloodstream
might depend, in part, on the acquisi-
tion of resistance to tPMP killing.
S. aureus traveling in the bloodstream

will encounter a range of host defense
mechanisms, and it is reasonable that
these conditions represent a robust
environment driving genetic selection.
Indeed, one of the hallmarks of S. aureus
is its impressive arsenal of defense mech-
anisms that allow it to deter the comple-
ment, opsonization, reactive oxygen
species, and iron limitation [13–15]. Even
selective pressure by host lysozyme has
driven the establishment of acquired re-
sistance to this enzyme in all tested path-
ologic strains of staphylococci [16, 17].
Studies such as this one underscore

the need to understand how bacteria
acquire reduced susceptibility to CAMPs,
compared with how reduced susceptibil-
ity to daptomycin occurs. The genetic
changes driving resistance to dapto-
mycin are thought to result in altered
physiochemical properties of the cell
membrane fluidity and surface electro-
static charge. By enhancing net surface
positive charge through several mecha-
nisms, notably via reactions catalyzed by
MprF and DltA, cationic molecules
would be repulsed and would be unable
to access the bacterial membrane effi-
ciently. Alterations in MprF, a bifunc-
tional synthase/translocase responsible
for lysinylation of phosphatidylglycerol,
results in a gain of positively charged
phospholipid and, thus, enhanced posi-
tive surface membrane charge, whereas
DltA, an enzyme that adds alanine to
polyanionic teichoic acid chains, reduces
net negative surface charge. Altered re-
sistance to cationic antimicrobial pep-
tides also appears to be mediated, in

part, by MprF and DltABCD-mediated
surface modifications [18]. Reports to
date would, therefore, suggest that there
is reason to expect some mechanistic
overlap that would explain the phenom-
enon of cross-resistance in molecular
detail. A key to understanding this link-
age is the growing body of evidence
linking mutation of the histidine kinase
2-component sensor system GraRS (also
called aps) to changes in susceptibility to
CAMPs, daptomycin, and glycopeptides.

A search for genes whose overexpres-
sion affected glycopeptide resistance in
S. aureus first suggested a role for graRS
[19]. Subsequent study indicated that
point mutations within the gene encoding
GraRS could dramatically affect con-
version of heterogeneous vancomycin-
intermediate S. aureus to intermediate
vancomycin resistance [20, 21], and phe-
notypic analysis suggested that mutation
in graR could also affect daptomycin
susceptibility [20]. Concurrent studies
designed to uncover mechanisms gov-
erning susceptibility to various antimi-
crobial peptides in both Staphylococcus
epidermidis and S. aureus showed an im-
portant role of GraRS [16, 22–25]. Ex-
tensive gene expression analysis has
demonstrated that GraRS controls a
large regulon in S. aureus, but that, most
notably, it modulates the expression of
mprF and the dltABCD operon involved
in the controlling bacterial surface
charge [16, 24, 25–27]. Of interest, only
certain CAMPs can activate the GraRS
system, which in turn increases resis-
tance to these specific CAMPs [23, 28].
However, resistance to other CAMPs is
observed even in the presence of non-
inducible GraRS CAMP molecules,
suggesting that there are both GraRS-
dependent and -independent CAMP
resistant pathways [26].

Although the results presented by
Mishra et al in the present issue raise
some tantalizing possibilities, it is im-
portant to consider the findings as pre-
liminary and, as the authors point out,
subject to a number of caveats. For in-
stance, the MRSA cohort could
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comprise fortuitously strains harboring
reduced susceptibility to certain CAMPs,
which may not be a feature found in
other independent cohorts. Second, the
conditions chosen for in vitro study of
CAMP susceptibility used a limited
range of peptide concentrations and
were performed in the absence of serum.
Third, a limited set of CAMPs was
tested (2), and it is certainly possible
that in the context of infection, bacteria
are exposed to a broad range of CAMPs
issued from various host-cell responses.

It is curious that enhanced resistance
to killing by only 1 of the 2 CAMPS
studied (ie, platelet-derived tPMP) corre-
lated with reduced daptomycin suscepti-
bility, whereas the neutrophil defensin
hNP-1 was not correlated. Previous work
had shown that the mechanisms of
action of tPMP and hNP-1 were different
[29], and, thus, one plausible explanation
could be simply that platelet-derived
tPMP was a more robust stimulus driving
bacterial sensory systems. It is intriguing
that, in support of this possibility, recent
work now shows that hNP-1 exposure in
vitro does not induce mprF or dltA, as
judged by findings of quantitative
reverse-transcription polymerase chain
reaction assay [28].

Additional observations revealed in
the study by Mishra et al warrant
mention. The authors noted no signifi-
cant correlation with agr clonotype but,
nevertheless, noted a strong association
between certain agr types and suscepti-
bility to killing by host defense peptides.
Furthermore, despite demonstrating that
all tested strains were susceptible to van-
comycin, a large proportion of the
cohort was isolated from patients who
had received intravenous vancomycin
≤30 days before the documented blood-
stream infection. This circumstance
raises the obvious question whether
strains could have acquired heritable
genetic traits following vancomycin
exposure that did not overtly affect mea-
surable vancomycin MIC but could
nonetheless affect reduced susceptibility
to daptomycin.

It is clear that future studies will
involve determining precisely how expo-
sure to various host defense peptides
imparts a selective advantage to S. aureus
to promote infection and disease. In ad-
dition, it will be imperative to determine
whether and to what extent altered resis-
tance to host defense peptides alters the
efficacy of daptomycin. Of importance,
the mounting evidence of antimicrobial
resistance mechanisms shared among
CAMPs, daptomycin, and glycopeptides
emphasizes the need to pursue detailed
knowledge of these mechanisms, because
studies are convincingly showing that we
face far more complex drug-resistance
patterns than previously imagined.
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