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S U M M A R Y
Finite-difference simulations are an important tool for studying elastic and acoustic wave
propagation, but remain computationally challenging for elastic waves in three dimensions.
Computations for acoustic waves are significantly simpler as they require less memory and
operations per grid cell, and more significantly can be performed with coarser grids, both
in space and time. In this paper, we present a procedure for correcting acoustic simulations
for some of the effects of elasticity, at a cost considerably less than full elastic simulations.
Two models are considered: the full elastic model and an equivalent acoustic model with
the same P velocity and density. In this paper, although the basic theory is presented for
anisotropic elasticity, the specific examples are for an isotropic model. The simulations are
performed using the finite-difference method, but the basic method could be applied to other
numerical techniques. A simulation in the acoustic model is performed and treated as an
approximate solution of the wave propagation in the elastic model. As the acoustic solution
is known, the error to the elastic wave equations can be calculated. If extra sources equal to
this error were introduced into the elastic model, then the acoustic solution would be an exact
solution of the elastic wave equations. Instead, the negative of these sources is introduced
into a second acoustic simulation that is used to correct the first acoustic simulation. The
corrected acoustic simulation contains some of the effects of elasticity without the full cost
of an elastic simulation. It does not contain any shear waves, but amplitudes of reflected P
waves are approximately corrected. We expect the corrected acoustic solution to be useful in
regions of space and time around a P-wave source, but to deteriorate in some regions, for
example, wider angles, and later in time, or after propagation through many interfaces. In this
paper, we outline the theory of the correction method, and present results for simulations in a
2-D model with a plane interface. Reflections from a plane interface are simple enough that
an analytic analysis is possible, and for plane waves, we give the correction to the acoustic
reflection and transmission coefficients. Finally, finite-difference calculations for plane waves
are used to confirm the analytic results. Results for wave propagation in more complicated,
realistic models will be presented elsewhere.

Key words: Numerical approximations and analysis; body waves; computational seismology;
wave propagation.

1 I N T RO D U C T I O N

Simulating the propagation of elastic waves in realistic earth models
is an important tool in many seismic applications including inter-
pretation, imaging, reverse time migration, waveform inversion and
survey design. The finite-difference method is an important tool for
these simulations, as it is robust, relatively simple to implement,
and provides a reasonable balance between efficiency and accuracy.
However, performing computations for elastic waves in realistic,
3-D models is still computationally challenging. As a result, elastic
simulations for P-wave sources are often approximated by acous-
tic wave propagation in a fluid model. These are considerably less

expensive, both in terms of the memory and CPU requirements be-
cause of the simpler operations in each grid cell and the coarser
grid allowed. In this paper, we only consider the finite-difference
method for simulations, but the motivation and solution would ap-
ply to other numerical techniques. If the P-wave velocities in the
acoustic and elastic models are equal, the kinematics of the P waves
will be modelled correctly, but the dynamics of the P waves will
only be approximate, and the shear waves will be completely un-
modelled. In this paper, we describe a procedure to correct the
acoustic simulation for some of the effects of elastic wave propaga-
tion. The basic theory in Sections 2, 3 and 5.1 is for an anisotropic
elastic medium, but the specific applications in eqs (25)–(28), and
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Sections 5.2, 6 and 7 are for an isotropic medium. Nevertheless,
the method could be used in anisotropic elastic media provided the
acoustic wave equation can be modified to model the kinematics
of the anisotropic qP wave. A correction to the acoustic simulation
is calculated using a second acoustic simulation that improves the
dynamics of the P-wave propagation, but still completely omits the
shear waves. We expect the corrected acoustic solution to be useful
in regions of space and time around a P-wave source, but to de-
teriorate in some regions, for example, wider angles, and later in
time, or after propagation through many interfaces. The overall cost
is approximately twice that of the original acoustic simulation, but
considerably less than an elastic simulation.

The computational cost of acoustic finite-difference simulations,
both in terms of memory and CPU, is considerably less than elastic
simulations for two reasons: the reduced requirements per grid cell
for the simpler acoustic equations, and the coarser grid allowed,
that is, the grid cells per unit volume and time interval. The reduced
requirements per grid cell impact both the memory and CPU re-
quirements. Acoustic simulations require six variables per grid cell
(assuming one point per cell) for the four field variables (particle
velocity, v, and pressure, P) and two model variables (density, ρ,
and P velocity, α), whereas elastic simulations require 12 variables
as there are nine field variables (particle velocity, v, and stress, σ )
and three model variables (density, ρ, and P and S velocities, α and
β). The CPU requirements show a greater saving as the acoustic
simulations require the calculation of only six spatial derivatives
[three for the gradients of pressure in the equation of motion (8),
and three for the dilatation-rate in the constitutive eq. (7)], whereas
the elastic simulations require 18 spatial derivatives [nine for the
gradients of stress in the equation of motion (1), and nine for the
strain rates in the constitutive eq. (2)]. The other operations in
the finite-difference calculations are less significant than the spa-
tial derivatives. Although these ratios between elastic and acoustic
computations are significant (approximately two for memory and
three for CPU), a more significant factor is the different require-
ments for the grid cell size. To avoid dispersion, a certain number of
gridpoints is required per wavelength. The exact number depends
on the order of discrete operators used to approximate the spatial
operators and the accuracy required, but the grid spacing must be
proportional to the wavelengths in the simulation. Thus, the grid
spacing will be controlled by the shortest wavelength or slowness
velocities in the simulation. In the acoustic simulation, this will be
the minimum P-wave velocity, αmin, whereas in the elastic simula-
tion it will be the minimum S-wave velocity, βmin. Thus, the ratio
of the grid spacing in acoustic to elastic simulations is the ratio of
these velocities, αmin/βmin. This must apply in each spatial dimen-
sion. In addition to obtain temporal stability, the time step must be
below a certain value determined by the Courant number and the
ratio of the minimum to maximum velocities in the model (Roberts-
son & Blanch 2011), that is, αmin/αmax in the acoustic model and
βmin/αmax in the elastic model. Thus, overall, the ratio of the total
number of grid cells, from both the spatial and temporal grids, in
the elastic and acoustic simulations is (αmin/βmin)4. For a Poisson
solid, this is a factor of nine but for models with low shear veloc-
ity sediments, for instance near the seafloor, the number may be
considerably higher. The combination of the cost per cell, with the
number of cells required, makes the elastic simulations consider-
ably more expensive than acoustic simulations, typically between
two and three orders of magnitude. The above argument is based
on the simplest situation, one point per grid cell and computa-
tions dominated by the spatial derivatives. The numbers are simple
but not simplistic. The conclusion is robust even if the numbers are

refined for more complex situations—elastic simulations are always
much more expensive than acoustic simulations.

Another possible way to reduce the cost of elastic simulations is
to use a finite-difference grid controlled by the P waves only and
allow the dispersion of S waves. Sometimes these non-physical, in-
accurate arrivals can be tolerated, but they may be confusing when
the dispersed S waves generate non-physical P waves in complex
models (in fact for one of the finite-difference simulations in this
paper, Fig. 1, the shear waves are undersampled, but the model
is simple, that is, the generated shear waves do not interact again
with the interface, so they cause no confusion). In any case, the
computational cost of this method is about three times an acoustic
simulation (the operations per grid cell), whereas the method pro-
posed in this paper is only about two times more expensive than an
acoustic simulation.

In Section 2, we review the equations of elastodynamic and acous-
tic wave propagation to establish the notation used throughout the
paper. Although these equations are well known, particular empha-
sis is placed on the introduction of sources into the equations as
these are crucial to the correction procedure. Section 3 describes
the correction procedure. This is an iterative procedure where the
error in the elastic wave equations is used to estimate the sources
required in an acoustic correction simulation to improve the ap-
proximate solution. The procedure is general and might be used to
correct solutions of any wave equation using solutions of another,
but in our application, we consider corrections for the isotropic elas-
tic wave equation using solutions of the acoustic wave equation.

In Section 4, we illustrate applications of the theory for wave
propagation in a model consisting of two homogeneous half-spaces.
In the acoustic model, the only waves generated are the reflected
and transmitted P waves—in the elastic model we have the re-
flected and transmitted converted S waves as well. For simplic-
ity, the finite-difference computations are done in two dimensions.
Although, in this example, the model and waves generated are very
simple, the results are very encouraging and illustrate the value of
the method. The computations are performed for two models: a typ-
ical sedimentary interface, and a strong interface between sediment
and salt. Computations for more realistic, complex structures are
published elsewhere (Hobro et al. 2014).

To confirm the success of the correction procedure, in the final
two sections of the paper, the procedure is applied to the reflection
and transmission of plane waves from a plane interface. The prob-
lem is simple and well enough understood that it can be analysed
analytically to obtain expressions for the expected corrections to the
reflection and transmission coefficients. These are then compared
with the well-known expressions for the acoustic and elastic coeffi-
cients, and for finite-difference simulations for plane waves in one
dimension. These corrections are particularly good for the reflected
waves.

2 E L A S T O DY NA M I C T H E O RY

In this section, we briefly review the elastodynamic wave equations
in order to introduce the notation used throughout this paper. The
equation of motion and the constitutive relationships can be written

ρ
∂v

∂t
− ∂σ C

j

∂x j
= f − ∂m j

∂x j
, (1)

∂σ C
j

∂t
− c jk

∂v

∂xk
= 0, (2)
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Figure 1. Wavefield snapshots in the sedimentary simulations. The subfigures on the left-hand side (a, c, e, g and i) are the x-component of particle velocity,
and the subfigures on the right-hand side (b, d, f, h and j) are the z-component. The first row (a and b) is the acoustic simulation; the second row (c and d) is the
elastic simulation; the third row (e and f) is the difference between the acoustic and elastic wavefields (a–d), scaled by a factor of (10/3) to show the differences
in P-wave amplitudes and the addition of converted S waves in the elastic results; the fourth row (g and h) is the correction to the acoustic wavefield, which
approximately reproduces the differences in P-wave amplitudes plotted in (e) and (f); and, the fifth row (i and j) is the residual after the correction has been
applied and plotted with the same colour scale as (e) to (h). The black line marks the critical angle within the reflected wave in subfigures (i) and (j).
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Figure 1. (Continued.)

where v is the particle velocity and σ the stress tensor. The traction
on the jth Cartesian surface orthogonal to the jth axis is

σ j = σ ı̂ j (3)

(ı̂ j is a unit vector in the jth direction). We use Woodhouse’s (1974)
notation for the 3 × 3 matrices, c jk , of elastic stiffnesses, where
(c jk)il = ci jkl are the elements of the fourth-order elastic stiffness
tensor, and we use the Einstein summation convention. The source
terms in the equation of motion (1) are the force-density vector, f,
and the moment-density tensor, m (both are per unit volume). As
the continuum relationships (2) are taken as satisfied everywhere,
we indicate by the superscript C that the stress in these equations is
the model or continuum stress not the true stress, σ .

Normally, we take the moment-density tensor to be the stress
glut (Backus & Mulcahy 1976), that is, the difference between the
continuum and true stresses

σ = σ C − m, (4)

and the equation of motion and the constitutive relationships can be
rewritten

ρ
∂v

∂t
− ∂σ j

∂x j
= f, (5)

∂σ j

∂t
− c jk

∂v

∂xk
= −∂m j

∂t
. (6)

As Backus & Mulcahy (1976) noted, other definitions of the
moment-density tensor are possible, which result in silent sources,
for example, the moment-density, force-equivalent vector in eq. (1)
is zero, that is, −∂ j m j = 0 even when m �= 0. We will encounter
such a situation later (28).

In a fluid, the constitutive relationships (2) reduces to

∂ P C

∂t
+ κ ∇ · v = 0, (7)

where P C is the continuum pressure and κ is the bulk modulus.
It is important to note that in a fluid, a general moment-density
source must be introduced through its force-equivalent vector in the
equation of motion

ρ
∂v

∂t
+ ∇ P C = f − ∂m j

∂x j
, (8)

and not in the constitutive relationships (unless we retain the full
stress tensor), because in the source region (where m �= 0), the true
stress may not be the negative of an isotropic pressure, that is,
sources other than pressure sources are possible in a fluid. Again,
we will encounter such a situation later.
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Although finite-difference calculations are usually performed us-
ing a discrete version of the first-order eqs (5) and (6), which re-
duce naturally to the staggered-grid, velocity–stress formulation of
Virieux (1986), the stress can be eliminated between eqs (1) and
(2), or (5) and (6), to obtain the second-order wave equation

L(u) = ρ
∂2u

∂t2
− ∂

∂x j

(
c jk

∂u

∂xk

)
= f − ∂m j

∂x j
, (9)

where we introduce the shorthand notation L(u) for the second-
order operator and u is the particle displacement. In a fluid, this will
be

L(u) = ρ
∂2u

∂t2
− ∇ (κ ∇ · u) = f − ∂m j

∂x j
. (10)

In these wave equations, the source is the force-density vector and
the moment-density, force-equivalent vector. We note that for in-
digenous sources, that is, internal and balanced, the force-density
is usually assumed to be zero and the moment-density symmetric
(no force or torque sources), but for non-indigenous sources, that is,
external and unbalanced, non-zero forces and torques (asymmetric
moment-density tensors) are possible.

3 T H E I T E R AT I V E C O R R E C T I O N
S C H E M E

Although the first-order partial differential system, (5) and (6),
corresponds closely to the numerical implementation of finite-
difference codes and is convenient for analytic investigations, it
is not immediately suitable for investigating the correction scheme.
Instead, we use the second-order wave eq. (9) or (10). The correc-
tion scheme depends on the residual being small, that is, for two
different models we require the difference in the solutions to be
small. Comparing acoustic and elastic models for a P-wave source,
we expect the differences between the acoustic and elastic particle
displacements to be small, at least in a limited spatial and temporal
domain (which might exclude critical angles, long-time reverbera-
tions, etc.), even when the shear modulus, μE, is significant in the
elastic model. While the particle displacements will be similar for
the two models, the stresses will differ significantly. For an acoustic
wave, the normal stresses are all equal to the negative of the hydro-
static pressure, and the shear stresses are zero. For a P wave in an
elastic medium, the normal stresses differ and the shear stresses are
non-zero. Even in a homogeneous medium, the stresses differ (an
explicit example is given below for plane waves, eq. 67). Thus, we
consider the second-order wave eq. (9) or (10), which only involves
the particle displacement as we expect it to be similar in the two
models.

Let us consider two models, represented by operators LA and LE

with solutions uA and uE, that is,

LA(uA) = f, (11)

LE(uE) = f, (12)

where, for simplicity, we take the source identical in the two models,
and for brevity we include any moment-density source as its force-
equivalent in f. In our application, model A will be an acoustic
model, and model E an elastic model designed so the kinematic P
properties are the same. However, the method is more general and
could be used for any two models that differ but have the same
approximate solution, that is, model A would be an approximation
to the exact model E. Formally, we require∣∣uE − uA

∣∣� ∣∣uA
∣∣ , (13)

which imposes limits on the differences in the elastic parameters
and the maximum frequency. We only expect this condition (13) to
be true in limited spatial and temporal domains.

Suppose we know the exact solution, uA, in model A (11). We
use this as an approximate solution (pre-conditioner) of the second
equation for model E (12). Then

LE(uA) = f + (LE − LA)(uA) = f + δL(uA), (14)

say, where we have defined the difference operator, δL = LE − LA,
such that

δL(uA) = − ∂

∂x j

(
δc jk

∂uA

∂xk

)
= −δf, (15)

say, with

δc jk = cE
jk − cA

jk . (16)

Expression (15) is an error in the second wave equation (E) when the
solution of the first wave equation (A) is substituted. As the solution
of the first wave equation is known, the error can be considered
known and can be calculated. It plays the role of an extra source
term, −δf, in the second wave equation. With the total source,
f − δf, the solution of the first wave equation, uA, exactly satisfies
the second wave equation, (14). To obtain a better solution of the
second wave equation, we consider another solution, δu, of the first
wave equation (A) with the ‘negative’ of this source term, that is

LA(δu) = δf. (17)

We refer to δf as the residual error source. Note that, from (15), it
is equivalent to a residual moment-density error source

δm j = − δc jk
∂uA

∂xk
. (18)

Simple algebra then shows that

LE(uA + δu) = f + δL(δu). (19)

Thus, the combination

uE � uA + δu (20)

satisfies the second wave equation with an error δL(δu). Compared
with the original error, δf, the difference operator acts on the correc-
tion to the acoustic solution, δu, rather than the acoustic solution,
uA. In general, the error should be reduced. We expect it to be a
second-order error, although we are unable to prove this rigorously
as there will be regions in space and time where (13) is not true.

The iterative procedure for correcting the solution can be con-
tinued but probably the first iteration considered here will be the
most useful and more iterations unnecessary. If the correction is
not small, the convergence will likely be very poor anyway. If the
velocities of the significant arrivals in the two models differ, then
the iterative correction will correct the traveltimes as a Taylor ex-
pansion, that is, exp [iω(T + δT)] = exp (iωT)(1 + iω δT + . . . ) or
f(T + δT) = f(T) + δT f ′(T) + . . . , and this is only effective at low
frequencies. However, if the mismatch in kinematic properties is
restricted to small regions or small-scale fluctuations, the temporal
mismatch may be small enough that iterations are effective.

Implementing the iteration in a practical sense (e.g. in a finite-
difference code) exploits causality. When the wave solution from
the first model arrives at a point in the second model, it does not
satisfy the necessary differential equations. If an ‘effective’ source
is introduced to satisfy the equations, then this will initiate ‘scat-
tered’ waves from the point. The argument is very similar to that in
the theory of error Born scattering (Chapman 2004, section 10.3)



Elastic corrections 1201

although details of the application and theory differ. The iterative
procedure developed here could be obtained by applying Born scat-
tering theory to the elastic wave equation, where the perturbation
is the shear modulus, and using the force-equivalent for the scat-
tering sources so the elastic Green’s functions can be replaced by
the acoustic Green’s functions. In a finite-difference code, at each
time step, errors are calculated using the second model, and put
back into the first model as residual sources. Negating the effect by
introducing the negative of the error in the first model —the residual
sources—improves the solution.

Although it has been necessary to pose the correction scheme
using the second-order operator, L, for numerical and analytic pur-
poses we use the first-order scheme, (8) and (7). Thus, for the
acoustic solution, we solve the equations

ρ
∂vA

∂t
+ ∇ PA = f, (21)

∂ PA

∂t
+ κA∇ · vA = 0 (22)

(the zeroth iteration), and for the correction we solve

ρ
∂(δv)

∂t
+ ∇(δP) = δf, (23)

∂(δP)

∂t
+ κA∇ · (δv) = 0 (24)

(the first iteration), with the residual error sources (note that because
we want to use the acoustic equations, the residual error sources
have to be introduced through the force-equivalent, δf, rather than
the residual moment-density source, δm (18)). The residual error
sources are calculated using (15), where for the acoustic-isotropic
elastic systems we have simply

δc11 = μE

⎛⎜⎝ 0 0 0

0 1 0

0 0 1

⎞⎟⎠ , (25)

δc23 = μE

⎛⎜⎝ 0 0 0

0 0 −2

0 1 0

⎞⎟⎠ (26)

plus cyclic permutations for the other matrices. Substituting in (15)
and (18), this yields

δm = 2μE (θA I − eA), (27)

δf = −∇ (δm) = 2(eA − θA I) · ∇μE + 2μE (∇ · eA − ∇ θA), (28)

where eA is the strain tensor and θA the dilatation of the acous-
tic solution. In a homogeneous region, the first term is zero as
∇μE = 0, and the second term is zero as the acoustic wave is purely
dilatational. Thus, the residual error source is only non-zero in in-
homogeneous regions.

4 F I N I T E - D I F F E R E N C E E X A M P L E S

In this section, we present results from a series of 2-D finite-
difference simulations designed to explore and illustrate the charac-
teristics of the method described in Section 3. The finite-difference
implementation uses a staggered-grid velocity–stress formulation

to solve the system of first-order differential equations [(1) and (2)
in the elastic case, and (7) and (8) in the acoustic case]. This fol-
lows the approaches of Virieux (1986) and Levander (1988). The
method is fourth-order accurate in space and second-order accurate
in time. We only considered isotropic elastic media and, for sim-
plicity, reduce the systems to two dimensions [so the elastic system
(1) and (2) has five field variables and the acoustic system (8) and
(7) only three]. Simple periodic boundary conditions were applied
at the edges (i.e. a wave propagating towards the edge of the grid
will continue to propagate into the grid on its opposite edge) as we
are only interested in early arrivals.

We implemented three versions of the code:

(1) acoustic wave propagation, eqs (21) and (22);
(2) isotropic elastic wave propagation, eqs (1) and (2);
(3) the correction method, eqs (23) and (24) with (28) to calculate

the residual sources.

The correction method was implemented as a sequence of three
steps:

(1) Compute a full acoustic finite-difference simulation using the
same density and P-wave velocity as in the elastic model, with a
source at a chosen location. Record the particle velocities at all time
steps in pre-defined regions in which material properties change
abruptly. To avoid the necessity of recording particle velocities at
all time steps, the second simulation can be run simultaneously with
the first;

(2) Compute the residual source terms that are due to differences
in the acoustic and elastic constitutive relations from the stored
particle velocities;

(3) Carry out a second full acoustic finite-difference simulation
(the ‘correction simulation’), this time without exciting the original
source. Instead the source terms computed in the previous step are
excited.

As we remarked above following eq. (28), the residual source
terms are only non-zero in inhomogeneous regions or where the
material properties change discontinuously. If the entire model is
inhomogeneous, the computational costs will increase due to the
overhead of calculating the source term everywhere (from twice
to perhaps three times an acoustic simulation). Normally, this cost
can be avoided if large parts of the model are homogeneous or by
ignoring the residual error source if they are below a prescribed cut-
off (residual sources distributed throughout inhomogeneous regions
usually do not produce coherent arrivals—only when the residual
sources are concentrated on ‘surfaces’ are coherent arrivals pro-
duced). All tests used a Ricker wavelet source function with a
central frequency of 100 Hz (i.e. with a maximum frequency of
approximately 200 Hz).

4.1 Half-space models

To study the behaviour of the method at a simple interface, we
tested the finite-difference implementation described above on two
isotropic half-space models. The half-space models each consist of
a pair of homogeneous half-spaces with different seismic properties
separated by a planar interface. The seismic parameters in the two
models (Table 1) were chosen to represent a strong sedimentary
contrast and a top-salt contrast. The simulations were designed to
allow examination of the fundamental characteristics of the correc-
tion method for these two models and to allow analytic comparisons
(Sections 6 and 7). In each case, a pressure point source was excited
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Table 1. Seismic parameters for the two half-space models.

Model Medium P-wave velocity S-wave velocity Density

Primary 1500 m s−1 500 m s−1 1000 kg m−3
Sediment

Secondary 2000 m s−1 800 m s−1 1500 kg m−3

Primary 1900 m s−1 800 m s−1 2000 kg m−3
Top-salt

Secondary 4500 m s−1 2100 m s−1 2100 kg m−3

in the primary medium close enough to the interface to allow the
wavefield to be observed over a wide range of angles of incidence,
including the full pre-critical wavefield, post-critical reflections and
head waves.

4.1.1 Strong sedimentary contrast

The strong sedimentary contrast model was designed to test the
characteristics of the correction method in an example containing a
relatively large sedimentary contrast. The model is 400 m × 400 m
in size, with a single planar interface separating the primary and sec-
ondary media (Fig. 1). The grid spacing used in the finite-difference
simulations was 1 m × 1 m and the time step was 0.3 ms. The grid
spacing was sufficiently fine to allow P-wave energy to propagate
without significant grid dispersion, but not fine enough to prevent
significant dispersion of S waves. The time step was chosen to give
a stable finite-difference scheme while remaining close to the stabil-
ity limit. Acoustic, elastic and correction simulations were all run
for 360 time steps to a maximum time of 108 ms. In the acoustic
and elastic simulations, an explosive point source was excited in the
primary medium 15 m from the interface. Residual source terms for
the correction simulation were computed within a grid surrounding
the interface that contained 400 × 10 nodes and therefore covered
2.5 per cent of the total grid. The thickness of the residual source
zone needs to be chosen to include the thickness of the inhomo-
geneous region plus the length of the finite-difference operator. As
we have used a fourth-order spatial operator, 10 nodes is somewhat
generous but allows us to check that the residual error terms de-
cay to zero in the homogeneous regions. The CPU time required to
compute the residual source terms within this grid was negligible
compared with the CPU time consumed by the acoustic simulations.

A wavefield snapshot from the acoustic simulation is presented
in Figs 1(a) and (b). In this and all subsequent wavefield snapshots,
the two components of particle velocity are plotted separately at
the final simulation time of 108 ms. The source and interface loca-
tions are also indicated on all plots. The acoustic simulation result
contains direct, reflected, transmitted and head waves. In the equiv-
alent wavefield from the elastic simulation (Figs 1c and d), these
P-wave arrivals are all visible and the wavefield additionally con-
tains reflected and transmitted S waves (which are dispersed). The
difference between these two results is plotted in Figs 1(e) and (f)
scaled by a factor of (10/3) to show the differences. This wavefield
consists of the differences in amplitude in the reflected, transmit-
ted and head waves and also contains the complete shear wavefield
(reflected, transmitted and head waves). In the reflected and trans-
mitted P waves, the amplitude of the difference increases with angle
of incidence from zero at normal incidence. The most significant
differences in P-wave arrivals occur in the reflected P wave at wide
angles. The amplitude differences are much greater in the reflected
wave than in the transmitted wave.

The aim of the elastic correction method (as described in Sec-
tion 3 and at the beginning of this section) is to attempt to correct
the amplitudes in an acoustic simulation to bring them closer to the

amplitudes of P-wave arrivals in an elastic simulation. We there-
fore expect the wavefield produced by the correction simulation
to approximate the P-wave components of the difference wavefield
plotted in Figs 1(e) and (f). The result from the correction simulation
is plotted in Figs 1(g) and (h). It shows a good qualitative agreement
with the P-wave components of the difference wavefield. The resid-
ual in the corrected acoustic wavefield is plotted in Figs 1(i) and (j).
This is the difference between the corrected acoustic wavefield and
the elastic wavefield. It provides an indication of the accuracy of
each part of the corrected acoustic wavefield. It is equivalent to the
difference between the wavefields plotted in Figs 1(e) and (f), and
in Figs 1(g) and (h). A black line marks the point in the reflected
P wave that divides pre- and post-critical reflections. The residual
is small in the pre-critical reflected wavefield and throughout the
transmitted wavefield. However, in the post-critical reflection it in-
creases at very wide angles to a level that is comparable with the
amplitude of the converted S wave. Figs 1(e)–(j) are all plotted us-
ing the same magnified colour scale designed to emphasize small
differences in the original particle-velocity fields.

Fig. 2 contains seismograms recorded at four locations chosen
to isolate the pre- and post-critical reflected waves, the transmitted
wave and the head wave. Each figure contains seismograms for the
acoustic, elastic and corrected acoustic simulations superimposed
for comparison, for both components of particle velocity. The pre-
critical reflection seismogram in Fig. 2(a) corresponds to a high
incidence angle of 45◦ (the critical angle is 48.6◦). At this angle,
there is a significant difference in amplitude between the acoustic
and elastic arrivals and a small but visible phase shift. There is no
phase shift between the exact acoustic and plane wave elastic solu-
tions. The existence of significant phase shifts between the acoustic
and elastic arrivals in these point-source simulations reminds us that
comparisons between plane wave theory and point-source simula-
tions must be made with care. The corrected acoustic wave accounts
for the amplitude and phase differences very well. The dispersed
S-wave arrival is also visible in the elastic seismograms. In the post-
critical reflection seismograms (Fig. 2b), the phase component of
the correction is still good although the amplitude of the correction
is too high, generating a post-critical residual that is in antiphase
with the required correction (cf. Figs 1e and f, and i and j). This
pattern is repeated in the transmitted wavefield (Fig. 2c) although in
this case the differences between the three seismograms (acoustic,
elastic and corrected acoustic) are much smaller. The dispersed S-
wave arrival is visible once again in these plots. For the head wave
(Fig. 2d), all three seismograms are in phase (this is not surprising
because the head wave is a plane wave) and a reasonable amplitude
correction has been achieved, although not as good a correction as
in the pre-critical reflected arrival.

Overall, these results offer a promising degree of validation for
the use of this method for simulating the effects of elasticity on
P-wave arrivals at low cost in sedimentary models. When applied
to this relatively large sedimentary contrast, the transmitted and
pre-critical reflected waves have been corrected with an impressive
degree of accuracy. Even in the post-critical reflected wavefield
where the residual is largest, a good phase correction has been
achieved and the corrected acoustic waveform offers an improved
approximation to the elastic result.

4.1.2 Top-salt contrast

The top-salt model contains an interface with a much larger contrast
in seismic properties. It is designed to simulate a typical change
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Figure 2. Particle-velocity seismograms at four locations. In each pair, the upper figure is the z-component of the particle velocity and the lower subfigure
is the x-component. The acoustic seismograms are blue, the elastic red and the corrected acoustic green. Subfigure (a) is recorded at location (170, 185)
corresponding to a pre-critical reflection at incident angle of 45◦; subfigure (b) is recorded at location (85, 165) corresponding to a post-critical reflection at
incident angle of 66.5◦; subfigure (c) is recorded at location (150, 215) corresponding to a transmission with an incident angle of 43.8◦ and, subfigure (d) is
recorded at location (50, 195) for the head wave.

in the seismic medium across the top of a salt body in shallow
sedimentary rock. The model presents a significant challenge to the
method presented here. This is because wave propagation across
such a large contrast is likely to violate the fundamental assumption
in the method (13) that the particle-velocity fields in an acoustic and
elastic simulation are similar enough to allow the acoustic wavefield
solution to estimate a good correction towards the elastic wavefield
solution.

The model is 300 m × 440 m in size, with a single planar interface
separating the primary and secondary media (Fig. 3). The grid spac-
ing used in the finite-difference simulation was 1 m × 1 m and the
time step was 0.13 ms. The grid spacing was sufficiently fine to allow
P- and S-wave energy to propagate without significant grid disper-
sion. The time step was chosen to give a stable finite-difference
scheme while remaining close to the stability limit. Acoustic, elas-
tic and correction simulations were all run for 460 time steps to a
maximum time of 61.3 ms. In the acoustic and elastic simulations,
an explosive point source was excited in the primary medium 30 m

from the interface. Source terms for the correction simulation were
computed within a grid surrounding the interface which contained
300 × 10 nodes and, therefore, covered 2.3 per cent of the total
grid (the zone of 10 nodes was chosen as in the first model). The
CPU time required to compute the source terms within this grid was
negligible compared with the CPU time consumed by the acoustic
simulations.

A wavefield snapshot from the acoustic simulation is presented
in Figs 3(a) and (b). As in the previous example, all wavefield
snapshots are plotted at the final simulation time. The same range
of wavefield components can be seen in Figs 3(a)–(d) as in the
sedimentary case. In the difference plot [Figs 3e and f, again scaled
by a factor (10/3)], the same pattern exists as in the equivalent
sedimentary result (Figs 1e and f), although larger differences can
be seen over a wider range of angles in the reflected P-wave arrival.

As in the sedimentary case, the correction simulation result
(Figs 3g and h) shows a good qualitative agreement with the P-wave
components of the difference wavefield. However, the residual in
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Figure 3. As Fig. 1 but for the top-salt simulations.

the P-wave reflection (Figs 3i and j) grows to be much larger over
a wider range of angles than in the sedimentary case. The larger
contrast in seismic properties has both increased the residual at
post-critical angles and reduced the critical angle at which it starts
to become significant. These factors together increase the overall
error in the corrected acoustic wavefield significantly.

Fig. 4 contains seismograms recorded at four locations equivalent
to those presented for the sedimentary example. In the pre-critical
reflection seismogram (Fig. 4a), which was recorded close to the
critical angle, the correction accounts well for the amplitude dif-
ference between the acoustic and elastic arrivals, although a small
phase error is introduced. The corrected acoustic result offers a sig-
nificant improvement over the acoustic result, if not as impressive
an improvement in this case as in the sedimentary example. In the
post-critical reflection (Fig. 4b), the correction brings a moderate
improvement in amplitude, but overcompensates for the phase shift
between the acoustic and elastic waveforms, creating a significant
wavefield residual (Figs 3i and j). In the transmitted wavefield, the
correction overcompensates for the amplitude difference (Fig. 4c).
This overcompensation is greater than in the sedimentary example

but is still extremely small compared with the amplitude differences
in the reflected wavefield discussed above. The head wave ampli-
tude is partially corrected (Fig. 4d) although the phase of the elastic
head wave in this example is distorted by the proximity of the shear
head wave (this can be seen most clearly in Figs 3e and f).

Overall, the results from the top-salt simulation are encouraging.
The contrast in seismic properties is large enough to challenge
the assumptions in the correction method. However, the corrected
acoustic seismograms still bring a useful improvement over the basic
acoustic results, albeit over a more limited ranges of incidence angle
than for sedimentary models.

5 P L A N E WAV E , D I F F E R E N T I A L
S Y S T E M

In Section 4, we demonstrated with simple numerical examples that
acoustic finite-difference calculations can be corrected for elastic
effects using an iterative scheme (Section 3). The numerical results
for correcting P waves reflected and transmitted by a plane interface
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Figure 3. (Continued.)

are satisfactory. Of course, the shear waves reflected and transmitted
at an elastic interface are not generated. Corrected finite-difference
results for more complicated and realistic models are presented
elsewhere (Hobro et al. 2014). For such models, the accuracy of
the correction can only be determined by comparing with elastic
finite-difference calculations. For the simple model used here in
Section 4, analytic solutions are known and we can analyse the
corrections in some detail. This will indicate the expected accuracy
of the iterative solution. We further simplify the comparison by
considering the reflection and transmission of plane waves in a 1-D
model rather than the spherical waves from a point source used in
Section 4.

In this section, we summarize the well-known, ordinary differen-
tial equations for plane waves in a 1-D model. The basic results are
well known, but some care is required in introducing the residual
sources. We also convert the ordinary differential equations into the
form suitable for finite-difference calculations performed in Sec-
tion 7. In Section 6, using the exact solution for the reflection and
transmission of acoustic waves, we calculate the error in the elastic
equations. As we are considering the analytic solutions for a discon-
tinuous medium, the error terms will be singular at the interface.
These can then be introduced into the acoustic equations, generating
new waves radiated from the interface that correct the reflected and
transmitted coefficients.

In Section 7, we compare the analytic results for the corrections
to the exact reflection and transmission coefficients, and confirm
the results using finite-difference solutions of the transformed 1-D
wave equations.

5.1 One-dimensional ordinary differential equations

To investigate a reflection/transmission problem algebraically, we
consider a 1-D model where the parameters vary in the z = x3

direction. We refer to the positive z-direction as upgoing and the
negative z-direction as downgoing. If we take the Fourier transforms
with respect to coordinates x1 and x2 (∂ν → i ωpν , ν = 1 or 2 using
the usual notation of Greek indices taking only the values 1 and 2)
and t (∂ t → − i ω), then the differential systems (5) and (6) reduce
to the well-known, 1-D, ordinary differential systems, (Chapman
2004, eq. 7.1.25),

∂3w = i ωAw + F, (29)

where the wavefield vector

w(ω, p1, p2, x3) =
(

v

σ 3

)
(30)

contains the (transformed) field variables, particle velocity and nor-
mal traction, that are continuous even when A is discontinuous at
an interface. In a general anisotropic medium, the matrix A is given
by

A(p1, p2, x3) =
(

pνZ c3ν Z

pη pν

(
cην + cη3Zc3ν

)− ρ I pνcν3Z

)
, (31)

where Z = −c−1
33 . The source term is given by

F(ω, p1, p2, x3) =
(

i ωZ m3

−f + i ω pν(mν + cν3Z m3)

)
(32)

≡
(

0

−f + i ω pνmν + ∂3m3

)
, (33)

where the second expression (33) follows from the previous results
about equivalent forces. Although these two forms for F are clearly
not equal, they are physically equivalent and lead to the same so-
lution [except in the support of the source, where in the first form
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Figure 4. As Fig. 2 but for the top-salt simulations. Subfigure (a) is recorded at location (125, 190) corresponding to a pre-critical reflection at incident angle of
22.6◦; subfigure (b) is recorded at location (110, 190) corresponding to a post-critical reflection at incident angle of 33.7◦; subfigure (c) is recorded at location
(90, 280) corresponding to a transmission with an incident angle of 15.9◦ and subfigure (d) is recorded at location (40, 210) for the head wave.

(32) we obtain the true traction, σ 3, and in the second (33), the
continuum traction, σ C

3 ].
Once the solutions of the homogeneous form of equation (29) are

known, the solution of the inhomogeneous eq. (29) can be found
from

w(z) = F(z)

(
F−1(z0)w(z0) +

∫ z

z0

F−1(ζ )F(ζ ) dζ

)
, (34)

where F(z) is a fundamental matrix of the differential system (29).
The equivalence of the two forms of the source (32) and (33) de-
pends on the equivalent forces discussed in Section 2, but also
follows by simple algebra. The fundamental matrix, F, satisfies the
homogeneous form of the differential system (29), ∂3F = i ωA F,
so the inverse satisfies

∂3

(
F−1
) = −i ωF−1A. (35)

Considering the contribution of the final term in (33) to the integral
in (34), and integrating by parts∫ z

z0

F−1(ζ )

(
0

∂3m3

)
dζ = F−1(ζ )

(
0

m3

)∣∣∣∣∣
z

z0

−
∫ z

z0

∂3F−1(ζ )

(
0

m3

)
dζ (36)

= i ω
∫ z

z0

F−1(ζ )A

(
0

m3

)
dζ = i ω

∫ z

z0

F−1(ζ )

(
Z m3

pνcν3Z m3

)
dζ,

(37)

that is, the final term in (32), assuming that the source has com-
pact support within the interval of integration. Hence, with this
assumption, the two forms of F , (32) and (33), are equivalent.

It is important to note that the differential system (29) is not
directly comparable with the partial differential system (5) and (6).
In particular, we cannot take the acoustic limit directly as the matrix
A contains reciprocals of stiffnesses and the vector w contains
components that are discontinuous at fluid interfaces. Instead, we
rewrite the equation

∂t w + A−1∂3w = A−1F, (38)

taking the inverse Fourier transform with respect to frequency. The
inverse matrix is

A−1(p1, p2, x3) =
( −pνX cν3 X

pη pνc3ηX cν3 − c33 −pνc3νX

)
, (39)
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where X = (pη pνcην − ρ I)−1. Eq. (38) is comparable with system
(5) and (6) and, as we shall see, allows the acoustic limit to be taken
directly, as in (7) and (8).

The results in this subsection for the 1-D, ordinary differential
system are well known (e.g. Chapman 2004) except perhaps for the
equivalent source representations (32) and (33), and the differential
system (38) and its matrix (39).

5.2 Isotropic equations

We now specialize the system to an isotropic medium. As the system
is axially symmetric, we can consider the results when p2 = 0 and
let p = p1. As we are considering corrections to the acoustic waves,
we need only consider the P-SV system (particle displacement in
the x1–x3 plane), and ignore the SH system (particle displacement
in the x2 direction). Eliminating the SH system, the matrix A can be
reduced to

A =

⎛⎜⎜⎜⎜⎝
0 −p −1/μ 0

−pλ/η 0 0 −1/η

ξp2 − ρ 0 0 −pλ/η

0 −ρ −p 0

⎞⎟⎟⎟⎟⎠ , (40)

where η = λ + 2μ and ξ = 4μ(λ + μ)/η. The vector w is

w =

⎛⎜⎜⎜⎜⎝
v1

v3

σ31

σ33

⎞⎟⎟⎟⎟⎠ , (41)

and the source vector

F =

⎛⎜⎜⎜⎜⎝
−i ω m13/μ

−i ω m33/η

− f1 + i ωp (m11 − λ m33/η)

− f3 + i ωp (m31 − m13)

⎞⎟⎟⎟⎟⎠ (42)

≡

⎛⎜⎜⎜⎜⎝
0

0

− f1 + i ωpm11 + ∂3 m13

− f3 + i ωpm31 + ∂3 m33

⎞⎟⎟⎟⎟⎠ (43)

(where, for completeness, we have retained the possibility of non-
indigenous force sources, f �= 0, and torque sources, mT �= m). We
reiterate that these two forms for the source vector are only equiv-
alent if the source has compact support, that is, the contributions
from the limits (36) of the source integral are zero, and that for (42),
w contains the true stresses, and for (43), the continuum stresses.

As mentioned above, the differential system (29) with A given by
(40) for elastic waves cannot be reduced in a straightforward manner
to the acoustic system. The matrix A contains the reciprocal of the
shear modulus and the vector w contains the tangential particle
velocity, v1, which is discontinuous at a fluid interface (and the
zero shear-stress component, σ 31). However, it is straightforward to
obtain the acoustic system from the transforms of eqs (7) and (8).
Then (Chapman 2004, eq. 6.3.2),

A =
(

0 p2/ρ − 1/κ

−ρ 0

)
, (44)

and the wavefield vector

w =
(

v3

−P

)
(45)

with the variables, normal particle velocity and pressure, that are
continuous at an interface. The source vector is

F =
(

p ( f1 − i ωpm11 − ∂3m13)
/

ρ

− f3 + i ωpm31 + ∂3m33

)
(46)

including equivalent forces as in (43). Alternative forms like (42)
are not possible as field variables that may be non-zero in the support
of the source, for example, shear stresses, but zero elsewhere, have
been eliminated.

The specialization of (39) in isotropic media required for the
finite-difference calculations in Section 7 is

A−1 =

⎛⎜⎜⎜⎜⎝
q−2

P 0 0 0

0 q−2
V 0 0

0 0 q−2
V 0

0 0 0 q−2
P

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
0 pλ/η −1/η 0

p 0 0 −1/μ

−ρ 0 0 p

0 ξp2 − ρ pλ/η 0

⎞⎟⎟⎟⎟⎠ , (47)

where we have eliminated the SH components and

qP = (ρ/η − p2
)1/2

, (48)

qV = (ρ/μ − p2
)1/2

(49)

are the P and SV x3 slowness components. In the acoustic limit,
μ → 0, qV → ∞, μq2

V → ρ and ξ → 0. The third row of A−1 is
zero so σ 31 = 0 and the third column can be ignored. The second
and fourth rows and columns reduce to

A−1 =
(

0 −1/ρ

−ρ/q2
P 0

)
, (50)

compatible with system (44). Combining the first and fourth rows
of eq. (38) gives

v1 = pP/ρ, (51)

which will be discontinuous at interfaces if the density changes.

6 I T E R AT I V E C O R R E C T I O N S T O
A C O U S T I C P L A N E WAV E
C O E F F I C I E N T S

In this section, we use the plane wave theory from Section 5 to
evaluate the corrections to the acoustic plane wave coefficients.

6.1 Homogeneous media

We now consider an interface at z = 0 between two homogeneous
media. For instance, the density is given by

ρ(z) = ρ1 H (z) + ρ2 H (−z) = ρ2 + [ρ ]H (z), (52)

where the density jump at the interface is the saltus

[ρ ] = ρ(z + 0) − ρ(z − 0) = ρ1 − ρ2 (53)
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(for brevity, we do not include the depth variable in the saltus—
all variables are continuous except at z = 0). The homogeneous
first medium exists for z > 0 and the second medium for z < 0.
The source is located in the first medium. Note that the z-axis is
shifted and reversed compared with the figures in Section 4. The two
models are designed so the P-wave kinematics are identical. Where
variables differ, this is indicated by a superscript, that is, μE, but
when they are identical, for example, density and P-wave velocity,
α = √

ηE/ρ = √
κA/ρ, this is omitted. We consider the case where

a plane wave is incident from the first medium, travelling in the
negative z-direction, indicated by a grave ( `) accent on relevant
variables, a transmitted wave propagates in the same direction into
the second medium and a reflected wave propagates in the positive
z-direction, indicated by an acute (´ ) accent, in the first medium
(the direction of the accent suggests the propagation direction).
Henceforth, the subscripts 1 and 2 are only used to indicate the media
above and below the interface, and the coordinates are indicated by
(x, y, z) rather than (x1, x2, x3).

The plane wave solutions can be found from the eigensolutions
of the matrix A, that is,

AW = Wq, (54)

where W is a matrix of the eigenvectors, and q the diagonal ma-
trix of eigenvalues (Chapman 2004, section 6.3.2). We follow the
convention in Chapman (2004) and order the eigenvectors first up-
going and then downgoing. Thus, for the acoustic solution, we have
W = ( ẃ ẁ

)
where

ẃ

ẁ

}
= wα

(±q

−ρ

)
(55)

with

w = (2ρα2q)−1/2 (56)

introduced to normalize the eigenvector with respect to energy flux
in the z-direction (the alternative signs, ±q, in the right-hand-side
vector correspond to the alternative up/down eigenvectors, ẃ and
ẁ, on the left-hand side). We have written q = qP (48) as we only
need the P wave.

With these eigenvectors (55), we can construct the exact solution
for reflection and transmission of acoustic waves at an interface,
that is,

wA(z) =
(

ẁ1 e−i ω q1z + T́`ẃ1 ei ω q1z
)

H (z) + T̀`ẁ2 e−i ω q2z H (−z),

(57)

where

T́`= −T̀´= (ρ2q1 − ρ1q2)/�, (58)

T́´= T̀`= 2
√

ρ1ρ2q1q2/�, (59)

� = ρ2q1 + ρ1q2 (60)

are the reflection and transmission coefficients for acoustic waves
from the interface (Chapman 2004, eqs 6.3.7–8) [we use a notation
where the first accent indicates the generated wave and the second
accent indicates the incident wave—the symmetry (59) depends on
the normalization (56)].

The acoustic solution (57) and the transverse particle velocity
(51) are substituted in elastic equation to calculate the residual
sources. The most important features are the discontinuities in the
transverse particle velocity and normal gradient at the interface.

6.2 Residual sources

To correct the acoustic solution (57), we must consider the residual
sources (27) and (28). These can be derived from an analysis of
the solution (57). The important features are the discontinuities and
singularities at the interface. The particle velocity and its gradient
are given by

vA =
(

v̀1 e−i ω q1z + T́`v́1 ei ω q1z
)

H (z) + T̀`v̀2 e−i ω q2z H (−z) (61)

� c

(
ρ1

−ρ1q2/p

)
− c[ρ ]

(
1

0

)
H (z), (62)

∂zv
A = −iω q1

(
v̀1 e−i ω q1z − T́`v́1 ei ω q1z

)
H (z)

−i ω q2T̀`v̀2 e−i ω q2z H (−z)−c [ρ ]

(
1

0

)
δ(z) (63)

� i ω cρ1ρ2

p

{
q2

ρ2

(−p

q2

)
+
[

q2

ρ

](
0

1

)
H (z)

}
− c [ρ ]

(
1

0

)
δ(z),

(64)

where, from (51) and (55),

v́

v̀

}
= wα

(
p

±q

)
(65)

and

c = 2p(wαq)1

�
= p

�

(
2q1

ρ1

)1/2

. (66)

The approximations (62) and (64) describe the behaviour in the
neighbourhood of the interface (for |z| small compared with the
wavelength or in the limit ω → 0). The transverse particle velocity
is discontinuous as expected (62), unless [ρ ] = 0. The equality of
the gradient of the transverse component, ∂ zvx, on either side of
the interface is a consequence of the curl of the particle velocity
being zero in a homogeneous fluid (so ∂ zvx = ∂xvz), and the normal
particle velocity (62) and therefore its transverse gradient ∂xvz being
the same on both sides of the interface. The discontinuity in the
transverse component, vx (62), gives the delta-function singularity
at the interface (64).

From these results, we can calculate the residual sources. For the
2-D plane wave solutions being considered, the significant compo-
nents of the residual moment-density sources (27) are

δm =

⎛⎜⎝ δmxx

δmzz

δmzx

⎞⎟⎠= 2μE

⎛⎜⎝ eA
zz

eA
xx

−eA
zx

⎞⎟⎠= μE

⎛⎜⎝ 2 i
ω
∂zv

A
z

−2 p vA
x

p vA
z − i

ω
∂zv

A
x

⎞⎟⎠ (67)

written as a vector for simplicity. With the eigensolutions (55), the
corresponding residual sources in the homogeneous regions are

δḿ

δm̀

}
= − 2μEwα

⎛⎜⎝ q2

p2

∓p q

⎞⎟⎠ , (68)
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although the equivalent-force sources are, of course, zero. With
(61)–(66), we obtain

δm =
(
δm̀1 e−i ω q1z + T́ δ̀ḿ1 ei ω q1z

)
H (z)

+ T̀ δ̀m̀2 e−i ω q2z H (−z) + i c

ω

⎛⎜⎝ 0

0

μE[ρ]

⎞⎟⎠δ(z) (69)

� −2cρ1ρ2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

μE
2 q2

2
ρ2

/
p

μE
2

ρ2
p

μE
2

q2
ρ2

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
[

μEq2

ρ

]/
p[

μE

ρ

]
p[

μE
] q2

ρ2

⎞⎟⎟⎟⎠H (z)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ i c

ω

⎛⎜⎜⎝
0

0

μE[ρ]

⎞⎟⎟⎠ δ(z), (70)

where μE = (μ1 + μ2)/2, the mean shear modulus in the elastic
solid. The delta-function term is obtained from the singularity in
∂zv

A
x at the interface, (64) and (67). The gradient of the residual

moment-density tensor is

∂z(δm) = −i ω q1

(
δm̀1 e−i ω q1z − T́ δ̀ḿ1 ei ω q1z

)
H (z)

−i ω q2T̀ δ̀m̀2 e−i ω q2z H (−z)

−2cρ1ρ2

⎛⎜⎜⎜⎝
[

μEq2

ρ

]/
p[

μE

ρ

]
p[

μE
] q2

ρ2

⎞⎟⎟⎟⎠ δ(z) + i c

ω

⎛⎜⎜⎝
0

0

μE[ρ ]

⎞⎟⎟⎠ δ′(z).

(71)

Here, we have no need to evaluate the first terms in the homogeneous
regions, or their discontinuity, as we know the force-equivalent
residual sources are zero in the homogeneous regions. We only
need the singular terms which come directly from the discontinuity
and delta function in (70).

6.3 Iterative correction

A fundamental solution of (29) is

F(z) = (W1ei ω q1z
)

QH (z) + (W2 ei ω q2z
)

H (−z), (72)

where W j are the eigenvector matrices (54) in the two media, and
(Chapman 2004, eq. 6.3.22)

Q = W−1
1 W2. (73)

This fundamental solution has been designed so below the inter-
face (z < 0), it corresponds to the plane wave eigensolutions,
W2 exp(i ω q2z), and the solution is given by just the downgo-
ing eigenvector in W2. At the interface, it has been designed
to be continuous as required of a fundamental solution, that is,
F(0) = W2 = W1Q, whether approaching from above or below the
interface. Above the interface (z > 0), the solution is still given
by the eigensolution, W1 exp(i ω q1z), but the eigenvectors are now
‘mixed’ by the interface matrix Q. The interface matrix is given by
(Chapman 2004, eq. 6.3.21)

Q =
(
T́´− T́`T̀ −̀1T̀´ T́`T̀ −̀1

−T̀ −̀1T̀´ T̀ −̀1

)
. (74)

Using this in (34) with the residual sources at the interface, we gen-
erate the particular solution excited by these sources. The solution
must consist only of waves radiated away from the interface, and
these give the corrections to the reflected and transmitted waves,
and the coefficients. Thus,

w(0+) = W1

(
δT̀`

0

)
, (75)

w(0−) = W2

(
0

δT̀`

)
, (76)

where δT are the corrections to the coefficients in the acoustic
model. To determine these, we need to evaluate the source integral
in (34).

In the acoustic equation, we note that the force-equivalent sources
(46) contain the derivative term, ∂ z(δmzx) (46). As the residual
moment-density source δmzx (70) contains a delta function, this
term is difficult to handle as it lies at an interface and contains the
derivative of the delta function. In addition, the acoustic source (46)
contains the inverse density 1/ρ(ζ ), which is also difficult to handle
as it is discontinuous at the interface. Both these problems can
be avoided if we could use the alternative source expressions (42)
and (43), but this is only possible in an elastic medium. Therefore,
we replace the acoustic medium by an elastic medium with a very
small shear modulus, μA (which, for simplicity, we can take constant
throughout the model). The shear waves generated are of no interest
(they travel with a very small velocity) although, at the interface,
they provide the required discontinuity in the transverse particle
velocity. There are two advantages in using an ‘elastic’ acoustic
model: the fundamental solution is continuous at the interface, and
the residual source can be introduced using the alternative source
vector either (42) or (43). Because the problem is linear in the source
vector (34), we can treat terms in (70) independently. Using (70)
and (71), we obtain

F(z) = c

⎛⎜⎜⎜⎜⎜⎝
μ̄E

μA [ρ ]

0

−2ρ1q2[μE]

−2p ρ1ρ2

[
μE

ρ

]

⎞⎟⎟⎟⎟⎟⎠ δ(z) (77)

for the residual source vector. Note that the sources (42) or (43)
only contain mxx, not its derivative, so its discontinuity (70) makes
no contribution to the singularity at the interface; the discontinu-
ity in δmzz (70) gives the singularity in component F4 through its
derivative ∂ z(δmzz) in (43); and the discontinuity in mxz gives the
singularity in component F3 at the interface through its deriva-
tive ∂ z(δmxz) using (43), and the singularity in δmxz (70) gives the
singularity in component F1 using (42).

At the interface, the fundamental matrix needed in integral (34)
is given by W2 (72). In the ‘elastic’ acoustic model, we need only
consider the rows of W−1

2 appropriate for the P waves. Thus, the
source integral in (34) is written

s =
(

ś

s̀

)
=
∫ 0+

0−
W̃−1

2 F(ζ ) dζ, (78)

where F(ζ ) is given by (77) and

W̃−1
2 = w2α2

(
2μA p q2 ρ2 − 2μA p2 −p −q2

2μA p q2 −ρ2 + 2μA p2 p −q2

)
(79)
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from the relevant P rows in the inverse matrix W−1
2 for the ‘elastic’

medium (Chapman 2004, eq. 6.3.32 with 6.3.53). AsF(ζ ) (77) only
contains a delta function, the integral (78) is simple to evaluate

s = 2cp(wαq)2

⎛⎝ μ̄E[ρ ] + ρ1[μE] + ρ1ρ2

[
μE

ρ

]
μ̄E[ρ ] − ρ1[μE] + ρ1ρ2

[
μE

ρ

]
⎞⎠

= 2p2

�

(
q1q2

ρ1ρ2

)1/2
(

4ρ̄ + [ρ ]

−[ρ ]

)
. (80)

Note that the ‘elastic’ shear modulus μA has conveniently cancelled
from the product of the first components (so the acoustic limit,
μA → 0, is trivial), and that although the residual sources arise
from different stress components, in the final expression (80) all
terms have the same p–dependence.

Applying the conditions (75) and (76) to (34) with (72), we
obtain

δT́`= (
Q11 − Q12 Q−1

22 Q21

)
ś = T́´ś, (81)

δT̀`= −Q−1
22 Q21ś − s̀ = T̀´ś − s̀ (82)

using eq. (6.3.23) in Chapman (2004) for the combinations of ele-
ments of Q. Thus, the corrected coefficients are

T́ (̀1) = T́`+ δT́`= 1

�

{
ρ1ρ2

[
q

ρ

]
+ 2p2q1q2

�
[μE] (4ρ̄ + [ρ ])

}
,

(83)

T̀ (̀1) = T̀`+ δT̀`= 2(ρ1ρ2q1q2)1/2

�

×
{

1 − 2p2

�
[μE]

(
ρ1ρ2

[
q

ρ2

]
+ ρ1

[
q

ρ

])}
. (84)

In each case, the uncorrected, acoustic coefficients are given by
the first term in the braces. Note that the reflection coefficient is first
order in the differences between the two media as is the correction.
The transmission coefficient is of order unity (it differs from unity
by a term that is first order in the differences between the two media)
and the correction is second order in differences between the two
media.

In Section 7, we compute numerical examples of these results.

7 N U M E R I C A L P L A N E WAV E
E X A M P L E S

7.1 Coefficient corrections

It remains to compare the elastic coefficients, T́ P̀P and T̀ P̀P (Chap-
man 2004, eq. 6.3.60), with the corrected acoustic coefficients,
T́ (̀1) = T́`+ δT́`(83) and T̀ (̀1) = T̀`+ δT̀`(84), respectively. We con-
sider the two models in Table 1. Numerical results for the sediment
model are shown in Figs 5 and 6, and for the salt model in Figs 7
and 8. In both cases, the agreement between the corrected acoustic
reflection coefficient and the elastic coefficient is very satisfactory.
The correction is of the same order of magnitude as the coefficient,
and is only slightly less accurate for the stronger contrast (although
it should be stated that in both cases, the agreement is not as good
beyond the critical angle. Near the critical angle the agreement is
good so the correction to the head wave is satisfactory, but at larger,
post-critical angles the correction is even in the wrong direction and
requires further investigation). For instance, at an incident angle of
45◦ (as in Fig. 2a), the acoustic reflection coefficient is in error
by +37 per cent compared with the elastic coefficient, while the
corrected acoustic coefficient is only in error by +4.9 per cent (the
choice of 45◦ is arbitrary but the error is small for all pre-critical
angles—Fig. 5). The situation is less satisfactory for the transmis-
sion coefficient, although the fractional difference, the difference

Figure 5. The elastic, acoustic and corrected reflection coefficients for the sediment model in Table 1. The colour code is the same as in Figs 2 and 4—blue for
the acoustic coefficient, red for the elastic coefficient and green for the corrected acoustic coefficient. The dashed lines show the magnitude of the fractional
errors of the acoustic and corrected acoustic coefficients compared with the elastic coefficient.
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Figure 6. As Fig. 5 but for the transmission coefficients.

Figure 7. As Fig. 5 but for the salt model.

between the coefficients divided by the elastic coefficient, between
the acoustic and elastic coefficients is much smaller. The correction
to the acoustic coefficient is in the correct direction but it is too large
and overshoots the elastic coefficient. At small angles, the acous-
tic and elastic coefficients differ little, and the correction is worse.
In mid-range, the correction is about twice too large. Only near the
critical angle is the corrected acoustic coefficient a better approxi-
mation to the elastic coefficient than the acoustic coefficient. Again
at an incident angle of 45◦ (close to the angle used in Fig. 2c, which
was chosen to be at a gridpoint) the acoustic transmission coefficient
is in error by −9.9 per cent compared with the elastic coefficient,
while the corrected acoustic coefficient is in error by +5.6 per cent.

The results in Figs 5 and 6 are in qualitative agreement with those
in Section 4 (Figs 1 and 2). The results for the salt interface (Figs 7
and 8) are very similar. The accuracy of the corrected acoustic re-
flection coefficient (83) is remarkably good and suggests that the
analytic expression might be used in other applications.

7.2 One-dimensional finite-difference calculations

We commented that the analytic expressions for the reflection and
transmission coefficients are in qualitative agreement with the finite-
difference results in Section 4, but a quantitative comparison is
difficult due to variations in the pulse shape, etc. To compare the
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Figure 8. As Fig. 6 but for the salt model.

analytic results in Section 6 with finite-difference numerical simu-
lations, it is necessary to perform 1-D finite-difference calculations
in the transformed domain. This is useful to confirm the validity
of the analytic analysis. Comparisons with the 2-D finite-difference
calculations in the spatial domain (Section 4) would not be as use-
ful. First, it is difficult to accurately measure amplitudes in the
finite-difference results as the pulse shapes are distorted by the
curved wave fronts (see Figs 1–4). Secondly, we have the addi-
tional approximation of the differentials in the transverse direction
in the 2-D finite-difference calculations. The analytic results are
in the transformed domain, so the transverse differentials are han-
dled exactly. It is more satisfactory to compare the analytic results
with 1-D finite-difference calculations in the transformed domain,
where if the discretization is fine enough, the results should be
comparable.

The 1-D finite-difference equations in the transformed domain
can be derived for the discrete approximation to eq. (38). In
the velocity–stress, staggered-grid formulation (Virieux 1986), the
stresses are defined on the gridpoints, and the particle velocities are
defined on the staggered-gridpoints (or vice versa). The time up-
dates of the particle velocities on the staggered grid depend on cen-
tral difference approximations of spatial differentials of the stresses
[the equation of motion (1)], and the time updates of the stresses
on the grid depend on central difference approximations of spa-
tial differentials of the particle velocities (the constitutive eq. 2).
Commonly, the time derivative, ∂ t, is approximated by a two-point
difference, and the spatial derivatives, ∂3, by a four-point formula
as in Section 4.

In the transformed domain, the Virieux grid is collapsed onto
one spatial dimension, x3, and the grid and staggered-grid variables
become mixed. For the transformed, 2-D problems, v1, σ 33 and
P are defined on the gridpoints and v3 and σ 31 on the staggered-
gridpoints. Thus, the formula to update the gridpoints is

∂t

(
v1

σ33

)
= q−2

P

( −pλ/η 1/η

ρ − ξp2 −pλ/η

)
∂3

(
v3

σ31

)
(85)

from (47), and for the staggered-gridpoints

∂t

(
v3

σ31

)
= q−2

V

(−p 1/μ

ρ −p

)
∂3

(
v1

σ33

)
(86)

omitting the source terms for brevity. Note that the equations have
become mixed, and we no longer have a one-to-one correspondence
between updating the grid and staggered grid, and the constitutive
equations and the equation of motion. On the spatial grid, the vari-
ables v1 and σ 33 are defined on gridpoints in the temporal grid,
and the similarly v3 and σ 31 are defined on staggered-gridpoints in
space and time. The transverse particle displacement, u1, required
for the source term is calculated from the time integral of v1 and is
known on the spatial grid but the temporal staggered grid.

In the acoustic limit, the equations reduce to

∂t (−P) = ρ q−2 ∂3v3 (87)

for the grid updates, and

∂t (v3) = ∂3(−P)
/

ρ (88)

for the staggered-grid updates, from (50).
The finite-difference calculations are performed using discrete

forms of eqs (85) and (86) for the elastic solution, and (87) and
(88) for the acoustic solution and its correction. The standard sec-
ond order in time and fourth order in space, staggered-grid for-
mulation is used, and as outlined above all the required deriva-
tives are compatible with the definitions of the grid and staggered
grid.

An example of these 1-D, finite-difference calculations for the
acoustic, elastic and corrected solutions is shown in Figs 9 and 10.
Fig. 9 shows 15 snapshots of the particle velocity. The source is a
minimum-phase Ricker wavelet with a central frequency of 100 Hz.
The acoustic, elastic and corrected solutions are shown with a small
vertical shift to separate the curves. The direct, incident, reflected
and transmitted acoustic and P waves are clearly visible, and in
the elastic case, the reflected and transmitted S waves are just vis-
ible. To see the details, the final snapshot is replotted in Fig. 10.
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Figure 9. The elastic, acoustic and corrected solutions for the sedimentary model. The record are snapshots of the particle velocity, v3, at intervals of 3.56 ms.
The incident wave angle is 45◦. The horizontal axis is z. The plane wave is introduce at z = 150 m and the interface is at z = 200 m. The colour code is the
same as in Figs 2 and 4—blue for the acoustic solution, red for the elastic solution and green for the corrected solution. The pulse is a minimum-phase Ricker
wavelet with central frequency of 100 Hz. The traveltimes of the source, reflected and transmitted waves are indicated. To distinguish the curves, the elastic
and corrected solutions are shifted vertically by 0.1 and 0.2 of the separation of the snapshots, respectively.

Figure 10. The elastic, acoustic and corrected solutions for the sedimentary model. The record is the snapshot of the particle velocity, v3, at time 53.4 ms,
the final snapshot in Fig. 9. Apart for the scale, other details are as Fig. 9. The theoretical amplitudes for the reflected and transmitted pulses for all solutions,
predicted from the amplitude of the incident pulse, are indicated by the horizontal lines. In order to distinguish the curves, the elastic and corrected solutions
are shifted vertically by 0.02 and 0.04 units, respectively.

Again the acoustic, elastic and corrected solutions are shown with
a small vertical shift to separate the curves. The elastic reflected
and transmitted S waves are more clearly visible. Taking the first
peak amplitude from the direct wave, the predicted amplitudes of

the reflected and transmitted waves for the three solutions are in-
dicated with the horizontal lines. The accuracy of the acoustic and
elastic finite-difference calculations is evident. Reasonable agree-
ment is obtained for the corrected, reflected and transmitted P
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waves. The agreement for the acoustic correction is not perfect,
but the disagreement is largely due to the numerical approxima-
tions involved in the second derivative of uA

1 (which is ‘discontinu-
ous’) in the residual source (∇ · eA in eq. 28). This was confirmed
by performing a simulation with [ρ ] = 0 when the contribution
from the second derivative is zero [as the coefficient of the delta
function in (70), which leads to the delta function derivative in
the residual force source, is zero]. Then, the agreement is much
improved.

8 C O N C LU S I O N S

In this paper we developed a theory for correcting the wavefield in
acoustic finite-difference simulations for some of the elastic effects
in an elastic model. The method works by treating the first acoustic
simulation as an approximate solution of the elastic wave equation,
and calculating the error in this equation. Introducing the negative
of this error as sources in a second acoustic simulation allows calcu-
lation of a correction for the acoustic wavefield that simulates some
of the elastic effects of the elastic wave equation. In principle the
iterative procedure could be continued, but probably the most useful
effect is from the first iteration. The calculation of the error terms can
be restricted to inhomogeneous regions where waves are reflected
or converted, for example, interface regions, making their computa-
tion a small additional cost. Although individual terms in the error
sources (the residual moment-density elements) are non-zero in ho-
mogeneous regions, overall the total error force-equivalent sources
are zero, i.e. the moment-density sources are silent in homogeneous
regions. The main cost is for the second acoustic simulation. If the
error terms are calculated everywhere, the cost will be considerably
greater, but still less than the equivalent elastic simulation.

The error terms must be introduced into a separate acoustic sim-
ulation. If the errors are introduced immediately as corrections to
the original acoustic simulation, then the computations include all
aspects of the elastic simulation and become equivalent to elastic
simulations on the acoustic grid (as we have confirmed numeri-
cally and by analysis). Elastic simulations on the acoustic grid are
another possible way to correct acoustic simulations, but have the
disadvantage that they will contain dispersed S waves and their later
conversions to P waves.

We demonstrated by finite-difference calculations that the correc-
tion procedure significantly improves the amplitudes of reflection
P waves even at a strong interface between sediment and salt. This
correction was confirmed by analytic results for the correction to
the plane-wave coefficients, and one-dimensional finite-difference
computations for plane waves. In this paper we have only con-
sidered the finite-difference method for the simulations, but the
iterative procedure could be used with other numerical techniques.

Although we only applied the method to correct acoustic wave-
fields for the effects of isotropic elasticity, the method is more
general and could be applied to correct the solution of one wave

equation for effects from another, similar wave equation. For in-
stance, it could be used to correct for anisotropy, if the kinematic
properties can be included in an approximate simulation, or atten-
uation. For transversely isotropic (TI) media, anisotropic approxi-
mations for the acoustic equations have been developed that model
the kinematic properties of qP in TI media reasonably accurately
(Duveneck et al. 2008, Fowler et al. 2010, Bube et al. 2012). The
approximate anisotropic acoustic simulation can then be corrected
for the elastic TI effects using the theory developed in this paper.

The analytic correction for the reflection coefficient (the con-
situtive relationship 2) is very good (Figs 5 and 7) and may well
have other applications, e.g. amplitude-versus-angle studies. In an
alternative notation, it can be written

T́`� Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2

+ [μE]

(
2ρ̄ + 1

2
[ρ]

)
sin 2θ1 sin 2θ2

(Z2 cos θ1 + Z1 cos θ2)2
, (89)

where Z = ρα is the acoustic impedance, and θ is the P-ray angle
with the normal to the interface.
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