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Optimal rates of evolution and the informativeness
of characters for phylogenetic inference have received
increasing attention as the effort to distinguish phylo-
genetic signal and noise from large data sets intensifies.
Ascertaining optimal rates for character evolution and
predicting sequences featuring high phylogenetic util-
ity are challenging tasks for which little theory has been
developed. We argue for the usage of predictive theoret-
ical tools that identify phylogenetic signal for quartets of
taxa. We demonstrate analytically that, under an infinite
states model, phylogenetically optimal rates of char-
acter evolution increase with greater taxon sampling.
Finally, we argue for the development of increasingly
sophisticated tools for the prediction of phylogenetic
informativeness that incorporate higher taxon sampling
and that directly account for phylogenetic noise.

In a recent paper, Klopfstein et al. (2010) evaluate
and critique profiles of phylogenetic informativeness
(Townsend 2007), a method designed to inform the
choice of markers for phylogenetic inference, and to in-
terpret of the power of data sets to resolve short deep in-
ternodes in the history of life. To motivate their critique,
Klopfstein et al. (2010) provide two analyses. First, they
profile the phylogenetic informativeness of CO1 and
28S rRNA and reconstruct phylogeny for diplazontine
parasitoid wasps. Second, they perform simulations to
test the optimal rate of character change against a pre-
diction based on four-taxon theory in Townsend (2007),
addressing data sets of increasing numbers of taxa. With
regard to their empirical data set, Klopfstein et al. (2010)
find fault with the relation between the quartet-based
(Townsend 2007) phylogenetic informativeness profile
and the results of phylogenetic inference. Furthermore,
they argue that their simulations indicate a dramatic
trend in the optimal rate of change of a character for
phylogenetic inference, such that the greater the taxon
sampling, the slower the optimal rate of change of the
characters.

Here, we dispute these claims. Their discussion of the
empirical data set does not establish reasonable expec-
tations of the predictor and does not account for an
important caveat to the Townsend (2007) phyloge-
netic informativeness approach. Furthermore, their

simulated scenario can be more directly and com-
prehensively addressed with mathematical analysis.
Regardless of how it is addressed, however, their sce-
nario tests for an outcome that is not synonymous with
informative data under increased taxon sampling. Con-
sequently, Klopfstein et al. (2010) in fact predict the
opposite relation between optimal rate of evolution
and degree of taxon sampling to that which should be
expected.

THE INFORMATIVENESS AND PERFORMANCE OF
CO1 AND 28S

Klopfstein et al. (2010) remark that, in their analysis
of the Townsend (2007) phylogenetic informativeness
profiles based on their diplazontine wasp data set, CO1
exhibits an informativeness that is higher across the en-
tire history of their phylogeny, by a factor ranging from
four at the root to much more at the tips. In contrast,
they show, using the concatenated-alignment tree as the
tree for comparison, that CO1 outperforms 28S rRNA
by only a few additional nodes “correctly” resolved
(33 were resolved correctly by CO1, whereas 26 were
resolved correctly by 28S rRNA). However, we would
point out that the higher phylogenetic informativeness
of CO1 provides no clear expectation for how much bet-
ter it will perform in terms of specific nodes; that perfor-
mance depends completely on the distribution of how
hard the unresolved nodes are to resolve. For instance,
it could be the case that half of the internodes in a given
phylogeny are long and recent and the corresponding
clades are easy to resolve, and half are extremely short
and deep and thus recalcitrant to any resolution. In that
case, two genes featuring truly dramatically different
informativeness could perform identically in terms of
number of nodes resolved. Moreover, even if the distri-
bution of difficulty of resolution across nodes is highly
uniform, there is no reason to expect that an x-fold dif-
ference in informativeness would result in an x-fold
difference in number of nodes resolved. It may require
an x-fold difference in amount of informative data to re-
solve one additional node, an x2-fold difference to solve
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two additional nodes, an x3-fold difference to solve three
additional nodes, etc. Although which gene performs
better should generally correlate with the quantitative
metric of informativeness, the degree and pattern of
resolution of internodes as a consequence of that infor-
mativeness depends fundamentally on the true length
of the relevant internodes.

Klopfstein et al. (2010) more saliently take issue with
the fact that the CO1 phylogenetic informativeness
profile, while declining at deeper time scales, remains
higher than the informativeness profile for 28S rRNA
over the most deep nodes (Fig. 1). There are far fewer
deep nodes than recent nodes, but if attention is re-
stricted just to the deeper subset of nodes, 28S yielded
higher node support than CO1. This acute and valid
observation illustrates an issue that informativeness-
based studies such as Townsend et al. (2008) have ne-
glected: the importance of the primary caveat expressed
in Townsend (2007) to use of the phylogenetic informa-
tiveness profile for prediction of the utility of sequences
for phylogenetic inference. In particular, the CO1 infor-
mativeness profile is on the decline during the deeper
epoch of concern, whereas the 28S rRNA informative-
ness profile is on the rise. As discussed in Townsend
(2007), when profiling phylogenetic informativeness to
select character sets, the informativeness profile conveys
the historical epochs during which a character or set of
characters are most likely to provide informative phylo-
genetic signal but does not discount for the misleading
effects of noise (homoplasy) caused by convergence to
the same character state in divergent lineages. Such con-
vergence will occur more in faster evolving sites than
in slower evolving sites. Thus, for instance, when the
height of the informativeness curves are equal at a time
in history, character sets are best selected that exhibit
phylogenetic informativeness profiles that peak deeper
than, rather than more recently than, the epoch of inter-
est. This choice should minimize selection of characters

FIGURE 1. The Townsend (2007) phylogenetic informativeness
profiles for 28S and CO1 markers from the diplazontine parasitoid
wasp data set of Klopfstein et al. (2010). The area under the curves
for each gene represents predicted phylogenetic signal. Phylogenetic
noise is not characterized by the method of Townsend (2007), how-
ever, for illustration, a “rain shadow” of phylogenetic noise has been
depicted deeper than the recent peak of informativeness of CO1.

that may have too frequently evolved to convergent
states, reducing support for correct nodes and possibly
supporting incorrect nodes as well. The issue is that
characters that are highly informative early in history
rapidly become sources of phylogenetic noise due to
multiple hits for deeper divergences. Figure 1 depicts
this effect in a purely diagrammatic fashion as a “rain
shadow of noise” behind the early peak of informative-
ness of CO1 from the data set of Klopfstein et al. (2010).
Although CO1 shows considerable continued potential
for signal based on the height of its profile deep in the
phylogeny, it also shows extensive potential for noise.
In contrast, the informativeness profile of 28S rRNA is
still on the rise, so that its signal is very unlikely to be
swamped by noise. The same pattern occurs in the three
other studies cited by Klopfstein et al. (2010). The bal-
ance of signal and noise based on the rate of evolution
of characters is complicated and depends on the lengths
of the relevant internodes in a way that cannot be ad-
dressed by the asymptotic theory of Townsend (2007),
which addresses signal alone.

INTERPRETING PROFILES OF PHYLOGENETIC
INFORMATIVENESS

Given these considerations, how should profiles of
informativeness be interpreted? Viewing a profile yields
more than just a quantification of signal that will gen-
erally correlate with utility. It also gives a qualitative
impression of the potential for phylogenetic noise. Con-
sider two genes whose profile is at the same height for
a particular epoch. Whichever gene has an informative-
ness profile that peaks more deeply and that declines
backward in time more slowly would be preferable, as
it is predicted to yield less phylogenetic noise. In the
most recent portion of a phylogenetic informativeness
profile, when the profile is rising as it goes back in time,
noise is likely to manifest to a lesser degree compared
with signal, and there is less need to consider the im-
pact of phylogenetic noise. Once the informativeness
profile has crested, however, there are fewer and fewer
sites evolving at the optimal rate for phylogenetic infor-
mativeness, and there are increasing numbers of sites
that are evolving more rapidly than optimal that are
therefore at risk of delivering phylogenetic noise. Sites
that provide high signal in recent history deliver noise
for deep history; thus, the difference between the recent
peak of signal and the level of signal deeper in history is
roughly proportional to the degree to which noise will
be an issue with a locus at that depth in the phylogeny.
However, this proportionality across time cannot be
directly compared with the level of signal across time
to create a quantitative metric that incorporates noise
because the balance of signal and noise depends criti-
cally on the length of the internode in question. If the
internode is short, noise has a much greater effect. If
the internode is long, signal may easily outweigh noise.
Thus, there is no way to quantify signal versus noise
with a phylogenetic informativeness profile across time
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alone, even though they both may be depicted as in
Figure 1. The relative scaling of their importance de-
pends in a critically important way upon the length of
the short deep internode.

A more complete theory that directly integrates noise
by estimating a length and thus the relative scaling
for this internode is certainly desirable. Until then, sig-
nal alone as in the phylogenetic informativeness pro-
file correlates with resolution achievable across loci.
Profiles may productively be used as a quantitative
metric. Generally such usage will improve inference.
(But not always! It would not be a “prediction” if it
always predicted correctly.) Thus, experimental design
should not only incorporate evaluation of the relative
quantification inherent to profiles of phylogenetic in-
formativeness, but when feasible should incorporate
judicious discounting of the expected value of sets of
characters whose profiles of informativeness peak more
recently than the epoch of interest. Moreover, addi-
tional theory that accounts for the predicted length of
the internodes in question and therefore the scaling re-
lationship between signal and noise should be a high
priority.

INFORMATIVENESS AND THE OPTIMAL RATE OF
EVOLUTION WITH INCREASED TAXON SAMPLING

Klopfstein et al. (2010) are also critical of the explicit
use of quartet-based taxon sampling in the phylogenetic
informativeness derivation by Townsend (2007). They
note that calculation of probabilities associated with
synapomorphies on short deep internodes in other tree
topologies are possible. However, no tree topology with
fewer than four taxa features a short deep internode;
the three-taxon derivation of Klopfstein et al. (2010)
fails to account for an unmodeled root taxon. Only
with a root taxon would the strong phylogenetic sig-
nal of a deep synapomorphy uniting two pairs of sister
taxa manifest. There are both theoretical (Bandelt and
Dress 1986) and empirical (Townsend 2007; Mahon and
Neigel 2008; Townsend et al. 2008; Schoch et al. 2009)
reasons to believe that the quartet results of Townsend
(2007) may be productively applied to trees with greater
than four taxa. Exact predictions of informativeness
for more complex evolutionary histories are challeng-
ing to derive. However, some restricted solutions for
higher taxon sampling are possible. In general, em-
pirical and simulation results have justified a claim
that greater in-group taxon sampling permits the ef-
fective usage of faster evolving characters (Graybeal
1998; Hillis 1998; Poe 2003; Hedtke et al. 2006), leading
to a prediction of a slightly higher optimal rate. Corre-
spondingly, Townsend and López-Giráldez (2010) de-
rive a faster optimal rate for when an additional taxon is
added to character data already collected for a complete
quartet.

In contrast, Klopfstein et al. (2010) perform simula-
tions that are interpreted to “show that the optimum
evolutionary rate decreases with increasing number of

taxa.” They simulated data sets for the four-taxon case
and for data sets of 8, 16, and 32 taxa (see fig. 1 from
Klopfstein et al. 2010), counting the number of times
that a nucleotide pattern in accord with only one sin-
gle change on the short interior branch manifested. They
observed that the pattern occurred more frequently with
lower and lower rates of character change for the data
sets with greater and greater taxon sampling. They thus
show that the probability of a never-reversed synapo-
morphy decreases rapidly with more taxa, as each taxon
has a chance of reversing the synapomorphy. The same
result may be derived analytically. Given 2n species
(n ≥ 2) and their states, we can assign them to the 2n
leaves of a phylogenetic tree with n exterior branches
emanating from each of the two internal nodes (Fig. 3).
There are (2n!)/(2(n!)2) ways to do this. The probabil-
ity that mutations occur exactly on the short branch
only is

P(λ) = e−2nTλ(1− e−λε).

The optimal rate to maximize this probability can be
determined analytically:

λopt =−
1
ε
log

(

1−
ε

2nT

)

≈
1

2nT
.

(This result can be shown to hold true, asymptotically
for n → ∞, under the assumption of a Jukes–Cantor
model as well.) Consistent with the simulations of
Klopfstein et al. (2010), this optimal rate tends to 0
as n → ∞. Consistent with Townsend (2007), n = 2
yields 1/(4T). However, concluding from these results
that “optimal” rates of change for actual phylogenetic
inference decrease with increasing taxon sampling is
not justified. This pattern of perfect bipartition is nec-
essary for informativeness for a quartet but becomes
exceedingly unlikely as the number of taxa increases.
For large analyses, such perfect bipartitions are surely
not the source of information providing resolution of
phylogenetic trees. That information likely lies with
the larger numbers of perfectly bipartitioned quartet
subtrees that are key to the theory in Townsend (2007).
As the number of taxa are increased, it becomes eas-
ier to find individual bipartitioned quartets among all
the taxa. Although utterly unreversed synapomorphies
decrease in probability with increased taxon sampling,
observation of a single 2 + 2 outcome, where two taxa
share an unreversed synapomorphy and two taxa on
the other side of an internode share an ancestral state
or parallel synapomorphy, should increase in probabil-
ity with greater taxon sampling. Below, we analytically
demonstrate this increase.

Klopfstein et al. (2010) claim that the optimal rate for
a character decreases with increased taxon sampling.
If so, the optimal rate should be lower for five taxa
than for four taxa. However, calculation reveals that
such a 2 + 2 outcome occurs more often with higher
rates in a five-taxon tree for which all taxa are added
de novo to the study. Consider the goal of resolving the
AB/CD quartet in the tree depicted in Figure 2, where
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FIGURE 2. A five-taxon phylogenetic tree in which the quartet of
interest are composed of taxa labeled A, B, C, and D. The additional
taxon that will also be sampled is labeled A′.

five species (A, B, C, D, and A’) are to be sampled.
Taxon sampling is assumed to be deep because recent
sampling will have minimal impact on inference of the
deep internode (Graybeal 1998; Poe 2003; Townsend
and López-Giráldez 2010). For the leaves to exhibit in-
formative states, at least one substitution must occur
along the short internal branch (ε), no mutations may
occur along the exterior branches of B, C, and D, and
mutations along at most one of the exterior branches
A and A’ may occur. The probability for this event to
occur is

P(λ) = e−3Tλ(1− e−ελ)(1− (1− e−Tλ)2)

≈ ελ(2e−4Tλ − e−5Tλ)

for small ε. This probability is maximal for λopt =
0.294/T, which is, as predicted, slightly larger than
the 1/(4T) revealed for a simple quartet in Townsend
(2007). Consistent with this finding, an increase in the
optimal rate has also been demonstrated for the ad-
dition of character data for a fifth taxon to a known
unresolved quartet with previously identified quartet
character data (Townsend and López-Giráldez 2010).

Addressing trees larger than five taxa becomes in-
creasingly technically difficult. However, two divergent
simplified models, a “many-sister-pairs” model and a
“two-hard-polytomy” model are tractable for arbitrarily
high levels of taxon sampling. Any tree with exclusively
deep taxon sampling should lie somewhere between
these two models. Consider a many-sister-pairs tree
(Fig. 3) for which we require at least one mutation to
occur on all n or on all but one of the short interior
branches from the root (each of length ε), but we con-
servatively require none on to occur on any external
branches. This assumption is conservative because the
direction of our model error due to this assumption
would favor slower rates in general and thus would err
on the side of favoring the interpretation of Klopfstein

FIGURE 3. Phylogenetic tree with 2n paired taxa with leaf length T,
with all pairs connecting to a star node via n internodes of length ε.

et al. (2010). The probability of this event under these
assumptions is

P(λ) = ((1− e−ελ)n + n e−ελ(1− e−ελ)n−1)e−2nTλ

≈ nεn−1λn−1e−2nTλ.

Taking the derivative yields an optimal rate of

λopt ≈
1

2T
−

1
2nT
,

which agrees with Townsend (2007) for n= 2, and
monotonically increases with n, in stark contrast to
the conclusion of Klopfstein et al. (2010).

It could be argued that requiring so many sister clades
to be resolved (i.e., requiring mutations to have oc-
curred on so many short branches) places an unreal-
istic optimality on higher rates. This argument may
be countered by considering the opposite extreme to it,
a two-hard-polytomies model (Fig. 4), again with
arbitrarily large taxon sampling. The tree in Figure 4
features a single short deep internode of length ε that
separates two-hard polytomies, one with nA subtend-
ing lineages and the other with nB subtending lineages.
To produce truly synapomorphic states, one or more
mutations must occur along the short interior branch,
with probability 1 − e−λε ≈ λε, where the approxima-
tion holds for small values of epsilon. Also, to produce
truly synapomorphic states, two or more branches on
either side of the short deep internode must remain
unchanged over time T, each with probability e−λT.
The number of subtending branches exhibiting a state
that traces its ancestry without interruption to the in-
ternal branch then follows a binomial distribution: nA
tries each with probability e−λT on the left side of the
short internal branch and nB tries each with probability
e−λT on the right side of the short internal branch. By
defining the optimal rate as that which maximizes the
number of taxa that are separable at the internal branch
and taking into account the need for two or more taxa to
exhibit common ancestry on each side, the optimal rate
can be derived (see Appendix).
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FIGURE 4. Phylogenetic tree composed of a deep short internode
of length ε adjoining two star nodes with nA and nB subtending taxa,
each with leaf length T.

Within the two-hard-polytomy model, two extreme
cases accounting for arbitrarily high taxon sampling
exemplify the results. For a fully balanced tree in which
nA=nB, the only case for which this optimum can be de-
rived analytically is n= 2, and the result is λopt= 1/(4T),
which was already derived in Townsend (2007). For
larger n, the optimal value can still be determined nu-
merically (Fig. 5a). The values of λopt increase with
greater n from 1/(4T) toward a limit of 1/T. Thus, for
this balanced tree, the optimal rate of character change
for revealing states that reflect common ancestry in-
creases with increasing taxon sampling. The other ex-
tremal case is that of a completely unbalanced tree in
which nB = 2. The optimal rate λopt for this case is also
derived in the Appendix, and numerical analyses of that
result are charted across a range of levels of taxon sam-
pling in Figure 5b. The rate first grows from λopt=1/(4T)
(cf. Townsend 2007) to a maximal value λopt = 0.366/T
for nA = 7, then gently falls to the limit value 1/(3T) as
nA →∞.

Intermediately balanced trees for general group sizes
nA and nB would presumably fall between these two
limits. Further numerical analysis and asymptotic re-
sults on general group sizes (see Appendix) are fully
consistent with an optimal rate that always increases
above 1/(4T) and that in most cases, monotonically
rises with increasing taxon sampling.

OPTIMALITY OF RATE IN FINITE-STATE MODELS

Infinite states models like those above accurately
characterize the probability of a true signal correspond-
ing to to an unreversed synapomorphy, but do not addi-
tionally discount for positively misleading data that can
arise as a consequence of convergence of character state
(homoplasy). The theory of optimal rates in the case
of Markov substitution models (like the Jukes–Cantor
model, see Felsenstein 2004) is more involved than in
the case of an infinite states model. In the second part of
the Appendix, we demonstrate that analysis of a finite-
state model continues to yield an increase in the optimal
rate with increased taxon sampling. The corresponding
profiles for two simple tree topologies (Fig. 6) demon-
strate that under the assumption of a Jukes–Cantor
model of base substitution, the optimal rate increases
with additional taxon sampling.

CONCLUSIONS

We have demonstrated that the claim that optimal
rates of character change decrease with increased taxon
sampling is unfounded. Using an infinite states model
that accurately characterizes the probability of observ-
ing states that are identical by descent, we have pre-
sented analytical results supporting our point of view.
A finite-state model, as well as an extensive empirical
analysis and simulation-based literature applying finite-
states models (Graybeal 1998; Hillis 1998; Poe 2003;
Hedtke et al. 2006), agrees with our infinite-states mod-
els, arguing that increased taxon sampling permits the
productive usage of faster evolving characters for phy-
logenetics. On the other hand, we agree with (Klopfstein
et al. 2010) that, as is the case for all products of limited

FIGURE 5. a) Optimal rates for balanced trees (with number of taxa n= nA = nB) for an infinite states model. b) Optimal rates of unbalanced
trees (with number of taxa n= nA, nB = 2).
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FIGURE 6. Variation distances E(Δ+)/ε for a four-taxon tree and
for a six-taxon tree.

models, profiles of phylogenetic informativeness should
be used with careful consideration of the expressed
caveats for their performance. In particular, profiles of
phylogenetic informativeness only indicate the epochs
in which phylogenetic signal is expected to be maxi-
mized for quartets and do not discount for likely phy-
logenetic noise from the convergence of fast-evolving
sites. This lack of discounting is likely to be especially
egregious for genes like cytochrome b (Townsend et al.
2008) or cytochrome oxidase (Klopfstein et al. 2010)
that exhibit extreme variance in rates across sites and
that therefore are likely to mingle signal and noise on
similar time scales. In our point of view, however, dis-
continuing use of phylogenetic informativeness profiles
without a suitable alternative is deeply unwise. They
are a valuable tool that need only be conscientiously
applied to improve phylogenetic experimental design.
Future theoretical advances may chip away at the as-
sumptions underlying phylogenetic informativeness
profiles, leading to methods for exhaustively or par-
tially quantifying the effects on predictions of utility of
increased taxon sampling or phylogenetic noise induced
by convergence to a common state. Until more compre-
hensive methodologies become available that predict
the utility of phylogenetic markers, for the purposes
of experimental design, research studies should gener-
ally trend toward use of characters that are evolving
slower than the optimum to avoid phylogenetic noise.
At the same time, a research study involving large num-
bers of deeply branching taxa should trend from slower
than the quartet-based optimum toward the selection
of faster evolving character sets. Thus, experimental
design employing a quantitative profile of the phylo-
genetic signal should continue to be accompanied by a
thoughtful understanding of focused issues relating to
taxon sampling, tree structure, and phylogenetic noise.
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APPENDIX

The Optimal Substitution Rate for Two-Group Trees

Infinite alleles model.—We consider an ultrametric tree
with two internal nodes a and b at height T, connected,
via the root, by a short internal branch of length ε � T.
Node a is connected to nA ≥ 2 external branches of
lengths T and node b to nB ≥ 2 external branches of
lengths T, totaling nA + nB ≥ 4 leaves. The short internal
branch thus separates the leaves into the two groups
A and B. Each character evolves along the tree accord-
ing to an infinite states model with substitution rate λ.
For any two separable taxa, we would be able to tell
from the data whether or not they belong to the same
group. Our goal is to derive the optimal substitution
rate λopt for which the expected number of separable
taxa is maximal.

To produce truly synapomorphic states, one or more
substitutions must occur along the short interior branch.
Let Z be an indicator variable taking the value 1 in this
case, such that P(Z = 1) = 1 − e−λε ≈ λε, where the
approximation holds for small values of epsilon. Also,
to produce truly synapomorphic states, two or more
branches on either side of the short deep internode must
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remain unchanged over time T, each with probability
e−λT.

To unburden the notation, we will from now on as-
sume the normalization T = 1. For the case of general
T, the optimal rates that we derived must simply be di-
vided by T, for example, instead of λopt = 1/4 we have
λopt = 1/4T.

Let XA be a random variable that counts the number
of branches from group A on which there have been no
substitutions. XA follows the binomial distribution

XA ∼ B(nA, e
−λ).

The random variable XB is similarly defined for group B
and is binomially distributed as B(nB, e−λ).

For the given tree topology, there are separable taxa if
and only if the data contain two states α and β, which
both occur more than once. In that case, there have been
one or more substitutions along the interior branch and
no substitutions exactly on the branches ending in states
α (in group A) and β (in group B). On all other branches,
there have been substitutions. The number of separable
taxa is then xA + xB. The random variable S counting the
separable taxa is thus defined by

S= Xα + Xβ =

{
XA + XB, if XA,XB ≥ 2, and Z= 1;

0, else,

where Xα and Xβ denote the number of taxa in state α
and β, respectively. Here,

Xα = XA ∙ Ind(XA ≥ 2,XB ≥ 2,Z= 1)

and

Xβ = XB ∙ Ind(XA ≥ 2,XB ≥ 2,Z= 1).

Here, Ind(event) denotes an indicator variable that takes
value 1 if event takes place and value 0 otherwise. The
distribution of Xα (for k= 2, . . . , nA) is then

P(Xα = k) = P(Z= 1) ∙ P(XB ≥ 2) ∙ P(XA = k)

= c(λ, nB) ∙

(
nA

k

)

e−kλ(1− e−λ)nA−k,

where

c(λ, nB) = P(Z= 1) ∙ P(XB ≥ 2)

= λε(1− (1− e−λ)nB − nB e−λ(1− e−λ)nB−1).
(A.1)

The distribution of Xβ is defined similarly. The optimal
rate, by definition, maximizes the expectation of S:

λopt = argmax
λ

E(S).

Clearly, E(S) = E(Xα) + E(Xβ). Moreover, we have

E(Xα) = c(λ, nB)

nA∑

k=2

k

(
nA

k

)

e−kλ(1− e−λ)nA−k

= c(λ, nB)

(
nA∑

k=0

k

(
nA

k

)

e−kλ(1− e−λ)nA−k

− nA e−λ(1− e−λ)nA−1

)

= c(λ, nB)(E(XA)− nAe−λ(1− e−λ)nA−1).

Because XA is a binomial variable, E(XA) = nA e−λ.
Thus,

E(Xα) = c(λ, nB)nA e−λ(1− (1− e−λ)nA−1). (A.2)

We will first consider in more detail two extreme
cases: Totally balanced trees for which nA = nB and
totally unbalanced trees for which nB = 2.

For a totally balanced tree, we have by symmetry
E(S) = 2E(Xα). Thus, λopt maximizes expression (A.2)
and we define n = nA = nB. The only case for which
this optimum can be found analytically is n = 2 and the
result is λopt = 1/4. This result has already been derived
in Townsend (2007). For larger n, the optimal value can
be determined numerically. As can be seen from Figure
5a, the values of λopt increase—with increasing n—from
λopt = 1/4 toward the limit of λopt = 1.

In the case of an extremely unbalanced tree, nB = 2,

c(λ, 2) = λε e−2λ

and thus

E(Xα) = λεnA e−3λ(1− (1− e−λ)nA−1).

Switching the roles of nA and nB in equation (A.2),

E(Xβ) = c(λ, nA)2 e−λ(1− (1− e−λ)2−1)

= 2λε e−2λ(1− (1− e−λ)nA

− nA e−λ(1− e−λ)nA−1).

Putting these together,

E(S) = E(Xα + Xβ)

= λε e−2λ[nA e−λ(1− 3(1− e−λ)nA−1).

+ 2(1− (1− e−λ)nA)].

Figure 5b displays the dependence of λopt on nA for fixed
nB = 2. The rate first grows from λopt = 1/4 to a maximal
value λopt = 0.366 for nA = 7 and then gently falls to the
limit value 1/3 as nA →∞.

Let us finally consider the case of general group sizes
nA and nB. Define λnA,nB

opt as the value which maximizes
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the expectation

E(S) = E(Xα + Xβ) (A.3)

= λε e−λnA[(1− (1− e−λ)nA−1) ∙ . . .

. . . ∙ (1− (1− e−λ)nB − nB e−λ(1− e−λ)nB−1)]

+ λε e−λnB[(1− (1− e−λ)nB−1) ∙ . . .

. . . ∙ (1− (1− e−λ)nA − nA e−λ(1− e−λ)nA−1)].

The maximum of this expression can be determined nu-
merically but not analytically. We can state the following
asymptotic results. If nA is very large compared with nB,
then we need only consider the dominant terms in the
above expression and we get that λnA,nB

opt approximately
maximizes the term

E(S) ≈ E(Xα) ≈ λε e−λnA(1− (1− e−λ)nB

− nB e−λ(1− e−λ)nB−1).

We define
λ
∞,nB
opt := lim

nA→∞
λ

nA,nB
opt .

Some values that have been obtained numerically
follow:

λ
∞,2
opt = 0.333, λ∞,3opt = 0.444,

λ
∞,4
opt = 0.533, λ∞,5opt = 0.607,

λ
∞,10
opt = 0.841, λ∞,15

opt = 0.949.

These values are strictly increasing with increasing nB.
In particular, one can show that they tend to the limit
λ
∞,∞
opt = 1. For a very large number of taxa, the optimal

rate is thus close to 1 as long as both groups are rela-
tively large. If nA and nB are large, we also can approxi-
mate from equation (A.3) that if the rate is optimal (i.e.,
≈ 1),

E(S) ≈
ε

e
(nA + nB) = 0.368ε(nA + nB).

This expectation means that for two-group trees with
many long external branches and for which neither of
the two groups is composed of few taxa, the optimal rate
is roughly 1, and the expected fraction of separable taxa
is 0.37 times the fraction of the short interior branch with
respect to the long external branches.

Markov models of base substitution.—Let T be a phyloge-
netic tree with n leaves and any topology. The data at
the leaves of T are created by a Markov model of base
substitution with Poisson rate λ and rate matrix Q. We
denote by D a vector of states at the leaves of the tree
(e.g., D= {AATG} for n= 4).

We concentrate on an interior branch of length ε
whose nodes we call a and b. Let E be the event (“sig-
nal”) that the states at a and b differ. As we are interested
in short branches only, we write

P(E) = ελ + O(ε2).

One can think of P(E) as the “prior” probability of the
signal. When data D are observed, the corresponding
“posterior” probability of the signal is given by Bayes’
formula:

P(E|D) =
P(D|E)P(E)
P(D)

.

We call a state vector D informative for the signal E if the
posterior exceeds the prior, that is,

P(E|D) > P(E)

or equivalently P(D|E) > P(D). Let us define the “excess
of posterior over prior” by

Δ+(D) :=max{0,P(E|D)− P(E)}. (A.4)

One can view Δ+(D) as a measure of how much addi-
tional knowledge the observation of D adds as far as
the detection of the signal is concerned. Noninformative
state vectors add nothing, only informative state vectors
contain a surplus of information over the prior proba-
bility. Loosely speaking, an informative state with, say,
Δ+ = 4% is doubly as precious as an informative state
with Δ+= 2% because it gives us double us much “extra
knowledge” over the prior probability of E . The ex-
pectation E(Δ+) of the random variable Δ+ represents
the mean informativeness per site. A mutation rate λ
which maximizes E(Δ+) will be most informative as
far as detection of E is concerned because it contains
the greatest mean informativeness per site. One can
prove that

E(Δ+) =
ελ

2

∑

D∈D

|P(D|E)− P(D|E)| + O(ε2)

= ελ ∙ TV(P(∙|E),P(∙|E)) + O(ε2), (A.5)

where TV(∙, ∙) denotes the total variation distance be-
tween the two probability measures.

In Figure 6, we display the function E(Δ+)/ε in de-
pendence of the rate λ for two toy examples of phylo-
genetic trees with an underlying Jukes–Cantor model
of base substitution (for which the model specifications
are πi= 1/4, qij= 1/3): a four-taxon tree with nA= nB= 2
branches of length T = 1 each and a six-taxon tree with
nA = nB = 3 branches of length T = 1. Observe that the
optimal rate increases with additional taxon sampling.
For the four-taxon tree, 84 of the 256 state vectors qual-
ify as informative. For small rates λ only, the AACC-
pattern states have an appreciable posterior excess
Δ+, although for larger rates, other state vectors gain
in relative importance. Table 1 gives a few numerical
values.

TABLE 1. Informativeness of states in four-taxon tree

λ Δ+(AACC) Δ+(AACG) Δ+(ACGT)
0.1 56.1× 10−3 3.7× 10−3 0.2× 10−3

0.3 26.1× 10−3 5.2× 10−3 1.0× 10−3

0.5 12.6× 10−3 4.0× 10−3 1.3× 10−3

1.0 2.3× 10−3 1.3× 10−3 0.8× 10−3
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Rates of molecular evolution have been shown to vary
significantly among nucleotide sites, loci, and taxa. In
addition to these forms of rate heterogeneity, there is ev-
idence that molecular rates vary with the timescale over
which they are estimated. One of the most striking ob-
servations has been that of elevated mutation rates over
very short timescales, such as those presented in studies
of pedigrees (e.g., Howell et al. 2003; Millar et al. 2008)
and mutation accumulation lines (e.g., Denver et al.
2000; Haag-Liautard et al. 2008). In contrast, much lower
rates are observed over evolutionary timescales, as es-
timated in phylogenetic analyses calibrated with refer-
ence to paleontological or geological data.

The disparity between rates of spontaneous mu-
tation and evolutionary substitution can exceed an
order of magnitude. Intermediate rates are expected
between these two ends of the spectrum, but there has
been disagreement over the exact form of the decline
from the mutation rate to the substitution rate. Some au-
thors have suggested that elevated mutation rates are
very short-lived, perhaps persisting for only a small
number of generations (Macaulay et al. 1997; Gibbons
1998). More recently, it was proposed that the estimated
rate decays exponentially over tens to hundreds of thou-
sands of years, producing a “time dependence” of rates,
whereby the magnitude of the inferred rate depends on
the age of the calibration used in the analysis (Ho et al.
2005, 2007c; Penny 2005; Ho and Larson 2006). Although
some of the original evidence for this hypothesis has
been challenged (Emerson 2007; Bandelt 2008), there has
been a steady accumulation of empirical and theoreti-
cal support for a prolonged elevation of short-term rates
(e.g., Genner et al. 2007; Burridge et al. 2008; Henn et al.
2009; Peterson and Masel 2009; Soares et al. 2009). This
has included compelling evidence from analyses of an-
cient DNA (aDNA) in which the sampling times of the
heterochronous sequences are able to provide calibrat-
ing information for estimating rates (e.g., Lambert et al.

2002; Barnes et al. 2007; Ho et al. 2007b; Hay et al. 2008;
Subramanian et al. 2009a).

In a recent critique, Debruyne and Poinar (2009)
have claimed that the high rate estimates obtained in
Bayesian analyses of aDNA data are an unintended
consequence of analyzing short sequences. According
to their “signal-dependent artifact” hypothesis, aDNA-
based rate estimates depend almost entirely on the
information content in the sequence alignment. The
essence of the criticism is that the posterior distribu-
tion of the rate becomes so wide that the posterior
mean becomes an upwardly biased estimator. This be-
havior has been noted in previous studies of hete-
rochronous data with low information content (e.g.,
Ho et al. 2007c; Firth et al. 2010). However, Debruyne
and Poinar go on to state that “the [rate] accelera-
tion phenomenon is certainly of much lower magnitude
than has been previously reported by Ho et al. (2005)”
(p. 358). This is a misleading comparison because our
study was based almost exclusively on analyses of mod-
ern DNA (isochronous sequences) using internal-node
calibrations which, as argued by Debruyne and Poinar,
are able to overcome the signal-dependent artifact. In
fact, much of the evidence for time-dependent rates has
come from analyses of isochronous data (e.g., Genner
et al. 2007; Burridge et al. 2008; Henn et al. 2009; Soares
et al. 2009; Papadopoulou et al. 2010).

Resolving the concerns over Bayesian rate estimates
from aDNA is important for several reasons. First,
aDNA sequences typically range in age from 102 to 105

years, thereby filling a crucial calibration gap between
the time periods covered by pedigrees (usually < 102

years) and fossil-calibrated species phylogenies (usually
> 106 years). Second, because the ages of aDNA se-
quences can provide sufficient calibrating information
for estimating rates (Drummond et al. 2003), these data
make it possible to circumvent problems associated
with choosing and implementing calibrations at internal
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nodes (Emerson 2007; Ho and Phillips 2009; Firth et al.
2010). In particular, terminal-node calibrations remove
the need for assumptions about genetic divergence be-
ing correlated with the divergence of species or popula-
tions, which can be dubious because of the uncertainty
posed by ancestral polymorphism (Charlesworth et al.
2005; Peterson and Masel 2009). Consequently, if rates
can be accurately estimated from aDNA data, some in-
sight can be gained into the underlying causes of time-
dependent rates (Ho et al. 2007c).

There is still uncertainty regarding the factors driving
the time dependence of rates. Previous studies have
considered the possibility of contributions from incom-
plete purifying selection, calibration error, sequencing
error, aDNA damage, ancestral polymorphism, satu-
ration, and model misspecification, among others (Ho
et al. 2005, 2007c; Woodhams 2006; Henn et al. 2009;
Loogväli et al. 2009; Peterson and Masel 2009; Soares
et al. 2009; Subramanian et al. 2009a). Debruyne and
Poinar have added to this list with their suggestion that
mean posterior rate estimates are upwardly biased for
data sets with low information content. Distinguishing
among these various factors is crucial to future studies
of recent divergence times, evolutionary rates, and the
molecular evolutionary process in general.

Below, we investigate the two major aspects of the
critique by Debruyne and Poinar. The first of these is
that the posterior mean provides a biased measure of
the rate in Bayesian analyses of data sets with low in-
formation content. To examine this issue, we perform
new analyses of sequence data simulated using known
evolutionary parameters. We assess the relationship be-
tween sequence variation and estimated rate under a
range of simulation conditions, including various rates
and sequence lengths.

The second major aspect of the critique by Debruyne
and Poinar is that the artifactual rate estimates from
aDNA data are governed by the information content of
the alignments, as measured by the number of variable
sites. Indeed, Debruyne and Poinar base their entire
signal-dependence model on analyses of alignments of
varying length, which they regard as a suitable proxy
for information content. Although this might be ap-
propriate for isochronous data, we argue that it does
not provide the full picture for heterochronous data be-
cause the ages of the tips represent a crucial part of the
phylogenetic and temporal signal. We propose that the
amount of information contained in these ages depends
on their structure and spread, including the length of
the sampling interval in relation to the period spanned
by the genealogy of the sequences (Drummond et al.
2003; Firth et al. 2010). To investigate this, we perform
new analyses of 18 published aDNA alignments to as-
sess whether the ages of the sequences in these data sets
provide sufficient calibrating information for estimating
rates. The results of these analyses show that most real
data sets appear to have satisfactory temporal structure
and signal.

The results of our new analyses indicate that the “sig-
nal dependence” hypothesis has limited relevance to the

majority of real aDNA data sets. Our results also sug-
gest that the signal dependence cannot be regarded as
an analogue to time dependence, unless one is willing
to accept the validity of equating alignment length with
temporal depth in aDNA data. Moreover, our results
highlight the importance of other factors, including the
distribution of sampling times, choice of population size
prior, and the use of appropriate summary statistics in
analyses of heterochronous sequence data that exhibit
low variation.

NEW ANALYSES IN RESPONSE TO DEBRUYNE AND
POINAR

Here, we build upon a simulation study that was pre-
sented in one of our previous evaluations of Bayesian
rate estimation using aDNA data (Ho et al. 2007b).
Debruyne and Poinar have challenged the results of this
study, criticising two aspects of our analyses. First, they
argue that the rates estimated from the simulated data
are more precise than those obtained from real aDNA
data. Although this observation is correct, these results
are an expected consequence of simulation-based analy-
sis: the evolutionary models for nucleotide substitution
and demographic history used in the analysis of the
simulated data are chosen to match the conditions un-
der which the data were generated. This is adopted as
standard practice to make it easier to isolate the effects
of the factor(s) of interest.

The second criticism of the simulation study of Ho
et al. (2007b) is that the substitution rate used in the sim-
ulations is too high, with Debruyne and Poinar stating
that the rate is “25-fold the estimate of the substitution
rate for the mt genome of vertebrates” (p. 350). How-
ever, this simulation rate was inspired by published
estimates from the mitochondrial D-loop (Lambert
et al. 2002; Shapiro et al. 2004), whereas Debruyne and
Poinar compare this rate to that estimated from their
elephantid data, which is based on whole mitochon-
drial genomes analyzed over a phylogenetic timeframe.
Indeed, the vast majority of published aDNA data sets
comprise sequences from the D-loop, which exhibits
much higher mutation and substitution rates than does
the rest of the mitochondrial genome in vertebrates. This
also calls into question the design of the main analysis
presented in their critique, in which subsamples from
the complete mitochondrial genomes of woolly mam-
moths were taken to be representative of real aDNA
data sets.

Nevertheless, the high rate used in our simulation
could be viewed as a legitimate problem if short-term
rates were not actually elevated. This led Debruyne
and Poinar to pose the question: “what would the ac-
curacy and precision of the posterior rate of change be
if a slower rate of substitution, in the range of the in-
terspecific mitochondrial substitution rates (between 1
and 2 × 10−8 substitutions/site/year) were applied to
simulate the same sequence data?” (p. 350). In response
to this question, and to address some of their other
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concerns, we present the results of a detailed simulation
study below.

Simulation Study

We conducted analyses of simulated aDNA data to
investigate the performance of Bayesian rate estima-
tion. The amount of rate estimation bias is quantified
under various combinations of simulation rate and se-
quence length, including conditions that might match
those commonly encountered in real aDNA research.
We investigate the impact of varying the population-
size prior, and we compare the performance of different
posterior measures of the rate.

Materials and methods.—Sequence evolution was sim-
ulated using Seq-Gen (Rambaut and Grassly 1997)
on random trees generated according to a coalescent
model with a constant population size of 105. Each
simulated data set comprised 31 time-stamped, nonre-
combining sequences, with ages of 0, 1000, 2000, . . . ,
30,000 years. All sequences were generated according
to the Jukes–Cantor model of nucleotide substitution
(Jukes and Cantor 1969), with rate homogeneity among
sites and among branches. Simulations were performed
with 3 different substitution rates (1 × 10−8 substitu-
tions/site/year, 5 × 10−8 substitutions/site/year, and
1×10−7 substitutions/site/year) and 2 sequence lengths
(100 and 1000 bp), representing the range of charac-
teristics of typical aDNA data sets and encompassing
conditions expected to generate sequence alignments
with low information content. One thousand replicate
data sets were generated for each combination of se-
quence length and rate. Apart from the substitution rate
and sequence length, the simulations are identical to
those described in the “uniform sampling regime” in
our previous study (Ho et al. 2007b).

Substitution rates were estimated from the simu-
lated data sets using the Bayesian phylogenetic software
BEAST 1.4.8 (Drummond and Rambaut 2007). To match
the simulation conditions, the Jukes–Cantor substitu-
tion model was assumed and a constant-size coalescent
prior was chosen for the tree. A uniform prior of [0,∞)
was chosen for the substitution rate. Posterior distri-
butions of parameters were obtained by Markov chain
Monte Carlo (MCMC) sampling, with samples drawn
every 500 steps over a total of 2 × 107 steps, with the
first 10% of samples discarded as burn-in. To compare
different posterior measures of the substitution rate, the
mean, median, and mode of the posterior rate distribu-
tion were calculated for each analysis. Effective sample
sizes of parameters were examined to check for accept-
able MCMC mixing and sufficient sampling from the
posterior.

For any given data set, the estimates of rate and pop-
ulation size are closely tied. The population size prior
can be influential in the estimation of rates, particularly
when the data set is relatively uninformative. We inves-
tigated this issue by performing three sets of analyses,

differing only in the population size prior: 1) population
size fixed to its true (simulation) value of 105; 2) popula-
tion size given a uniform prior of [0,∞); and 3) popula-
tion size given a uniform prior of [100, 109], representing
a range of values that could be considered biologically
plausible for vertebrates. Note that in all these analyses,
“population size” is actually given as Neτ, the product
of the effective population size (Ne) and generation time
in years (τ).

Results.—The performance of rate estimation varied
considerably among the three sets of simulations, pro-
viding a strong indication of the influence of the pop-
ulation size prior (Table 1). When the population size
is fixed to its true (simulation) value of 105, estimates
of rates are accurate and precise. The 95% highest pos-
terior density (HPD) interval of the substitution rate
included the simulation value at least 95% of the time.
As noted by Debruyne and Poinar, the mean posterior
rate estimates reveal that there is considerable over-
estimation of the rate when there is low information
content or little sequence variability in the data set (low
substitution rate and/or short sequence length). How-
ever, this bias disappears in the more informative data
sets. As the posterior rate distributions are leptokurtic,
the medians are less biased than the means. The poste-
rior mode, which represents the maximum a posteriori
estimate of the rate, appears to provide an unbiased
measure across all combinations of substitution rate
and sequence length.

A different pattern emerges when the population
size is given an unbounded uniform prior distribution
(Table 1). Many of the MCMC analyses failed to con-
verge, yielding posterior samples with effective sample
sizes not exceeding 100 and with the population size
tending toward infinity and the rate tending toward
zero. The percentage of analyses that failed to converge
ranged from 10.2% to 99.2% across the 6 simulation
settings (Fig. 1). If these problematic replicates are re-
moved, the remaining replicates appear to yield reason-
able estimates of the substitution rate (Table 1). The 95%
HPD interval of the rate, although considerably wider
than when the population size was fixed to its correct
value, included the simulation value at least 96% of the
time. Plausible, unimodal estimates of the population
size were obtained in the MCMC analyses that showed
signs of convergence. However, in almost all the simu-
lation settings, the rate was overestimated by the mean,
median, and mode. This could be a direct consequence
of removing the replicates that produced unconverged
MCMC analyses because those would have been the
data sets with stochastically lower information content
(i.e., driven by a smaller number of substitutions and
thus producing lower rate estimates). Taking this into
consideration, it is difficult to establish whether the esti-
mation bias is genuine or whether it results from taking
a biased sample of the simulation replicates.

When the population size is constrained to a range
of biologically plausible values (100–109), yet another
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TABLE 1. Summary of results from the simulation study, averaged across 1000 replicates. For the simulations with a population size prior
of Uniform[0,∞), results were only summarized from the replicates that exhibited acceptable MCMC convergence. Further details are given in
the text

Mean size of 95%
Prior on True rate Length Posterior rate estimate (substitutions/site/year) HPD interval 95% HPD
population size (substitutions/site/year) (bp) Mean Median Mode (substitutions/site/year) coveragea

Fixed to 105 1.00 × 10−8 100 2.32 × 10−8 1.87 × 10−8 1.05 × 10−8 5.63 × 10−8 0.98
Fixed to 105 1.00 × 10−8 1000 1.20 × 10−8 1.14 × 10−8 1.01 × 10−8 1.67 × 10−8 0.96
Fixed to 105 5.00 × 10−8 100 6.74 × 10−8 6.17 × 10−8 5.10 × 10−8 1.15 × 10−7 0.96
Fixed to 105 5.00 × 10−8 1000 5.31 × 10−8 5.20 × 10−8 4.97 × 10−8 4.51 × 10−8 0.96
Fixed to 105 1.00 × 10−7 100 1.20 × 10−7 1.13 × 10−7 1.00 × 10−7 1.67 × 10−7 0.97
Fixed to 105 1.00 × 10−7 1000 1.04 × 10−7 1.03 × 10−7 9.99 × 10−8 7.18 × 10−8 0.95
Uniform[0,∞) 1.00 × 10−8 100 1.68 × 10−7 1.21 × 10−7 3.57 × 10−8 4.80 × 10−7 1.00
Uniform[0,∞) 1.00 × 10−8 1000 2.82 × 10−8 2.56 × 10−8 2.08 × 10−8 5.49 × 10−8 0.97
Uniform[0,∞) 5.00 × 10−8 100 1.92 × 10−7 1.65 × 10−7 1.07 × 10−7 4.32 × 10−7 0.96
Uniform[0,∞) 5.00 × 10−8 1000 5.89 × 10−8 5.71 × 10−8 5.35 × 10−8 8.10 × 10−8 0.98
Uniform[0,∞) 1.00 × 10−7 100 2.66 × 10−7 2.40 × 10−7 1.86 × 10−7 5.28 × 10−7 0.97
Uniform[0,∞) 1.00 × 10−7 1000 1.03 × 10−7 1.01 × 10−7 9.78 × 10−8 1.10 × 10−7 0.97
Uniform[100,109] 1.00 × 10−8 100 3.53 × 10−8 7.34 × 10−9 8.31 × 10−9 1.68 × 10−7 1.00
Uniform[100,109] 1.00 × 10−8 1000 9.07 × 10−9 6.71 × 10−9 2.48 × 10−9 2.52 × 10−8 0.81
Uniform[100,109] 5.00 × 10−8 100 5.20 × 10−8 2.75 × 10−8 8.48 × 10−9 1.84 × 10−7 0.83
Uniform[100,109] 5.00 × 10−8 1000 4.66 × 10−8 4.48 × 10−8 3.53 × 10−8 7.26 × 10−8 0.87
Uniform[100,109] 1.00 × 10−7 100 8.44 × 10−8 5.80 × 10−8 2.18 × 10−8 2.49 × 10−7 0.78
Uniform[100,109] 1.00 × 10−7 1000 9.79 × 10−8 9.63 × 10−8 9.11 × 10−8 1.09 × 10−7 0.91

aProportion of simulations in which the 95% HPD interval of the rate contained the true (simulation) value.

picture materialises. Coverage by the 95% HPD in-
tervals was poorer, with the simulation value being ex-
cluded from the 95% HPD interval up to 22% of the time
(Table 1). The mean size of the 95% HPD interval is
smaller than in the analyses without any restrictions
on the population size, although the disparity disap-
pears as the number of variable sites in the alignment
increases. The posterior mode is no longer the best
summary of the rate, probably because the constraints
on population size also impose restrictions on the val-
ues that can be taken by the substitution rate. In some
cases, the posterior distribution of the rate is implicitly
constrained, leading to a distorted mode. On the other
hand, the posterior mean appears to provide a rea-
sonably accurate estimate of the true substitution rate
(Table 1), although it is possible that this is partly an
unintended consequence of the population size con-
straints. That is, the mean posterior rate might only
be accurate as a result of the population size priors
constraining the substitution rate to reasonable values,
even in the absence of real information on rates in the
data. This effect could potentially explain some of the
published rate estimates from uninformative aDNA se-
quence alignments, which have taken seemingly plausi-
ble values in spite of the low information content of the
data.

aDNA Data Sets

Published aDNA data sets vary considerably in terms
of their sequence lengths and underlying substitution
rates as well as the temporal structure and spread of the
samples. It would be useful to evaluate the information
content in these data sets to determine whether they can
produce reliable estimates of substitution rates and di-

vergence times. One significant facet of heterochronous
data that is overlooked by the use of diversity statistics
(Depaulis et al. 2009), and in the analyses of informa-
tion content performed by Debruyne and Poinar, is that
the ages of the sequences form an important component
of the information content (e.g., Firth et al. 2010). This
stems from the fact that the sequence ages are used for
calibrating estimates of substitution rates. A potential
problem in analyses of heterochronous data is that rate
estimates could be an artifact of the sampling ages.

Here, we use a date randomization test to investigate
temporal structure in 18 published aDNA data sets. This
test involves reanalyzing each data set after randomly
shuffling the ages of the sequences and follows several
previous studies of heterochronous data (de Bruyn et al.
2009; Miller et al. 2009; Subramanian et al. 2009b; Firth
et al. 2010). The date randomization analysis is able to
provide some insight into whether the structure and
spread of the sequence ages are sufficient to provide re-
liable information on the rate underlying the evolution
of the data set. If the original rate estimate is recovered
in the date-randomized data sets, then there is insuffi-
cient temporal structure in the original data set and the
rate estimate cannot be supported (Firth et al. 2010).

Materials and methods.—Using the Bayesian phyloge-
netic method implemented in BEAST v1.5.4 (Drummond
and Rambaut 2007), we analyzed 18 published aDNA
alignments: 16 of the 19 aDNA data sets analyzed by Ho
et al. (2007b), the 11 mitogenome alignment of woolly
mammoths examined by Debruyne and Poinar, and
a muskox D-loop alignment (Campos et al. 2010). We
excluded three data sets from the study by Ho et al.
(2007b): the Chlorobium and nene alignments contained
too few ancient sequences for the randomization test,
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FIGURE 1. Graphs showing the correspondences between mean posterior population size, mean posterior rate, and MCMC convergence
for Bayesian analyses of data generated under 6 different simulation conditions (3 different rates and 2 different sequence lengths). The results
were obtained using an uninformative population size prior (uniform from 0 to∞). Each panel shows the results from analyzing 1000 replicates,
ranked from left to right by ascending mean posterior population size (top curve). The mean posterior rate estimate for the corresponding data
set is also displayed on the same scale (lower curve), showing a close relationship with the estimated population size. Each simulation is given
a gray vertical line in the background if the effective sample size for the posterior likelihood is below 100, which suggests a lack of convergence
to the stationary distribution. For each MCMC analysis, samples were drawn from the posterior every 500 steps over a total of 2 × 107 steps,
with the first 10% of samples discarded as burn-in.

whereas the muskox alignment is superseded by the
larger data set published by Campos et al. (2010). The
basic characteristics of the 18 data sets are outlined in
Table 2, with further details available in the original
publications.

Substitution models were selected by comparison of
Bayesian information criterion scores, with the num-
ber of aligned sites taken as the sample size for the
penalty term. Owing to the intraspecific nature of the
data sets, models that allowed a proportion of invariable

sites were excluded. All data sets were treated as un-
partitioned, and a constant-size coalescent prior was
specified for the topology and divergence times. All
analyses were repeated using a Bayesian skyride de-
mographic model (Minin et al. 2008). The better demo-
graphic model (constant size or Bayesian skyride) was
chosen on the basis of visual inspection of the results. In
each analysis, samples from the posterior were drawn
every 5× 103 steps from a total of 5× 107 steps, with the
first 10% being discarded as burn-in. Where necessary,
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TABLE 2. Details of aDNA alignments analyzed using the date randomization test described in the text

Sequences Result of date
(ancient + Age rangea Length Variable randomization

Species Region modern) (years) (bp) sites test

Adélie penguin Pygoscelis adeliae D-loop 96 + 380 6424 347 159
√

Arctic fox Alopex lagopus D-loop 8 + 41 16,000 291 23
√

Aurochs Bos primigenius D-loop 41 + 0 10,300 360 34
√

Bison Bison priscus D-loop 150 + 32 60,400 615 170
√

Boar Sus scrofa D-loop 81 + 7 5400 572 47
√

Bowhead whale Balaena mysticetus D-loop 99 + 68 51,000 453 72 Fail
Brown bear Ursus arctos D-loop 36 + 57 59,000 193 69

√

Cave bear Ursus spelaeus D-loop 26 + 0 53,470 288 31 Fail
Cave hyaena Crocuta crocuta spelaea D-loop 10 + 0 13,140 366 27 Fail
Cave lion Panthera leo spelaea D-loop 23 + 0 46,275 213 12

√

Cow Bos taurus D-loop 36 + 91 8065 410 65
√

Horse Equus caballus D-loop 12 + 33 28,340 348 70
√

Maize Zea mays adh2 9 + 11 4500 190 26 Fail
Moa Pachyornis mappini D-loop 14 + 0 4912 241 20 Fail
Muskox Ovibos moschatus D-loop 114 + 16 45,740 682 203

√

Tuco-tuco Ctenomys sociabilis cytb 45 + 1 10,208 253 13
√

Woolly mammoth Mammuthus primigenius D-loop 32 + 0 35,970 741 42 Fail
Woolly mammoth Mammuthus primigenius Mitogenome 11 + 0 38,030 16,484 112 Fail

aAge of oldest sequence minus age of youngest sequence.

the number of MCMC steps was doubled or tripled in
order to achieve an effective sample size >100 for the
rate estimate.

The sequence ages in each of the 18 aDNA data sets
were then randomly reassigned. This randomization
was performed 20 times for each data set using the Java
application SiteSampler v1.1 (Ho and Lanfear 2010).
Bayesian phylogenetic analyses were performed using
the same settings as described above for the original
data. For each date-randomized data set, the demo-
graphic model was chosen to match that selected for the
original data.

Results.—The posterior rate estimates from the 18 data
sets are shown in Figure 2. It is interesting to note that
among the 7 data sets that failed the date randomization
test not all produced rate estimates with wide 95% HPD
intervals. In these cases, the modal posterior rate was
similar to the mean posterior rate (results not shown).

To investigate the potential presence of signal-
dependent biases in these estimates, we considered
the mean posterior rates in relation to the characteris-
tics of the data sets from which they were estimated.
Debruyne and Poinar hypothesize that the mean pos-
terior rate estimate should be exponentially related to
the amount of information in the data set, as reflected
by the alignment length. We examined 4 measures of
information content: the number of aligned sites, the
number of variable sites, the number of sequences, and
the product of the number of sites and sequences in
the alignment. Excluding the mitogenome alignment of
woolly mammoths, which represents an outlier and is
nonindependent of the D-loop alignment from the same
species, we find no evidence that any of these measures
are related to the mean posterior rate estimate in the
remaining 17 aDNA data sets (r2 < 0.1 and P > 0.2
in all cases). However, more than 40% of the variation
in rate estimates could be explained by an exponential

relationship with the age range of the sequences in each
data set (r2 = 0.431 and P= 0.004).

Further insight into the temporal structure within the
data sets was gained through the date randomization
analyses. Eleven alignments passed the randomization
test and seven failed (Fig. 2; Table 2). In addition to the
results presented in this study, previous date random-
ization analyses of aDNA from tuatara (Subramanian
et al. 2009b) and elephant seals (de Bruyn et al. 2009)
have indicated that these two data sets contain sufficient
temporal information to produce meaningful estimates
of substitution rates. Among the data sets that failed the
date randomization test, the bowhead whale alignment
is noted for its low sequence diversity, with the observed
variation dominated by singleton mutations (Borge et al.
2007). The maize alignment is a small data set compris-
ing sequences sampled over a short time frame (Freitas
et al. 2003). Notably, both of the mammoth alignments
(D-loop and complete mitochondrial genome) failed the
date randomization test.

DISCUSSION

Our analyses of simulated and real data show that
the signal-dependent artifact highlighted by Debruyne
and Poinar is unlikely to have contributed substan-
tially to the published rate estimates from aDNA data
sets. Our simulated data sets cover a range of sequence
lengths and substitution rates, including those seen in
real aDNA alignments. Regardless of the prior on pop-
ulation size, the posterior mean provides an unbiased
estimate of the rate for the 1000 bp data sets simulated
using a rate of 1 × 10−7 substitutions/site/year. These
parameters are broadly similar to those of the mito-
chondrial D-loop in vertebrates. For the less infor-
mative alignments investigated here, including those
simulated using lower rates, there is some degree of
estimation bias unless the population size is fixed to its
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FIGURE 2. Estimates of substitution rates from a variety of aDNA alignments. For each data set, the first data point represents the rate
estimated from the original data set (filled circles), whereas the remaining 20 data points (unfilled circles) represent the rates estimated from
replicates in which the ages of the tips were randomly shuffled. Alignments were deemed to “pass” the date- randomization test if the mean
posterior rate estimate from the original data set is not included in any of the 95% HPD intervals from the date-randomized replicates. a) Rate
estimates from alignments that passed the date randomization test. b) Rate estimates from alignments that failed the date randomization test.

simulation value. However, the rates used for the sim-
ulations in this study are conservatively low because
they are based on phylogenetic estimates. If short-term
rates are actually elevated, as posited by the hypothesis
of time-dependent rates, then the particular estimation
biases observed in this study might be irrelevant to the
majority of real aDNA alignments.

The results of our simulation analyses confirm that
the posterior mean can be a biased measure of the sub-
stitution rate, as indicated by Debruyne and Poinar.
However, the posterior estimates provide acceptable
coverage because the 95% HPD intervals on the rates
usually included the simulation value. The posterior
mode, which is equivalent to the maximum a posteri-
ori estimate of the rate, appears to be the best mea-
sure when the data set has low information content.
Nevertheless, it can become distorted when a strongly
bounded, informative prior is specified for the popu-
lation size (or, presumably, for the substitution rate or
age of the root). In view of these results, it might be
most appropriate to report various summaries of the

posterior distribution of rates and other parameters of
interest. The three measures examined here, the mean,
median, and mode, converge to the same value for the
most informative data sets.

Contrary to the claim by Debruyne and Poinar, our
analyses suggest that sequence variability is not the sole
factor determining the performance of rate estimation.
Other factors, such as the ages of the sequences, and
probably the structure of the underlying genealogy, are
also very important features of any aDNA data set.
Evidently, the population size prior is highly influen-
tial in some of the analyses performed here. From a
practical viewpoint, it is usually more feasible to use
an informative prior for the age of the root rather than
the population size. This is because effective population
size and generation time are often difficult to estimate
reliably, whereas the age of the root can sometimes be
inferred from independent palaeontological or biogeo-
graphic sources.

Taking into account the results of all the date random-
ization analyses, the sampling ages of seven real aDNA
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data sets (bowhead whale, cave bear, cave hyaena,
maize, moa, woolly mammoth D-loop, and woolly
mammoth mitogenomes) were found to produce ar-
tifactual rate estimates using the date randomization
test. This result suggests that some of the published
aDNA alignments do not contain sufficient temporal
information to support reliable estimation of rates and
timescales. Randomization of sequence ages represents
a potentially useful technique for investigating the va-
lidity of rate estimates from heterochronous data, in-
cluding those from aDNA and serially sampled viruses
(de Bruyn et al. 2009; Miller et al. 2009; Subramanian
et al. 2009b; Firth et al. 2010).

It is interesting to note that the alignment of com-
plete mitochondrial genomes from woolly mammoths
failed the date randomization test. This suggests that
the analyses performed by Debruyne and Poinar might
be misleading, being based on a data set that is unable
to yield plausible posterior estimates without strong
prior information on the population size or root age.
There are probably several reasons for the poor perfor-
mance of the mammoth mitogenomic data set. First, the
alignment comprises only a small number of sequences.
Second, the mitochondrial tree of mammoths has a
highly unusual structure, with a very deep split sepa-
rating the two major clades (Gilbert et al. 2008). This is
reflected in the imprecision of the date estimates that
are obtained when only the ages of the tips are used
for calibration (Debruyne et al. 2008; Gilbert et al. 2008;
Debruyne and Poinar 2009). Third, mammoth mito-
chondrial DNA has evolved at an exceptionally low
rate, a phenomenon that is mirrored in the mammoth
nuclear genome (Hofreiter 2008; Miller et al. 2008). For
example, the substitution rate in elephantids has been
much lower than that in hominoid primates, which
in turn have been evolving more slowly than other
primates (Steiper et al. 2004). This also calls into ques-
tion the analyses performed by Debruyne and Poinar
in which subsamples of the mammoth mitogenomes
were assumed to be representative of typical aDNA
alignments. In practice, short aDNA alignments have
almost exclusively come from the D-loop, which is the
most variable portion of the vertebrate mitochondrial
genome. The subsampling procedure used by Debruyne
and Poinar will tend to include portions of the mi-
togenome that are evolving much more slowly, leading
to exceptionally uninformative data sets.

Debruyne and Poinar recommend that the bias due
to signal dependence can be overcome through the em-
ployment of “deep” calibrations, for example, at the
root of the tree. Often, this is neither possible nor appro-
priate in analyses of heterochronous data. If rates were
truly time-dependent, then such analyses would need
to be performed in a relaxed-clock framework to allow
the rate to vary between younger and older branches
(Korsten et al. 2009). If a strict molecular clock is as-
sumed, as in the analyses done by Debruyne and Poinar,
then rate homogeneity across different timescales is in-
voked as an a priori assumption. Therefore, although
this would seemingly address the problem posed by

time-dependent rates, it only does so by assuming that
the problem does not exist (Ho et al. 2007c). A sug-
gested solution to this problem is to limit the analysis
to third codon sites or synonymous sites, which are
putatively subject to a much lesser degree of selective
constraint (Briggs et al. 2009; Subramanian et al. 2009a;
Endicott et al. 2010). In any case, reliable internal-node
calibrations are rarely available in population-level
analyses (Ho and Phillips 2009).

Although we have demonstrated that time-dependent
rates are unlikely to be driven by a signal-dependent ar-
tifact, the findings obtained in the present study do
not necessarily validate published estimates of rates
from aDNA data. Such estimates can be detrimen-
tally affected by a variety of other confounding fac-
tors, including misspecification of the demographic
model (Emerson 2007; Ho et al. 2007c; Miller et al.
2009; Navascués and Emerson 2009; Subramanian et al.
2009b). Furthermore, postmortem damage can produce
spurious polymorphisms in aDNA sequences, which
can lead to biased estimates of rates (Ho et al. 2005,
2007a). Samples in several of the data sets have not been
directly radiocarbon dated, but their ages have been
inferred by stratigraphic correlation (layer dating). Rate
estimates from these data sets, including the arctic fox,
Adelie penguin, aurochs, boar, maize, and tuco-tuco,
will be somewhat less reliable than those from data sets
with directly dated samples. However, higher rate esti-
mates have been obtained from a wide range of aDNA
data sets, sourced from a variety of taxa with different
demographic histories and biological characteristics, in-
dicating that they should not be dismissed lightly. Com-
bined with the exceptionally high rates estimated in
studies of pedigrees and mutation accumulation lines,
these results suggest that further empirical and theo-
retical investigations into the nature of time-dependent
rates could be productive.

By their very nature, most aDNA data sets have low
information content. Although the situation is changing,
as high-throughput sequencing techniques allow com-
plete mitochondrial genomes to be sequenced from con-
specific individuals (Gilbert et al. 2008; Briggs et al. 2009;
Stiller et al. 2009; Ho and Gilbert 2010), short alignments
are likely to remain a common feature of aDNA studies
in the near future. In these studies, the important ques-
tion is not whether the information content is low, but
whether it is sufficient for performing the analyses of
interest.
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Loogväli E.-L., Kivisild T., Margus T., Villems R. 2009. Explaining the
imperfection of the molecular clock of hominid mitochondria. PLoS
ONE. 4:e8260.

Macaulay V.A., Richards M.B., Forster P., Bendall K.E., Watson E.,
Sykes B., Bandelt H.-J. 1997. mtDNA mutation rates—no need to
panic. Am. J. Hum. Genet. 61:983–985.

Millar C.D., Dodd A., Anderson J., Gibb G.C., Ritchie P.A., Baroni
C., Woodhams M.D., Hendy M.D., Lambert D.M. 2008. Mutation
and evolutionary rates in adelie penguins from the Antarctic. PLoS
Genet. 4:e1000209.

Miller H.C., Moore J.A., Allendorf F.W., Daugherty C.H. 2009. The evo-
lutionary rate of tuatara revisited. Trends Genet. 25:13–15.

Miller W., Drautz D.I., Ratan A., Pusey B., Qi J., Lesk A.M., Tomsho
L.P., Packard M.D., Zhao F., Sher A., Tikhonov A., Raney B.,



2011 POINTS OF VIEW 375

Patterson N., Lindblad-Toh K., Lander E.S., Knight J.R., Irzyk G.P.,
Fredrikson K.M., Harkins T.T., Sheridan S., Pringle T., Schuster S.C.
2008. Sequencing the nuclear genome of the extinct woolly mam-
moth. Nature. 456:387–390.

Minin V.N., Bloomquist E.W., Suchard M.A. 2008. Smooth skyride
through a rough skyline: Bayesian coalescent-based inference of
population dynamics. Mol. Biol. Evol. 25:1459–1471.

Navascués M., Emerson B.C. 2009. Elevated substitution rate estimates
from ancient DNA: model violation and bias of Bayesian methods.
Mol. Ecol. 18:4390–4397.

Papadopoulou A., Anastasiou I., Vogler A.P. 2010. Revisiting the insect
mitochondrial molecular clock: the mid-Aegean trench calibration.
Mol. Biol. Evol. 27:1659–1672.

Penny D. 2005. Relativity for molecular clocks. Nature. 426:183–184.
Peterson G.I., Masel J. 2009. Quantitative prediction of molecular clock

and Ka/Ks at short timescales. Mol. Biol. Evol. 26:2595–2603.
Rambaut A., Grassly N.C. 1997. Seq-Gen: an application for the Monte

Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput. Appl. Biosci. 13:235–238.

Shapiro B., Drummond A.J., Rambaut A., Wilson M.C., Matheus P.E.,
Sher A.V., Pybus O.G., Gilbert M.T., Barnes I., Binladen J., Willer-
slev E., Hansen A.J., Baryshnikov G.F., Burns J.A., Davydov S.,
Driver J.C., Froese D.G., Harington C.R., Keddie G., Kosintsev P.,
Kunz M.L., Martin L.D., Stephenson R.O., Storer J., Tedford R.,

Zimov S., Cooper A. 2004. Rise and fall of the Beringian steppe bi-
son. Science. 306:1561–1565.

Soares P., Ermini L., Thomson N., Mormina M., Rito T., Röhl A.,
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[Rare genomic changes] provide an independent source
of phylogenetic information largely immune from some of
the problems that affect primary sequence data.—Rokas and
Holland (2000)

In an attempt to find the true evolutionary tree
of life, phylogeneticists have searched for “perfect”
characters—those free of homoplasy. Rare genomic
changes (RGCs) are infrequent mutations such as
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transposable element (TE) insertions, intron gains or
losses, gene order changes, inversions, gene dupli-
cations, and even fusion/fissions of protein domains
(Rokas and Holland 2000). RGCs are candidates for
perfect characters, as they are believed to exhibit little
or no homoplasy for two reasons. First, they typically
accumulate slowly, with some types of RGCs accu-
mulating so slowly that they are useful for defining
the deepest branches in the tree of life (Keeling and
Doolittle 1997; Stechmann and Cavalier-Smith 2002).
Other RGC types, however, such as TE insertions, accu-
mulate rapidly enough to be useful for defining more
closely related groups (e.g., Watanabe et al. 2006; Kaiser
et al. 2007). Second, regardless of their rate of accumu-
lation, RGCs are thought to have a large state space
(Steel and Penny 2000), which means that indepen-
dent RGCs can be distinguished and are unlikely to be
interpreted as homologous (Rokas and Holland 2000;
Shedlock and Okada 2000; Ray et al. 2006). For example,
TEs can insert into almost any position in the genome
in two different orientations. Additionally, the exis-
tence of multiple TE types and subtypes (Jurka 1998;
Wicker et al. 2005, 2007) makes it possible to identify
independent insertion of different types based upon
their sequence. Finally, most insertions include only
part of the complete TE sequence, so independent
insertions may be different segments of the original
even if they are of the same subtype and in the same
orientation.

Despite the reasons to expect RGCs to be perfect
homoplasy-free characters, many different RGCs can
exhibit homoplasy (Ray et al. 2006; Gibb et al. 2007).
Although even very rare events like protein domain
fusion/fissions can be reversed (Braun and Grotewold
2001; Braun 2003), the most commonly invoked expla-
nation for RGCs that appear homoplastic are differences
between individual gene trees associated with specific
RGCs and the species tree (Fig. 1a) (Hillis 1999; Shedlock
and Okada 2000; Shedlock et al. 2004; Ray et al. 2006;
Sasaki et al. 2006; Nishihara et al. 2009; but see Murphy
et al. 2007, for a possible exception). In fact, the only
available statistical method for RGC analyses (Waddell
et al. 2001) assumes that conflicts among RGCs reflect
lineage sorting, thus it uses a coalescent model (Hudson
1992) to predict the distribution of character states. Con-
sequently, this model assumes RGCs that appear to
conflict with the species tree can be explained by hemi-
plasy, a situation where lineage sorting gives rise to the
illusion of homoplasy with respect to the species tree
(Avise and Robinson 2008). Hemiplasy is expected to be
more likely to occur on short internodes in the species
tree, whereas bona fide homoplasy is most likely to oc-
cur on long internodes because the probability that a
specific gene tree conflicts with a species tree is typically
related to the length of the relevant internal branches
(e.g., Pamilo and Nei 1988; Degnan and Rosenberg
2009). Because coalescent models only account for con-
flict due to hemiplasy, the models proposed for analyses
of RGC data will have to be expanded if RGCs also
exhibit homoplasy.

FIGURE 1. Potential complex TE insertion patterns. Solid bars in-
dicate homoplasy-free insertions (those exhibiting a retention index
of 1.0). Open bars represent the insertions that were subsequently
deleted (with the deletion represented by a X over an open bar). Di-
amonds represent independent insertions in distinct lineages. a) A TE
insertion associated with a gene tree (right) that is inconsistent with
the species tree (left) will appear homoplastic due to lineage sorting.
This situation was recently designated “hemiplasy” to distinguish it
from true homoplasy due to multiple origins of a genomic feature
(Avise and Robinson 2008). b) Multiple insertions at the same site in
divergent taxa, shown is a case where there is an insertion at identi-
cal sites in two different taxa, but the strong phylogenetic support for
placing these taxa in different clades suggests that these insertions are
independent. c) Insertion and subsequent complete deletion of the TE
in some taxa; shown is a case where an insertion appears in all but one
taxon within a clade suggesting excision of the entire insertion from
this taxon. d) Multiple insertions at the same site in some but not all
taxa, shown here by a single insertion in the ancestor to Species 1–4,
with a second insertion at the same site in Species 1. The insertions in
Species 1 can be of the same type or of different types. Unlike the other
scenarios shown here, this pattern of insertions does not have the po-
tential to be misleading, although it does suggest the existence of hot
spots for TE insertions and/or fixations. Duplications and other types
of sequence changes (e.g., inversions) also have the potential to create
complex insertion patterns similar to the examples presented here, so
their interpretation can be difficult.

Insertions of TEs, specifically retrotransposons, are
the RGCs most commonly used in vertebrate phylo-
genetics (Shedlock and Okada 2000; Kriegs et al. 2006;
Nishihara et al. 2006a; Ray et al. 2006; Kaiser et al. 2007;
Kriegs et al. 2007; Treplin and Tiedemann 2007). The pre-
sumption that RGCs do not exhibit homoplasy has even
prompted conclusions based on single-TE insertions.
However, some inferences supported by individual
TEs, such as the phylogenetic position of the enigmatic
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rockfowl, Picathartes spp. (Treplin and Tiedemann 2007),
and the phylogenetic position of the Japanese quail, Co-
turnix japonica (Kaiser et al. 2007; Kriegs et al. 2007),
conflict with large-scale nucleotide and total evidence
phylogenies (Barker et al. 2004; Crowe et al. 2006; Cox
et al. 2007; Hackett et al. 2008; Kimball and Braun 2008).
Even phylogenetic hypotheses based upon more than
one TE insertion (e.g., Kriegs et al. 2006) can show con-
flict with large-scale studies of nucleotides or other
RGCs (e.g., Kriegs et al. 2006 compared with Murphy
et al. 2007; Wildman et al. 2007; Prasad et al. 2008).
Several patterns of TE distribution are possible (Fig. 1).
Although conflicts with the species tree are one po-
tential pattern (Fig. 1a), other potential patterns of TE
distribution can also lead to conflict (e.g., Fig. 1b,c). It is
unclear how much of the conflict observed in published
studies can be explained by conflicts among gene trees
(hemiplasy) rather than homoplasy.

The argument that TE insertions exhibit little or no
homoplasy is ultimately based upon assumptions about
their biology. TEs are divided into two major classes
that exhibit fundamental mechanistic differences: retro-
transposons (Class I elements) use a “copy-and-paste”
mechanism with an RNA intermediate, whereas DNA
transposons (Class II elements) typically use a “cut-and-
paste” mechanism with a DNA intermediate (Finnegan
1989; Wicker et al. 2007). Retrotransposons are generally
more common than DNA transposons in eukaryotes
and they are less likely to undergo precise (or nearly
precise) excision (Labrador and Corces 1997; Wicker
et al. 2007). Most TEs used in vertebrate phylogenetics
such as L1 elements (e.g., Nishihara et al. 2006a, 2009)
and chicken repeat 1 (CR1) elements (e.g., Kaiser et al.
2007; Kriegs et al. 2007), are retrotransposons that share
an insertion mechanism called target-primed reverse
transcription (Luan et al. 1993; Ichiyanagi and Okada
2008). Briefly, an endonuclease nicks the target DNA
to generate a DNA strand with a free 3′-hydroxyl that
is able to act as a primer for reverse transcription of
the retrotransposon RNA. This mechanism has the po-
tential to result in a bias toward specific insertion sites
depending on the degree of endonuclease specificity,
which appears to range from very strong (e.g., Xiong
and Eickbush 1988; Feng et al. 1998) to relatively weak
(e.g., Jurka 1997; Ichiyanagi and Okada 2008). There are
likely to be a number of factors, in addition to endonu-
clease specificity, that can alter patterns of TE insertion
accumulation over evolutionary time. Thus, predicting
the probability that specific TE types will exhibit hom-
plasy remains difficult, making it critical to evaluate this
empirically.

Phylogenetic analyses using TEs have identified them
using one of two methods. First, specific TE insertions
can be targeted for polymerase chain reaction (PCR) am-
plification from all the taxa of interest (e.g., Sasaki et al.
2004; Kaiser et al. 2007). Second, TEs can be identified
in silico by searching large-scale homologous sequences
or even whole genomes (e.g., Kriegs et al. 2006). Al-
though comparing large-scale genomic regions is less
biased, the set of organisms with sufficient genomic

data available remains limited. Some large-scale phylo-
genetic data sets have a sufficient amount of noncoding
sequence to apply the second method with the added
advantage of broader taxon sampling. Thus, searching
phylogenetic data sets may improve our understanding
of TE insertion patterns as well as help to identify TEs
that are phylogenetically informative.

The large-scale avian phylogenetic data published by
Hackett et al. (2008) is suitable for this last approach.
This study included a large amount of noncoding data
from 169 avian species (representing all orders, most
nonpasserine families, and all major passerine clades),
providing a much more extensive taxon sampling than
is currently available for genome sequences, where only
the chicken genome has been examined (Wicker et al.
2005). Using data from Hackett et al. (2008) and re-
lated papers (Chojnowski et al. 2008; Harshman et al.
2008; Yuri et al. 2008), we 1) establish the distribution
of TE insertions and determine their potential to re-
solve phylogenetic questions in birds; 2) ask whether
all TE insertions in this data set represent perfect, or
homoplasy-free, characters on the Hackett et al. (2008)
tree; and 3) assess the types of TEs found in a broad
diversity of birds.

MATERIALS AND METHODS

Sequencing and Alignment

Because most TEs in coding regions are selected
against, we focused on screening noncoding DNA. We
screened the data available from recent studies that ex-
amined avian phylogeny using noncoding sequences
(Chojnowski et al. 2008; Hackett et al. 2008; Harshman
et al. 2008). One locus, HMGN2, was poorly sampled
in the previous studies, so we collected additional data
from some of the same taxa used in those studies (de-
posited in GenBank with accession numbers HM439436-
HM439451). Introns, coding exons, and untranslated
regions (UTRs; noncoding exon regions) were identified
using the annotation of the chicken genome (Interna-
tional Chicken Genome Sequencing Consortium 2004)
and other vertebrate genomes (Hubbard et al. 2007).
Sequences were aligned as described in previous pub-
lications (Chojnowski et al. 2008; Hackett et al. 2008;
Harshman et al. 2008).

TE Identification

We used individual introns or UTRs as queries to
search for homology to TEs from all organisms in Rep-
base (Jurka et al. 2005) using the CENSOR software tool
(Kohany et al. 2006). To allow careful comparison of
TE insertion boundaries, TE insertion positions iden-
tified using CENSOR were mapped onto the multiple
sequence alignments using a C++ program written by
E.L.B. In some cases, we modified alignments to bet-
ter match the novel information about TE boundaries.
Upon further examination of the alignments, some in-
sertions were found in additional taxa not identified
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by CENSOR, though in all these cases, these taxa had
short sequences (<40 bp) that appeared homologous
based upon the alignment and so we considered them
as representing TE insertions. For comparison, we also
searched for TEs using RepeatMasker (Smit et al. 2004),
another database of repetitive elements with a different
search algorithm.

In addition, all insertions >40 bp in length in the orig-
inal alignments were identified and examined to deter-
mine whether any could be identified as TEs. The cut
off of 40 bp was used because all TE insertions iden-
tified by CENSOR were longer than 40 bp, suggesting
that it is difficult to reliably identify TEs shorter than
these sequences. All insertions that were not identified
as TEs in the initial CENSOR or RepeatMasker searches
were rerun through CENSOR using just the inserted re-
gion rather than the entire intron. Length differences be-
tween paleognaths and neognaths cannot be classified
as insertions or deletions because the basal split in birds
is between paleognaths and neognaths (e.g., Groth and
Barrowclough 1999; Harshman et al. 2008) so they were
excluded from consideration (none of these length dif-
ferences appeared to be due to TEs).

Examining Homoplasy and Gene-Tree Topologies

Each TE insertion, including those that appeared
to be homologous but were too short (e.g., those that
were <40 bp) to be identified through CENSOR, was
coded as a binary character (present/absent) for each
taxon and mapped onto the nucleotide-derived tree
of Hackett et al. (2008). In those cases where we were
missing sequence data for specific taxa, we assumed
that the taxon with missing data had the same character
state as its sister taxon. When the distribution of TE
insertions conflicted with the Hackett et al. (2008) tree,
we determined whether the observed pattern could
reflect the gene tree in the region surrounding the TE
insertion rather than homoplasy. To examine gene trees,
we used GARLI 0.96b8 (Zwickl 2006) to generate the
maximum likelihood (ML) tree using the general time
reversible model with Γ -distributed rates and invariant
sites (GTR+Γ+inv) model for the locus containing the
TE insertion (excluding the sites in the TE itself), and
we examined support for that tree using 100 bootstrap
replicates. We also examined the phylogenetic signal
at individual sites by using PAUP* 4.0b10 (Swofford
2003) to calculate site likelihoods given the ML tree
for the locus and the optimal tree rearranged to re-
quire only a single RGC and the GTR+Γ+inv model.
This analysis allowed us to determine whether sites
clustered near the TE insertion supported a different
gene tree than the remainder of the locus, which is ex-
pected to be the case if recombination had occurred
near the insertion site. All trees and data matrices were
deposited in TreeBase (S10968). Additionally, the TE
character matrix and sequence alignments are available
on http://www.biology.ufl.edu/earlybird/.

Testing for Among-Locus Variation in the TE Insertion Rate

To test the hypothesis that TE insertion rates are equal
across loci, we compared the simplest evolutionary
model, a global Poisson model with equal rates (e.g.,
Braun and Kimball 2001), to the more general negative
binomial (NB) model, which allows variable rates. In
both models, the expected number of TE insertions at
a locus is proportional to the length (Len) of the locus
and the treelength (TL), which is the sum of the branch
lengths for the relevant taxa. The rate of TE insertion
(λtr) can be expressed as the expected number of inser-
tions per base pair of noncoding DNA per myr. To esti-
mate λtr, we used the average length of noncoding DNA
at each locus and approximated TL by summing branch
lengths of the Hackett et al. (2008) tree after making
the tree ultrametric by nonparametric rate smoothing
(Sanderson 1997). Divergence times were approximated
by applying a calibration to the rate-smoothed tree that
assumed the origin of Neoaves was 100 Ma (a consensus
estimate based upon the studies retrieved from Hedges
et al. 2006). To correct for taxa that were missing for spe-
cific loci in the Hackett et al. (2008) tree, we pruned the
relevant taxa while retraining the time-calibrated branch
length information to calculate TL. To accomplish this,
we exported a matrix of patristic distances given the
complete time-calibrated tree and used least squares
to fit those distances to trees generated by pruning ap-
propriate taxa. Thus, our measure of TL represents the
total amount of time (in myr) available for TE insertions
given all the sequence data available for any specific
locus. The ML estimate of λtr given k observed TE in-
sertions at a locus is proportional to the probability of
observing that number of substitutions given Len and
TL using Equation (1):

P(k|λtr,Len,TL) =
(λtr[Len× TL])ke−λtr[Len×TL]

k!
. (1)

The NB model is similar, but it adds a nonnegative
variance inflation parameter (c) to the other variables
used in Equation (1):

P(k|λtr,Len,TL, c) =
(λtr[Len× TL])k

k!

×
Γ(1/c + k)

Γ(1/c)(λtr[Len× TL] + 1/c)k

×

(

1 +
λtr[Len× TL]

1/c

)−1/c

. (2)

The likelihood ratio test is straightforward because
the NB and Poisson models differ by a single parame-
ter (Equation (2) reduces to Equation (1) when c = 0).
This allows us to compare the null hypothesis of equal
rates of TE insertion at different loci to the alternative
hypothesis of variable rates of TE insertion across loci
using a likelihood ratio test.
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RESULTS

We identified 66 distinct insertions of TEs by search-
ing 34 introns and 2 UTRs (∼14 kb per species) from
17 loci (Table 1; see also online Table S1 for a complete
list of the TE insertions that we identified, available
from http://www.sysbio.oxfordjournals.org/). Neither
of the UTRs had a TE insertion in any taxon, therefore
we focus on introns hereafter. Two loci (comprising
4 introns) lacked TE insertions in any intron, and an

TABLE 1. Loci and introns searched for transposons, and the type
of identified TE insertions

Locus Chr.a Mean Mean Number of TE insertions Types

lengthb GCb By locus By intron

ALDOB Z 4
Intron 3 493.8 0.44 2 CR1, SINE
Intron 4 153.3 0.49 0
Intron 5 215.4 0.45 2 CRI, ERV
Intron 6 478.4 0.40 0
Intron 7 150.8 0.48 0

CLTC 19 4
Intron 6 733.6 0.40 2 CR1, ERV
Intron 7 634.0 0.42 2 CR1

CLTCL1 15 2
Intron 7 477.5 0.42 2 CR1, ERV

CRYAA 1 1
Intron 1 940.3 0.55 1 CR1

EEF2 28 17
Intron 5 346.9 0.49 5 CR1
Intron 6 298.2 0.49 1 CR1
Intron 7 178.6 0.55 3 CR1
Intron 8 376.1 0.51 8 CR1

FGB 4 6
Intron 4 596.7 0.35 0
Intron 5 542.6 0.37 2 CR1, Polinton
Intron 6 181.8 0.35 0
Intron 7 826.9 0.35 4 CR1

GH1 27 9
Intron 2 637.0 0.52 7 CR1
Intron 3 365.3 0.49 2 CR1

HMGN2 23 8
Intron 2 353.8 0.37 1 CR1
Intron 3 314.4 0.39 1 CR1
Intron 4 347.1 0.4 5 CR1
Intron 5 421.5 0.42 1 CR1

IRF2 4 1
Intron 2 607.4 0.40 1 CR1

MB 1 2
Intron 2 694.1 0.46 2 CR1

MUSK Z 2
Intron 3 602.2 0.39 2 CR1, SINE

MYC 2 1
Intron 2 317.5 0.46 1 CR1

PCBD1 6 7
Intron 2 353.0 0.46 2 CR1
Intron 3 512.9 0.52 5 CR1

RHO 12 0
Intron 1 910.8 0.52 0
Intron 2 107.8 0.70 0
Intron 3 219.1 0.66 0

TGFB2 3 2
Intron 5 570.1 0.44 2 CR1

TPM1 10 0
Intron 6 459.6 0.39 0

aChr. = Chromosome.
bExcludes TEs.

additional 6 introns (distributed in 3 loci) lacked TE
insertions despite the presence of TE insertions in other
introns sequenced for those loci (Table 1). One inser-
tion, a polinton (a DNA transposon; Kapitonov and
Jurka 2006), was not identified in the initial CENSOR
screen using the entire intron, but it was identified when
CENSOR was used to examine the inserted sequence
alone.

As expected from previous studies (e.g., Wicker et al.
2005), CR1 retroelements were the most common TEs
in our data set (60 out of 66; Table 2). CR1 insertions
are also the TE type most commonly targeted for avian
phylogenetics (Watanabe et al. 2006; Kaiser et al. 2007;
Kriegs et al. 2007; Treplin and Tiedemann 2007). Three
of the remaining TEs were endogenous retroviruses
(ERVs), another group of elements that are relatively
common in the chicken genome (Wicker et al. 2005;
Weiss 2006; Huda et al. 2008). There were two short
interspersed repetitive elements (SINEs; a DeuSINE
[Nishihara et al. 2006b] and an RTE-related SINE [Jurka
2008]) and a polinton (Kapitonov and Jurka 2006), all
of which are rare TEs in the chicken genome. Repeat-
Masker identified most of the CR1 insertions that were
found by CENSOR, but it failed to identify the other
TE types, so the remainder of the results focuses on the
CENSOR output.

Full-length CR1s, ERVs, and polintons are longer than
4 kb (Haas et al. 1997; Huda et al. 2008), but all insertions
in our data were partial insertions that ranged from ap-
proximately 40–900 bp for CR1 insertions and 60–600 bp
for ERVs (though the PCR conditions used would have
been unlikely to amplify introns with full-length inser-
tions). Although SINEs are relatively short, the SINE
insertions in our data set are also partial. The partial
insertions of TEs evident in our data set are typical of
the majority of TE insertions found in genomic sur-
veys of birds and other organisms (Petrov et al. 2003;
Wicker et al. 2005; Abrusán et al. 2008), and these partial
insertions are typical of the TE insertions used for phy-
logenetics (Kriegs et al. 2006, 2007; Kaiser et al. 2007).

Of the 82 large (>40 bp) insertions in the alignments,
73% were identified as TEs. Not only were most inser-
tions attributable to TEs but also the TE insertions were
larger on average (∼300 bp) than other large insertions
(∼125 bp). This suggests that TE insertions explain much
of the large-scale size variation in the intron data sets
(Chojnowski et al. 2008; Hackett et al. 2008; Harshman
et al. 2008).

TE insertions were more common in some loci than in
others, even after correcting for the amount of noncod-
ing DNA sequenced (Table 1). In fact, we could reject the
equal-rate Poisson model in favor of the NB model using
the likelihood ratio test (2δ = 16.55, P < 0.0001, df = 1),
indicating that the rate of TE insertion/fixation varied
across loci. The 2 loci with the largest number of TE in-
sertions were EEF2 (17 TEs; with ∼1140 bp of intronic
sequence per species) and GH1 (9 TEs with ∼740 bp of
intronic sequence per species).

Some clades experienced more TE insertions than
others (Fig. 2). For example, a superordinal clade
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TABLE 2. TE types and insertion patterns

Type Number of Number of TE insertion TE insertion TE insertion
insertions autapomorphic Pattern 1ba Pattern 1c Pattern

insertions (Fig. 1b) (Fig. 1) 1da (Fig. 1)

CR1 60 34 4 (2 unique sites) 2 7 (4 taxa)
ERV 3 2 0 0 0
SINE 2 2 0 0 1 (with a CR1)
Polinton 1 0 0 0 0

aWhen 2 independent insertions are hypothesized to occur at the same site (e.g., Fig. 1b,d), we counted each independently.

comprising the paraphyletic Coraciiformes (kingfishers,
rollers, bee-eaters, hoopoes, and hornbills) and the Pici-
formes (woodpeckers, barbets, jacamars, and puffbirds)
had 19 TE insertions, almost 30% of the TE insertions
identified. Most (11) of these 19 insertions were specific
to the Piciformes. Other clades with numerous inser-
tions include the Cuculiformes (cuckoos and anis) with
9, four of which were unique to the Yellow-billed cuckoo
(Coccyzus americanus), and the Charadriiformes (shore-
birds and their allies) with 6 insertion events in the Lari
(gulls) and Scolopaci (sandpipers) (Fig. 2). In other or-
ders, such as Anseriformes (ducks and geese), we found
no TE insertions. Although the number of ERVs was
quite small, the distribution was also skewed, with two
(of three) ERV insertions found in a single order, the Gal-
liformes (chickens, turkeys, pheasants, and their allies).

CR1 elements, like other types of TEs (e.g., Boissinot
et al. 2000), are divided into subtypes that can be dis-
tinguished based upon their sequence (Vandergon and
Reitman 1994). There is typically a small number of
complete and actively transcribed retrotransposons in
genomes. These intact TEs, often referred to as “master
genes,” give rise to many copies inserted throughout
the genome and the subtype of all insertions will cor-
respond to the subtype of the master gene. Because the
master gene for a specific subtype can remain active for
a relatively long time period, one or two subtypes may
dominate in a clade (Kriegs et al. 2007). Consistent with
this, we found that clades with large numbers of TE
insertions generally had multiple insertions of a single
subtype. For example, the most common CR1 subtype
in the Coraciiformes and Piciformes clade and the Cu-
culiformes was F2, whereas the most common subtype
in Charadriiformes was Y4.

Subtype identification, however, was problematic in
some cases. For example, what appeared to be a homolo-
gous insertion was identified as a different CR1 subtype
in closely related species (e.g., in EEF2 intron 8, a TE in-
sertion shared by all 22 passerines sampled was iden-
tified as five different subtypes). Furthermore, in some
cases, RepeatMasker identified different subtypes than
CENSOR for the same insertion (not shown). Given this,
three important factors should be considered before us-
ing subtype identification: 1) the length of the insertion,
because short insertions will have retained less informa-
tion about subtypes than longer insertions; 2) the age of
the insertion, because older insertions have undergone

more mutation and may be harder to identify; and 3) the
database used to identify subtypes.

Most TE insertions could be mapped onto the Hackett
et al. (2008) tree (and even very divergent phylogenies
such as those in Sibley and Ahlquist 1990 and Livezey
and Zusi 2007) without homoplasy (Fig. 2). Indeed,
the majority of TE insertions (38 insertions) were au-
tapomorphic given our taxon sample (Table 2). The
synapomorphic insertions occurred on relatively long
branches on the phylogeny (see Fig. 3 in Hackett et al.
2008) and generally defined clades that were already
well supported by analyses of nucleotide substitutions
(Hackett et al. 2008), and thus provided no new phy-
logenetic information. Most of these united families
or more derived groupings (Fig. 2), with only 11 in-
sertions uniting orders or deeper-level clades. Ten of
these 11 insertions united well accepted, monophyletic
orders (Passeriformes [perching birds], Psittaciformes
[parrots], Piciformes, Trogoniformes [trogons], Cuculi-
formes, and Columbiformes [doves]; some of these
orders were united by two insertions). The remaining
deeper-level insertion united Coraciiformes and Pici-
formes, which is a well-supported superordinal group
in Hackett et al. (2008).

After careful examination of all the alignments, we
identified a small number of sites that exhibited more
complex patterns of TE insertion (Fig. 1; Table 2). We
split these into two categories. The first category ap-
peared to reflect insertion “hot spots” in the genome,
whereas the second category appeared to reflect homo-
plasy in that the TEs were within a single clade, but
the insertion did not map onto well-supported nodes
without homoplasy (Fig. 1c).

TEs in the hotspot category appeared to be indepen-
dent insertions at identical or nearly identical (within a
few nucleotides) sites. We found six potential hot spots
that were characterized by two patterns of insertion
at these sites (Fig. 1b,d). At four of these sites, it ap-
peared that two independent insertions had occurred
at the same site in the same taxon (Fig. 1d, Species 1);
for these, we scored each insertion event independently.
Of these four cases, one was identified because the in-
sertions were in different directions. The second was
identified because the same region of the CR1 was in-
cluded in each insertion event. In the third case, the
two insertions represented different segments of a CR1
and did not align well to a single subtype. In the last
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FIGURE 2. Phylogeny from Hackett et al. (2008) showing hypothesized TE insertions. Clades with no insertion events are collapsed for
simplicity, and the number of taxa included in that clade is noted in parentheses. Symbols used are identical to Figure 1. There are 2 pairs of
independent insertions with one pair represented by an open diamond and the other pair by a closed diamond.
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FIGURE 3. ML bootstrap analysis and alignments of loci that include insertions that appear homoplastic. ML bootstrap support >50% are
shown. Analyses were run with all taxa for which we had data, although only the clades of interest are shown for each gene tree. Alignments
are for the same taxa, with several related taxa shown for comparison. a) HMGN2, showing the absence of the insertion in Bucco and Galbula
sequences. b) GH1, showing the absence of the insertion in Geococcyx. For this locus, Coua had a large deletion spanning the entire region
(including much of the flanking intron). Sequences for one cuculiform, Centropus, could not be obtained for GH1 and so it is not included in this
figure.

case, there were different types (SINE and CR1). Some
of these cases could be explained without invoking a
hotspot model. The first two of these double-TE inser-
tions (those that involve the same region of a specific
element) could reflect duplication of the insertion (com-
bined with an inversion for the TE insertion in different
directions), whereas the third could involve a deletion
event in the middle of an insertion combined with a high
mutation rate (necessary to explain our observation that
the two regions do not align to the same subtype with
a high degree of identity). However, the insertion of
distinct TE types (e.g., the SINE and CR1) at the same
site must reflect independent insertions. Regardless of
the specific mechanism(s) responsible for each of these
insertions, it is clear that hot spots can be detected using
a data set of the size we examined here and that deter-
mining whether specific TE insertions are homologous
has the potential to be difficult.

Two sites with insertions at essentially the same site
in different orders (i.e., similar to Species 1 and 5 in Fig.
1b) were also identified, suggesting the observed TE in-
sertions had independent origins in each of the lineages,
and providing additional evidence for the existence of

hot spots in avian genomes. The first example of an in-
dependent insertion was identified because there was a
large phylogenetic distance between clades with the TE
insertions (Fig. 2 open diamonds). Uniting the clades
with the insertions would require rearranging multiple
strongly supported branches in the Hackett et al. (2008)
phylogeny that are congruent with other estimates of
avian phylogeny (e.g., Livezey and Zusi 2007). Further-
more, assuming that these insertions (TE insertions 24
and 25 in Table S1) have a single origin would render
another TE (TE insertion 36 in Table S1) homoplastic and
increase the number of changes necessary to explain the
distribution of a second TE insertion (TE insertion 50 in
Table S1; also see below for more information about this
insertion). The second example was identified because
the TE insertions were in different directions (Fig. 2
filled diamonds), although it remains possible that this
pattern reflects a single insertion followed by a precise
inversion of the TE region. Neither of these TE insertions
were phylogenetically misleading (presuming indepen-
dent insertion can be identified through the patterns
we observed), but they do provide evidence for the
existence of hot spots for TE insertion and/or fixation in
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the genome. In these situations, careful examination of
the sequences (examining directionality, the segments
of the TE present in the insertion, and whether the TE
insertions are divergent types), as well as phylogenetic
structure, helped identify insertions that were likely to
be independent.

We identified two insertions in the homoplasy cat-
egory (Fig. 1b). In HMGN2 intron 4, a CR1 insertion
uniting the Piciformes and Coraciiformes was absent
in a single clade within the Piciformes (Fig. 3a). Specif-
ically, this insertion (TE insertion 50 in Table S1) was
absent in the suborder Galbulae, represented by Bucco
and Galbula in Hackett et al. (2008) but present in other
Piciformes and the outgroup (Coraciiformes). In GH1
intron 2, an insertion (TE insertion 38 in Table S1) was
found in all Cuculiformes for which we had sequence
data in this region except Geococcyx (Fig. 3b). This TE
insertion was present in Crotophaga, the sister taxon of
Geococcyx. Thus, both of these TE inserts are homoplas-
tic given the Hackett et al. (2008) tree.

The apparent homoplasy associated with the TE inser-
tions in the HMGN2 and GH1 loci has several potential
explanations. Errors in the Hackett et al. (2008) tree are
an unlikely explanation because the relevant branches
are well supported by many lines of evidence, including
morphology (Livezey and Zusi 2007) and other molec-
ular studies (e.g., Ericson et al. 2006). Additionally, both
of the insertions that appear homoplastic conflict with
other TEs; the HMGN2 insertion conflicts with an inser-
tion in another locus (GH1; TE insertion 36 in Table S1),
whereas the GH1 insertion conflicts with a second in-
sertion in the same locus (TE insertion 39 in Table S1)
and an insertion in another locus, EEF2 (TE insertion 26
in Table S1). Therefore, the conclusion of TE insertion
homoplasy is independent of the Hackett et al. (2008)
topology.

Although lineage sorting is a possible explanation
for the taxonomic distribution of the TE insertions in
HMGN2 and GH1 because gene tree–species tree con-
flicts are known to occur (Degnan and Rosenberg 2009),
several lines of evidence indicate that TE homoplasy
(e.g., Fig. 1c) is more likely than hemiplasy (i.e., Fig. 1a)
for the distribution of TE insertions in HMGN2 and GH1.
Examination of the gene trees for HMGN2 and GH1
(excluding the insertion) indicates that the insertions oc-
cur on relatively long branches (see online Fig. S1, avail-
able from http://www.sysbio.oxfordjournals.org/) and
there is strong support for a gene-tree topology in con-
flict with the insertion. In principle, lineage sorting
could be reconciled with both the distribution of TE
insertions and the estimates of gene trees we obtained
(Fig. 3) by invoking recombination or gene conver-
sion. These phenomena predict that sites supporting an
alternative topology (a topology consistent with the dis-
tribution of the TE insertion) would be found near the
insertion; however, a pattern of sites supporting a topol-
ogy congruent with the TE was not evident (data not
shown), suggesting neither recombination nor gene con-
version is likely. Instead, the distribution we observed
was most consistent with either a precise deletion of

the CR1 in the ancestor to these taxa (without leaving
a molecular signature of the insertion as occurs with
some TE types; cf. Shedlock et al. 2004) or independent
insertions of the identical portion of a CR1 in multi-
ple ancestors within the clade. Further research on the
mechanisms of insertion and deletion for these TEs may
reveal the most plausible pathway but either alternative
could lead to incorrect phylogenetic conclusions.

DISCUSSION

We found TE insertions in the intron partitions of
most genes that we examined, consistent with the expec-
tation that they are located throughout avian genomes.
Almost all large insertions in our alignments were TEs,
suggesting that TEs explain much of the observed vari-
ation in intron length. In agreement with recent studies
that have used TE insertions for phylogenetic estima-
tion, we found many insertions that defined widely
accepted clades. However, we also found evidence of
homoplasy. Although concern about homoplasy in TE
data is not novel (e.g., Hillis 1999; Miyamoto 1999; Ray
et al. 2006), many authors have suggested that apparent
homoplasy of TEs with respect to the species tree can
be explained by hemiplasy (e.g., Shedlock and Okada
2000; Kriegs et al. 2006; Nishihara et al. 2006a; Ray et al.
2006; Kaiser et al. 2007; Kriegs et al. 2007; Treplin and
Tiedemann 2007). Nevertheless, lineage sorting is an
unlikely explanation for the two cases of homoplasy we
identified. Instead our data suggest that hot spots for TE
insertions (and/or the fixation of TE insertions) reduce
state space for this type of RGC, that precise deletion of
these TEs can occur or that both phenomena contribute
to homoplasy in avian TEs.

Insertion Sites, Hot spots, and Deletions

Regions of the genome can be TE-free (Simons et al.
2007), and when those observations are combined with
our study, it seems clear that rates of TE insertion
and/or fixation exhibit substantial variation across the
avian genome. An exceptionally large number of TE
insertions were found in specific introns, suggesting
that they are hot spots for TE insertion or fixation. In
fact, we identified four sites with multiple insertions
(e.g. Fig. 1d) and two sites in which insertions occurred
independently in divergent taxa (e.g., Fig. 1b). St. John
and Quinn (2008) noted that recent CR1 insertions fre-
quently had a TTCT sequence flanking the 3′ end of
the insertion, suggesting a bias toward insertion at sites
with this specific motif. This observation is consistent
with the target-primed reverse transcription mechanism
of retrotransposon insertion (see above), which involves
endonuclease-mediated nicking of the target DNA fol-
lowed by base pairing between conserved elements at
the end of the TE (e.g., TTCT for CR1 elements) and
the target sequence. We did not find the TTCT sequence
flanking any of the CR1 insertions we identified, though
St. John and Quinn (2008) reported that the motifs de-
graded and were mostly associated with very recent
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insertions. Thus, our failure to identify conserved TTCT
motifs suggests that the insertions we identified are
too ancient for preservation of the motif, although it is
also possible that the elements we identified inserted
through a variation of this mechanism.

Excision of TEs also has the potential to contribute to
the observed phylogenetic distribution of insertions (for
another possible example, see Murphy et al. 2007). In
fact, the most parsimonious explanation for the homo-
plasy in HMGN2, assuming that insertions and deletions
are weighted equally, would be insertion followed by
a precise deletion of the entire insertion in some taxa
within a clade. The alternative hypothesis, which is less
parsimonious given equal weighting of insertions and
deletions, would require three independent insertions
given the Hackett et al. (2008) topology. Although the
degree to which natural selection favors deletion of TEs
is not known, selection may favor deletion for at least
some TE classes (Petrov et al. 2003) and the potential for
homoplasy due to TE deletions should not be ignored.

Phylogenetic Considerations

TE insertions retain a strong phylogenetic signal and
have substantial potential for phylogenetic analyses.
They exhibit very little homoplasy (Fig. 2); the retention
index (RI) of TE insertions on the Hackett et al. (2008)
tree is 0.97, much greater than that of Hackett et al.
(2008) sequence data on the same tree (RIintron = 0.52,
RIcoding exons = 0.54, RIUTR = 0.58). However, most of the
TE insertions identified here were autapomorphic or
united more recently diverged clades (e.g., they united
families) that were already well supported by sequence
data. A major reason for this may be the structure of the
avian tree in which many clades arose during a short
period (Chojnowski et al. 2008; Hackett et al. 2008). This
means that many of the deep branches in the avian tree
of life are very short, making the probability of accumu-
lating a synapomorphic insertion on these internodes
quite low (see Braun and Kimball 2001) and inflating
the probability of hemiplasy. Consistent with the low
probability of observing insertions that occurred along
these short branches, all the synapomorphic insertions
we observed occurred upon the longer internodes in
the Hackett et al. (2008) tree that are well supported in
nucleotide analyses. Another potential reason for the
absence of TE insertions that unite groups defined by
these short branches deep in the avian tree of life is
that older insertions may be difficult to identify due to
a bias toward deletion of these elements or the accu-
mulation of other mutations over time that can obscure
TE identification. Regardless of the basis for the pat-
tern we observe, our results suggest that TE insertions
may have the greatest potential to be phylogenetically
informative within orders and families in birds where
insertion events are easier to identify and characterize.

The observation that independent TE insertions can
occur at the exact same site in the same or different taxa,
or can be precisely deleted, suggests that care needs to

be taken in assigning character states for phylogenetic
analyses. Although subtype identification could help to
clarify complex patterns of TE insertion, subtype identi-
fication is also complicated by the accumulation of both
point mutations and indels after the insertions occur. In-
deed, the bias toward deletion at the 5′ end (Abrusán
et al. 2008) has the potential to result in short remnants
of CR1s that cannot be reliably identified by subtype.
In addition, the master gene model for retrotransposons
predicts that many insertions within a specific lineage
are likely to be the same subtype (Watanabe et al. 2006;
Kriegs et al. 2007), further limiting the ability of subtype
identification in teasing out more complex situations. In
all cases, however, careful examination of the sequences
and the alignment will help establish boundaries and
aid in determining whether specific TE insertions are
likely to be independent or shared.

Our results are consistent with analyses of the chicken
genome (Wicker et al. 2005) and suggest that it might
be most profitable to continue targeting CR1s for avian
phylogenetics (e.g., Watanabe et al. 2006; Kaiser et al.
2007; Kriegs et al. 2007; Treplin and Tiedemann 2007)
rather than the less common ERVs and SINEs. The ERVs
we identified occurred at a lower frequency (∼5% of in-
sertions) in our data than in the chicken genome (∼15%
of insertions) (Huda et al. 2008). This may either reflect
our more limited genomic sampling, or it may indicate
that the chicken (or Galliformes as a whole) may have
more ERV insertions than other birds. The latter hypoth-
esis is consistent with the observation that two of the
three ERVs we identified were in members of the Gal-
liformes, although the small number of ERVs identified
does not allow us to draw firm conclusions.

CONCLUSIONS

The TE insertions identified here provide support for
a number of branches in the avian tree of life (Fig. 2).
It is clear that TEs have the potential to provide ad-
ditional evidence regarding relationships when nu-
cleotides provide surprising or conflicting results. We
found that having sequence data helped to clarify the in-
dependence of insertions, emphasizing the importance
of sequencing TE insertions. Our results also suggest
that TEs should not be viewed as perfect characters ex-
empt from homoplasy. Instead, TE insertions present
many of the same challenges for phylogenetic analyses
as other types of data, such as nucleotide sequences.
Available statistical methods for the analysis of TEs as-
sume that any apparent homoplasy is due to differences
between gene trees and species trees (Waddell et al.
2001). However, hemiplasy due to gene tree–species
tree conflicts were not consistent with the homoplasy
evident in our study. Ultimately, analytical methods
for RGCs that can accommodate both hemiplasy and
homoplasy are likely to prove more useful. An even
more productive approach may be to develop methods
that can integrate data from TE insertions into large-
scale analyses of nucleotide sequences, potentially along
with information about other types of RGCs. Integrated
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approaches of this type will ultimately allow analyses
that can recover accurate phylogenomic estimates using
all available information.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found at http://www
.sysbio.oxfordjournals.org/.
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