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ABSTRACT

We analyse the number density and radial distribution of substructures and satellite galaxies

using cosmological simulations that follow the gas dynamics of a baryonic component, includ-

ing shock heating, radiative cooling and star formation within the hierarchical concordance

Lambda cold dark matter model. We find that the dissipation of the baryons greatly enhances

the survival of subhaloes, especially in the galaxy core, resulting in a radial distribution of

satellite galaxies that closely follows the overall mass distribution. Hydrodynamical simula-

tions are necessary to resolve the adiabatic contraction and dense cores of galaxies, resulting

in a total number of satellites a factor of 2 larger than that found in pure dark matter simulation,

in good agreement with the observed spatial distribution of satellite galaxies within galaxies

and clusters. Convergence tests show that the cored distribution found by previous authors in

pure N-body simulations was due to the physical overmerging of dark matter only structures.

We proceed to use a ray-shooting technique in order to study the impact of these additional

substructures on the number of violations of the cusp caustic magnification relation. We develop

a new approach to try to disentangle the effect of substructures from the intrinsic discreteness

of N-body simulations. Even with the increased number of substructures in the centres of

galaxies, we are not able to reproduce the observed high numbers of discrepancies observed

in the flux ratios of multiply lensed quasars.

Key words: gravitational lensing – methods: numerical – galaxies: clusters: general – galaxies:

haloes – cosmology: theory – dark matter.

1 I N T RO D U C T I O N

The study of substructures within simulated galaxy-sized haloes

has posed interesting problems to the current, widely accepted,

Lambda cold dark matter (�CDM) scenario. As pointed out pre-

viously (Klypin et al. 1999; Moore et al. 1999), the number of

surviving subhaloes found in N-body simulations greatly exceeds

the number of observed satellites around the Milky Way and

Andromeda. The properties of subhaloes on different scales have

been the subject of many recent studies which have pushed the res-

olution of dissipationless simulations (Ghigna et al. 1998, 2000;

Moore et al. 1998; Colin, Klypin & Kravtsov 2000; De Lucia

et al. 2004; Diemand, Moore & Stadel 2004; Gao et al. 2004a;

Kravtsov, Gnedin & Klypin 2004; Reed et al. 2005; Zentner et al.

2005a,b). The kinematical properties of subhaloes are now well un-

derstood – they make up a fraction between 5 and 10 per cent of

the mass of virialized haloes on scales relevant to observational

cosmology.

�E-mail: andrea@physik.unizh.ch

Most of these previous studies used dissipationless cosmological

simulations; although non-baryonic dark matter exceeds baryonic

matter by a factor of �dm/�b � 6 on average, the gravitational field

in the central region of galaxies is dominated by stars and gas. In the

hierarchical galaxy formation model, stars are formed by the con-

densation of cooling baryons at the halo centre. The cooling baryons

increase the density in the central halo region mainly not only be-

cause of the extra mass associated with the inflow but also because

of the adiabatic contraction of the total mass distribution (Blumen-

thal et al. 1986; Loeb & Peebles 2003; Gao et al. 2004b; Gnedin

et al. 2004). This process acts both for the host halo and for its sub-

haloes, therefore we may expect that the dark matter substructure

haloes formed within hydrodynamical simulations will experience

a different tidal force field and they themselves will be more robust

to tidal effects. Since overmerging of dark matter substructures is

sensitive to their central structure (Moore, Katz & Lake 1996), pure

N-body simulations may bias results because of physical overmerg-

ing (Diemand et al. 2004, DMS04 hereafter).

The fact that substructure haloes are spatially more extended

than the averaged mass distribution was first pointed out by Ghigna

et al. (1998). By increasing the resolution by over an order of mag-
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nitude, DMS04 showed that this result was independent of the

numerical resolution. Furthermore, the distribution of galaxies in

clusters appears to follow the overall mass distribution, quite un-

like the subhaloes selected by the final bound mass in pure dark

matter simulations. By tracing haloes backwards and forwards in

time through the simulations, they argued that the missing central

subhaloes may be destroyed by tidal forces at redshifts higher than

z = 5. The survival of substructure and galaxies within dense en-

vironments has implications for indirect detection techniques, for

example using image distortions of gravitationally lensed distant

quasars by foreground galaxies and their dark matter haloes.

It has been argued that a possible signature of the presence of dark

matter substructures can be found in strong gravitational lensing of

quasi-stellar objects (QSOs) (Mao & Schneider 1998; Metcalf &

Madau 2001; Chiba 2002; Metcalf & Zhao 2002; Chen, Kravtsov &

Keeton 2003; Amara et al. 2004; Dalal & Kochanek 2002; Kochanek

& Dalal 2004; Mao et al. 2004). If a distant image source is close

to (or inside) a cusp in a caustic curve, three of the images will be

clustered together and the sum of their magnifications will be zero

(Zakharov 1995), taking the negative parity image to have negative

magnification. This relation holds for a wide class of smooth analytic

lens models (i.e. Schneider & Weiss 1992; Keeton, Gaudi & Petters

2003); on the other hand, all known observed lensed QSOs violate

this relation which has been explained as due to the presence of

the CDM substructure within the lensing galaxy’s halo. However,

some of these discrepant systems may be due to microlensed stars

rather than due to the CDM substructure (Keeton et al. 2003). Bradač

et al. (2004) analysed a low-resolution simulation of a galaxy and

claim that the level of substructure present in simulations produces

violations of the cusp relation comparable to those observed. Amara

et al. (2004) implanted an idealized model of galaxy into the centre

of a high-resolution galactic halo extracted from dissipationless N-

body simulations to test the effects of substructure on lensed images.

Their findings contrast those of Bradač et al. (2004) since they found

that the substructures produced in a �CDM halo are not abundant

enough to account for the cusp caustic violation observed, these

results are also confirmed by Mao et al. (2004), based on the analysis

of substructure abundance in pure dark matter simulations.

The first part of this paper is devoted to the analysis of the subhalo

population around a galaxy-sized halo that forms in a large cosmo-

logical simulation simulated with dark matter only and then with

the inclusion of a baryonic component. In Section 2, we present

the numerical simulations, our halo-finding scheme and resolution

tests. The properties of the main halo and its satellites are presented

in Section 3. Comparison with observations and a discussion of the

results are presented in Section 4. In the second part of this paper, we

re-examine the effects of substructures on multiply lensed quasar

images using our new hydrodynamic galaxy simulation in combi-

nation with a ray-shooting technique. In Section 5.1, we present the

lensing code, while Section 5.2 is devoted to multiple images anal-

ysis. In Sections 6 and 7, we present our results and the conclusions

of our work.

2 N U M E R I C A L S I M U L AT I O N S

The simulations were performed with GASOLINE, a multistepping,

parallel TreeSPH N-body code (Stadel 2001; Wadsley, Stadel &

Quinn 2004). We include radiative and Compton cooling for a pri-

mordial mixture of hydrogen and helium. The star formation algo-

rithm is based on the Jeans instability criteria (Katz 1992), where gas

particles in dense, unstable regions and in convergent flows spawn

star particles at a rate proportional to the local dynamical time (see

also Governato et al. 2004). The star formation efficiency was set

to 0.1, but in the adopted scheme its precise value has only a minor

effect on the star formation rate (SFR) (Katz 1992). The code also

includes the supernova feedback as described by Katz (1992) and

the ultraviolet (UV) background following Haardt & Madau (1996).

We have selected a candidate Galactic mass halo (Mdm ≈
1012 M�) from an existing low-resolution dark matter only sim-

ulation in a concordance (� = 0.7, �0 = 0.3, σ 8 = 0.9) cosmology

and resimulated it at higher resolution using the volume renormal-

ization technique (Katz & White 1993), and including a gaseous

component within the entire high-resolution region. The mass per

particle of the dark matter and gaseous particles are, respectively,

md = 1.66 × 106 M� and mg = 3.28 × 105 M�. The dark matter

has a spline gravitational softening length of 200 pc, and we have

about 1 × 106 particles for each component (dark and gas) in the

high-resolution region.

The smoothed particle hydrodynamics (SPH) simulations with

cooling are computationally expensive, and we are forced to stop

the full calculation once the galaxy has formed, at a redshift z =
1.5. (The parallel calculation is dominated by the few remaining gas

particles which need extremely small time-steps in order to satisfy

the Courant criterion). In order to study the dynamical evolution of

the stellar and dark matter satellites, we have evolved the simulation

to the present epoch without following the remaining gaseous par-

ticles – we turn them into collisionless particles and treat only their

gravitational interactions. We do not believe that this influences any

of our conclusions since (i) most of the gas has already turned into

stars between a redshift z = 5.5 and z = 2.5 and (ii) continuing

to include cooling of the remaining gas would only allow us to re-

solve higher density gas clouds. Inside the virial radius at a redshift

z = 0, we have 8.6 × 105 dark matter particles and 2.4 × 105 star

particles. In Fig. 1, we show the SFR in our simulation which is

in good agreement with previous numerical studies (i.e. Governato

et al. 2004).

The same object has also been simulated with dark matter only

using the same spatial and mass resolution as the hydro run, in

addition one simulation with four times better mass resolution (this

object is Gal1 in DMS04). In the following, we will refer to the three

simulations as hydro, dm and dmHR, respectively.

Figure 1. The SFR in the hydro simulation. The time since the big bang is

indicated and the red vertical line corresponds to z = 2, where cooling was

switched off.
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Figure 2. Rotation curve [defined as Vc(R) = √
G M(< R)/R] for all

components (upper solid line), star (dotted line) and dark matter (dashed

line) for the galaxy at z = 0. For comparison, the dark matter rotation curve

(lower solid line) obtained in the pure dark matter simulation of the same

object is also shown.

3 H A L O E S P RO P E RT I E S

3.1 Host halo

In Fig. 2, we show the rotation curve [defined as Vc(r ) =√
G M(< r )/r ] for all components, stars and dark matter separately

for the galaxy at z = 0. For comparison, we also show the dark

matter rotation curve obtained in the pure dark matter simulation

of the same object. The baryons dominate within the inner 10 kpc,

and the effect of the adiabatic contraction on the dark matter can

clearly be seen – the baryons have increased the mass within 5 kpc

by a factor of 4. The steeper central cusp can clearly be seen in the

density profile plot (Fig. 3), the dm halo has a profile that can be

well fitted by an Navarro, Frenk & White (1996; NFW) profile with

a concentration cvir = 9.6 (defined with respect to the virial radius);

on the other hand, in the presence of gas and stars the density profile

in the inner region has an almost constant cusp slope α ≈ −2.0,

as predicted by the adiabatic contraction model (Blumenthal et al.

1986). In Fig. 1, we show the SFR, the bulge of the galaxy forms

through a series of rapid major merger events that end around z =
2.8, turning mostly low angular momentum gas into stars. There are

no more merging events in the formation of our galaxy after z = 2,

so even if we cannot follow the SFR directly beyond z = 1.5, we

do not expect it to be different from a slowly decreasing function of

time.

3.2 Subhaloes

Within the virial radius of the high-resolution CDM simulations, we

can resolve several hundreds of substructure haloes (bound over-

dense clusters of particles). We identify subhaloes with SKID (Stadel

2001), which calculates local densities using a SPH kernel, then

moves particles along the density gradient until they oscillate around

a point (i.e. move less than some length l). Then, they are linked

together using friends-of-friends (FoF) with this l as a linking length.

SKID with l = 4ε0 (where ε0 is the gravitational softening of

the simulation) adequately identifies the smallest subhaloes and the

centres of the largest subhaloes. For the latter, the calculated bound

Figure 3. The dark matter density profile in the N-body (dashed curve) and

hydro (solid line) simulations. The effect of the adiabatic contraction can

clearly be seen in the inner part of the profile.

mass is underestimated. Using l = 10ε0 can cure this, but then

some of the small subhaloes are missed. Therefore, we have used

a combination of the subhalo catalogues obtained with these two

linking lengths in order to create the complete catalogue of subhaloes

and to calculate their correct structural parameters. We included in

our study only haloes with M > 2 × 108 M� (i.e. ndm > 100).

In Fig. 4, where we plot the dark matter subhaloes mass function

in the hydro and dm simulations, calculated within a sphere of radius

1 Mpc centred on the galaxy. As expected, we do not observed a

big difference between the two simulations in such a large volume,

this is because the presence of baryons is thought to be much more

important in the inner region of our galaxy, where the tidal field is

much more efficient in destroying subhaloes. The effect of baryons

can easily be seen in Fig. 5, where we plot the ratio of the number of

subhaloes in the two simulations as a function of the distance from

Figure 4. The dark matter subhaloes mass function in the hydro (black)

and dm (blue) simulations. In a sphere of 1 Mpc around the centre of the

galaxy.
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Figure 5. Ratio of the number of DM subhaloes with M > 2 × 108 M�
in the hydro and dm runs as a function of the distance from the centre of the

main halo.

the centre of the galaxy. At 70 kpc (≈1/3R200), we see an increase

by a factor of 2 in the numbers of surviving satellites. Within the

inner 40 kpc, the number of satellites with mass greater than 2

× 108 M� is enhanced by a factor of 4–5 over that found in the

pure dark matter simulation. We found that this difference is more

striking for the most massive subhaloes, the number of satellites with

mass greater than 107 M� does not differ so much from the N-body

result. This may be revealing the limitation of our resolution – the

smallest haloes of mass ∼107 M� are just resolved with about 10

dark matter (DM) particles and are more easily destroyed through

numerical effects. Another explanation could be the inhibition of

star formation in smaller haloes because of the UV background and

the supernovae (SN) feedback that raise the temperature of the gas

and stop its collapse in the DM halo if it is not sufficiently bound

(i.e. its potential well is not deep enough). Without stars, the DM

can more easily be destroyed by the tidal forces of the main halo

(see also Section 4, for more details on the feedback effects).

As noted by previous authors (DMS04, for a recent analysis), the

spatial distribution of subhaloes in CDM simulations of galaxies is

antibiased with respect to the mass; Nagai & Kravtsov (2005) have

recently shown that part of this bias is due to the varying amount

of mass loss at different radii, and that it is considerably smaller if

instead of using the mass of satellites at z = 0, one uses the mass

measured at the accretion time. For our purposes, we have decide

to use the mass at the present time because we are interested in the

different tidal forces and mass loss between the hydro and dm run.

Fig. 6 shows the relative number density of surviving satellites

M > 2 × 108 at z = 0, in several pure dark matter simulations and

our hydro simulation. In all dm cases, the satellites are more ex-

tended than the overall mass distribution (dominated by the smooth

dark matter background). This effect becomes larger inside of half

the virial radius. Within this region, the dark matter only simula-

tions reveal a much flatter number density distribution. The satellite

distribution in the hydro simulation is much steeper and it is rather

similar to the smooth mass distribution. The core distribution found

in the dm run almost disappears, and the satellite profiles are well

fitted by an NFW-like function even if they are still less concentrated

than the overall mass distribution (in agreement with findings from

hydro simulations on cluster scales by Nagai & Kravtsov 2005);

Figure 6. Substructure radial density profiles for different simulations.

the concentration parameter (rc/rvir) for the satellite distribution is

≈6.5, where the one for the smooth DM distribution in the range

0.07 < r/rvir < 1.0 is cDM = 9.6.

3.3 Resolution tests

In the hydro simulation, we have a higher mass resolution due to

the presence of baryons; the mass of the star and gas particles is

roughly 20 per cent of the mass of the DM particles, this means that

in principle the lower number of subhaloes close to the centre that

we found in the N-body simulation can partially be due to an over-

merging phenomenon that depends on the resolution. In the lower

panel of Fig. 7, we compare the number of subhaloes as a function

Figure 7. The effect of resolution on the number of subhaloes. Upper panel:

ratio between the number of DM subhaloes (M > 2 × 108 M�) in the hydro

run for two different values of the star particles softening: ε1 = 0.2 kpc and

ε2 = 1.5 kpc as a function of distance from the centre. The dashed line is

the same quantity, but for the hydro run with ε = ε2 and the dm run. Lower

panel: the ratio between the number of DM subhaloes (M > 107 M�) in the

hydro run and in the high-resolution dmHR (dashed line) and low-resolution

dm (solid line) runs.
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of radius between the hydro simulation and the highest-resolution

dark matter only run (dmHR) which has a mass resolution of a factor

of 4 better than the low-resolution case. Fig. 7 demonstrates that

the increase in the number of substructure haloes in the hydro run

is apparent even when compared to the higher resolution N-body

simulation.

The second test that we have performed is related to the force

resolution (gravitational softening) adopted for the star particles.

Stars are concentrated in the inner few kpc of the galaxy and a small

softening must be chosen to correctly follow the dynamical evolu-

tion of such high-density regions. We have run the hydro simulation

for two different values of the star gravitational softening (ε): ε1 =
0.2 kpc and ε2 = 1.5 kpc. Results are presented in the upper panel

of Fig. 7, where we show the difference in the number of subhaloes

as a function of the distance from the centre. The effect of softening

is important – too large a value leads to tidal disruption of satellite

galaxies since they have artificially shallow central potentials and

are hence less bound. The larger stellar softening (ε2 = 1.5 kpc)

erases the stabilizing effect of the stars inside the satellites, and the

radial distribution of surviving subhaloes is identical to the pure

dark matter case (see the dashed line in the upper panel of Fig. 7).

4 C O M PA R I S O N W I T H O B S E RVAT I O N S

For this comparison, we used the data for the Local Group as com-

piled by Mateo (1998). In this sample, only relatively massive satel-

lites with an estimated rotational velocity or a three-dimensional

velocity dispersion of stars greater than 10 km s−1 are considered.

In order to simplify the comparison even further, as in Klypin et al.

(1999), we have considered the number of satellites within a radius

of 280 kpc from the Milky Way and Andromeda, which is close to

the expected virial radius of these galaxies.

Even though the remaining gas particles are turned into collision-

less tracers at z = 1.5, this does not affect the kinematical properties

of the satellites at z = 0. All of the satellites that end up within

the virial radius of the galaxy halo have formed prior to this epoch.

Subsequent loss of the remaining gas particles to stars or by strip-

ping processes would not lead to significant changes to the satellite

structural parameters.

In Fig. 8, we show the cumulative velocity distribution function

(VDF) of satellites; the number of satellites per unit volume and per

central object with internal circular velocity is larger than the given

value Vc. We show the VDF for different runs: the solid line repre-

sents the results for the dm simulation; as already known, the CDM

models overpredict the number of satellites for Vc < 30 km s−1. The

dashed line represents the results from Klypin et al. (1999), that were

originally compared with the data from Mateo (1998). The simula-

tion results agree quite well above 20 km s−1; our higher resolution

pure dark matter simulations allow us to follow the distribution of

subhaloes to lower circular velocities (Vc > 10 km s−1).

The open circles connected by a solid line show the VDF of dark

matter haloes for the hydro run. The number of satellites in the range

15 < Vc < 30 km s−1 is increased, and now also for Vc > 35 km

s−1 there is an over abundance of satellites. We have also computed

the VDF for satellites in the hydro run considering only their stars,

shown by squares connected with the long dashed line. This is a fairer

comparison since we are comparing stellar kinematics in each case.

Stars are more concentrated than the DM, so they trace the dynamics

within a smaller central region; this explains why the VDF for stars

is below the DM one over the whole velocity range (Hayashi et al.

2004), but this effect is too small to reconcile the simulations with

the observations of Local Group satellites.

Figure 8. The cumulative circular VDF of satellites. The black dotted line

represents the results for the DM-only simulation, the blue dashed line is

the VDF for stars (visible) haloes and the solid blue line is for DM haloes.

Black triangles with error bars show average results for Milky Way and

Andromeda satellites (Mateo 1998; Klypin et al. 1999). The red dashed line

is the result for a �CDM dissipationless galaxy obtained by Klypin et al.

(1999).

Figure 9. Similar to Fig. 8. The solid (blue) line is the stellar satellite VDF

in the absence of the SN feedback, the dashed line is the feedback turned on

and black dotted line represents the results for the DM only simulation.

Another clear difference between the two VDFs is that we have

no stellar satellites with Vc < 15 km s−1, which is due to the SN

feedback and the UV background in the simulation. To confirm this,

we have run a full hydrodynamical simulation without these external

feedback sources, shown in Fig. 9, where the VDF for the no feed-

back case continues to rise within Vc < 15. With the weak feedback

used in this paper, hydrodynamic cosmological simulations produce

VDFs which lie above the pure dark matter results and the discrep-

ancy to Local Group observations becomes even larger. Runs with

the strong feedback from reionization are able to produce realistic
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VDFs, we will present such runs in a forthcoming paper (Macciò

et al. , in preparation).

5 L E N S I N G A NA LY S I S

Quasars that are being gravitationally lensed into multiple images

have recently been used to place limits on the surface density of

CDM subhaloes (Mao & Schneider 1998; Metcalf & Madau 2001;

Chiba 2002; Dalal & Kochanek 2002; Metcalf & Zhao 2002; Chen

et al. 2003; Amara et al. 2004; Bradač et al. 2004; Mao et al. 2004).

Small mass clumps that happen to lie near the images affect the ob-

served magnification ratios. The question arises as to whether these

observations are compatible with distortions expected to occur from

dark matter substructures and satellite galaxies within the �CDM

model. In the following, we will first present our lensing code, then

we will briefly recall the main features of the so-called cusp relation,

and finally we will report our results.

5.1 Lensing simulations

Our ray-shooting code is described in detail in Macciò (2005); here

we will only summarize its main features. The galaxy is centred in

a cube of length 0.6 Mpc and we study three lens images, obtained

by projecting the particle positions along the three coordinate axes.

We then divide the projected density field, �, by the critical surface

mass density for lensing

�cr = c2

4πG

DS

DL DLS

, (1)

thus obtaining the convergence k. Here, c is the speed of light, G
is the gravitational constant, while DL, DS, DLS are the angular-

diameter distances between lens and observer, source and observer,

lens and source, respectively. In the following, we adopt zL = 0.3

for the lens redshift and zs = 3.0 for the source redshift.

The deflection angle due to this 2D particle distribution, on a

given point x on the lens plane reads

α(x) =
N∑

j=1

4G

c2

m j

|x − y j |
. (2)

Here, y j is the position of the jth particle and N is the total number

of particles.

Since a direct summation requires a long time, we speed up the

code by using a P3M-like algorithm; the lens plane was divided into

256 × 256 cells and the direct summation was applied to particles

belonging to the same cell of x and for its eight neighbour cells.

Particles in other cells were then seen as a single particle in the cell

barycentre, given the total mass of the particles inside the cell. The

deflection angle diverges when the distance between a light ray and

a particle is zero. To avoid this unwanted feature, we introduce a

softening parameter, ε, in equation (2); the value ε is tuned to the

resolution of the current simulation.

We start to compute α(x) on a regular grid of 4096 × 4096

test rays that cover the central quarter of the lens plane (multiple

images form very close to the lens centre). This resolution does not

provide enough pixels in the inner regions affected by strong lensing

to model lensing properties in the correct way. The resolution is

increased by extracting the central region, where strong lensing is

occurring and using bilinear interpolation to calculate the relevant

quantities to higher resolution. Our final resolution is equivalent to

a bundle of 16 384 × 16 384 light rays.

The relation between image and sources positions is given by the

lens equation

y = x − α(x); (3)

the local properties of the lens mapping are then described by the

Jacobian matrix of the lens equation

Ahk(x) = ∂ yh

∂xk
= δhk − ∂αh

∂xk
, (4)

and the magnification factor μ is given by the Jacobian determinant

of A:

μ(x) = 1

det A
= [A11(x)A22(x) − A12(x)A21(x)]−1. (5)

Finally, the Jacobian also determines the location of the critical

curves xc on the lens plane, which are defined by det A(xc) = 0.

Because of the finite grid resolution, we can only approximately

locate them by looking for pairs of adjacent cells with opposite

signs of det A. Then, the lens equations

yc = xc − α(xc), (6)

yield the corresponding caustics yc, on the source plane.

To find the images of an extended source, all image-plane po-

sitions x are checked to see if the corresponding entry in the map

table y lies within the source, i.e. for a circular source with radius

rc and centred in (yc
1;yc

2), it is checked if(
y1 − yc

1

)2 + (
y2 − yc

2

)2 � r 2
c , (7)

where (y1, y2) is the component of the vector y. The sources are

modelled as circles with a radius of 60 pc according to Amara et al.

(2004). Those points fulfilling the previous equation are a part of

one of the source images and are called image points. We then use

the standard FoF algorithm to group together image points within

connected regions since they belong to the same image.

A typical lens configuration is shown in Fig. 10, where critical

lines, caustic lines, source and images positions are indicated. The

images within the black circles correspond to those selected for the

cusp relation investigation.

Figure 10. Basic lens configuration. The caustic surface is shown as a black

line, and critical curves are shown as cyan lines. The four images that are

usually observed are shown as red dots, and the three that are used to inspect

the cusp relations are the ones inside the small black circles. The blue square

is the source position. The softening adopted for this lens map is 0.5 Kpc.
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5.2 Cusp caustic relation

There are basically three configurations of four-image systems: fold,

cusp and cross. In this paper, we will mainly concentrate on the cusp
configuration that corresponds to a source located close to the cusp of

the inner caustic curve. The behaviour of the gravitational lens map-

ping near a cusp was first studied by Blandford & Narayan (1986),

Schneider & Weiss (1992), Mao (1992) and Zakharov (1995), who

investigated the magnification properties of the cusp images, and

concluded that the sum of the signed magnification factors of the

three merging images approaches zero as the source moves towards

the cusp. In other words (e.g. Zakharov 1995),

Rcusp = μA + μB + μC

|μA| + |μB | + |μC | → 0, for μtot → ∞, (8)

where μtot is the unsigned sum of magnifications of all four images,

and A, B and C are the triplet of images forming the smallest opening

angle. By opening angle, we mean the angle measured from the

galaxy centre and being spanned by two images of equal parity. The

third image lies inside such an angle. This relation is an asymptotic

relation and holds when the source approaches the cusp from inside

the inner astroid caustic.

Since we know the lens position and the source position, the

procedure of finding the cusp images is straightforward; we have

identified the triplet of images belonging to the smallest opening

angle; we have seen that the cusp images are better identified using

as opening angle measured from the fourth image and being spanned

by two images of equal parity. We have used this method only to find

the cusp images; instead for testing the cusp relation (see equation

9), we have used the opening angle as defined from the centre of the

galaxy (�θ).

Approximately 25 000 lens systems are generated with the source

position inside the astroid caustic. Fig. 11 indicates in colour the

value of Rcusp for all the different source positions; the apparent

discontinuities originate from different image identifications. In the

very centre of the caustic, the cusp relation is not well defined (what

you have is mostly a ‘cross relation’, four images situated at the

vertices of a cross centred on the cusp centre), as the source moves

in the direction of the minor or major axes, we choose different

subsets of three cusp images and therefore the discontinuity arises.

Figure 11. The value of the quantity Rcusp in the four-images region of the

source plane; here a softening of 0.3 Kpc is used.

6 E F F E C T S O F S U B S T RU C T U R E S

Because of the finite size (discreteness) of the particles in the sim-

ulations, there is a significant amount of shot noise in the surface

density estimate, which can affect the lensing properties. The usual

approach (Amara et al. 2004; Bradač et al. 2004) is to use a Gaus-

sian kernel to smooth the surface density. In Amara et al. (2004), a

detailed study of the impact and calibration of the smoothing was

presented; their main conclusion was that a smoothing of 0.5 kpc is

suitable for studying the cusp relation properties without losing any

spatial information.

In order to try to disentangle the effects of bound substructures

to the spurious effect produced by single finite particles, we have

adopted a novel approach. We have tried to remove substructures

from the lensing halo to see how this can change the cusp relation.

Our removal procedure works as follows. First, we identified all

bound substructures using SKID (see Section 3.2); then each particle

belonging to any of the subhaloes is rotated around the centre of the

galaxy using three random Euler angles. In order to avoid thin circu-

lar shells of particles, we added a random ±10 per cent error to each

distance. We want to emphasize that we do not physically remove

any substructures, because this will change the overall properties of

the lens, mass, density profile, etc.

This procedure allows us to smooth out only the substructures

leaving unaltered all the main features of the primary lens. In Fig. 12

(upper panel), we show the integral radial mass profile before and

after the removal of the substructures; not only the total mass but also

its radial profile is preserved. This means that all the lensing prop-

erties of the galaxy remain unchanged (critical curves, caustics and

position of images) allowing us to make a one-to-one comparison

between the two lensing maps. In Figs 13 and 14, the density map of

the galaxy is shown, with and without substructures, respectively.

The cusp relation defined by equation (8) holds when the source

is close to the cusp. As soon as the source moves away from the

cusp, deviations from Rcusp = 0 are observed even for the smooth

lens model. On the other hand, the closer the source is to the cusp,

the smaller is the angle spanned from the three images. Therefore,

in order to take into account the position of the source in evaluating

0.01 0.1 1
0

0.1

0.2

Figure 12. Mass versus radius before and after the removal of substructures.

The overlap between the two curves is very good; in the lower panel, the

residuals are shown.
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Figure 13. The density map of the mass distribution within the full hydro-

dynamical simulation. The size of the box is 200 kpc.

Figure 14. The density map of the smoothed mass distribution after ran-

domizing the positions of the particles within the substructure haloes.

the cusp relation, it is better to define R0
cusp as (see also Amara et al.

2004)

R0
cusp = 2π

�θ
Rcusp, (9)

where �θ is the opening angle spanned by the two images with

positive parity defined from the centre of the galaxy.

With this new definition of R0
cusp, a set of three images is said to

violate the cusp relation if R0
cusp > 1. This makes the comparison

between simulations and observations much more straightforward.

The differences in the reduced cusp relation violation in the two

cases are shown in Fig. 16, where we plot the number of sources

that violate the reduced cusp relation as a function of the Gaus-

sian smoothing scale (εg). For both the lens models, the number

of sources that violate equation (9) decreases with the smoothing

length because the effect of smoothing is to reduce both the impact

of substructures and the noise introduced by single particles.

The difference between the two is not so large, with a maximum

of εg = 0.5 kpc, where the number of violations grows from 19 to

23 per cent; this is because this value of εg is large enough to cancel

the shot noise, but not large enough to smear out the subhaloes in

the simulation, in good agreement with the results of Amara et al.

For smaller value of εg, the signal is almost completely dominated

by the shot noise, and for larger values we smooth too much, losing

spatial information on the surface density of the lens.

Fig. 16 clearly shows that the impact of substructure in a mass

range 107–109 is very weak in disturbing the cusp relation. The reso-

lution achievable with current numerical simulations is still too poor

to extend the analysis to a lower mass range of subhaloes; analytic

arguments or semi-analytic prescriptions must be used (Macciò &

Miranda 2005).

Nevertheless, a tentative comparison with observation can

be made; there are five observed cusp caustic lens systems:

B0712+472 (Jackson et al. 1998), B2045+265 (Koopmans et al.

2003), B1422+231 (Patnaik & Narasimha 2001), RXJ1131-1231

(Sluse et al. 2003) and RXJ0911+0551 (Keeton et al. 2003); the first

three are observed in the radio band, the last two in optical and in-

frared (IR) band. Three of them violate the reduced cusp relation (i.e.

Rcusp > �θ/2π). This means a 60 per cent violation that is signifi-

cantly larger than the 15–25 per cent we found for our simulations.

The source size used in this work (60 pc) allows us to make a direct

comparison mainly with the QSO observed in the radio band than

in the optical or IR band; even in this case, we have a violation

of the reduced cusp relation in two objects over three, that means

66 per cent violation. Fig. 15 shows the distribution of the values

of the reduced cusp relation R0
cusp both for data and simulates sys-

tems (with εg = 0.5 kpc). Simulation results are unable to reproduce

the high-value tail that arises in the observational data; again it is

Figure 15. Distribution of R0
cusp values. The solid and dotted lines show

the simulation results before and after the substructure removal, respectively.

The long dashed line represents the observational data.
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Figure 16. Fraction of total number of sources that violate the cusp relation

as a function of the Gaussian smoothing length, εg. The solid line is for the

whole galaxy and the dashed line is for the galaxy without substructures (see

the text for its definition).

possible to see that the effect of subhaloes is very weak in disturbing

the cusp relation, and they only marginally enhance the number of

systems with R0
cusp > 1.

As already discussed above, the difference between data and sim-

ulation results can arise from the current resolution limitations in

the numerical simulations. We expect to have many more small DM

haloes close to the centre of the galaxy with masses in the range

10−3–106 M�; these haloes will be very concentrated, and so they

can more easily survive the tidal force of the central halo, and if one

of these haloes is close enough to one of the images, it can perturb

its magnification and so violate the cusp relation. (The smaller is

the mass of the subhalo, the closer it must be to the projected image

position.)

Another possible explanation for the observed cusp relation vi-

olation can be ascribed to the effect of all the subhaloes that

are in the galactic space along the line of sight of the lens

(Metcalf 2005); the importance of these intergalactic haloes with

mass < 108 M� depends on the radial profile of the dark matter

haloes and the primordial power spectrum at small scales.

What is clear from our analysis is that the cusp relation viola-

tion cannot be due to the substructures in the primary lens with

masses above 107 M�. This is true even though the inclusion of

baryons has increased the projected numbers of subhaloes by a large

factor.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Using a high-resolution hydrodynamic galaxy formation simulation,

we have studied the number density and the spatial distribution of

subhaloes within a Milky Way sized CDM halo. Baryons can con-

centrate at the halo centre via two mechanisms. The shock-heated

gas can radiate away energy causing the particles to fall inwards.

Cold gas clouds can accrete along filaments, colliding and coa-

lescing with existing gas at the halo centre. The slowly infalling

baryons have the effect of increasing the density of the dark matter

via adiabatic contraction. The overall effect of including baryons

is to steepen the mass profile to nearly isothermal with ρ(r ) ∝ r−2

from a shallower r−1 cusp.

As already predicted by several (semi)analytic studies, our sim-

ulations show that this central concentration of baryons enables

subhaloes to better withstand the tidal forces generated by the main

halo. This leads to an increase in the total number of subhaloes,

especially within the inner third of the virial radius, such that they

follow the overall mass distribution. This is in excellent agreement

with the distribution of galaxies within galaxy clusters. However,

on the scale of Galactic mass haloes, this increases the discrepancy

between the numbers of surviving satellites in the CDM models and

the flat luminosity function observed within the Local Group. A

possible solution to this problem may come from the early reion-

ization of the universe from the early structure formation (Madau

& Rees 2001). The reionization raises the entropy of the gas that

is required to fuel galaxy formation, preventing it from accreting

into small dark matter haloes and lengthening the cooling time of

that gas which is accreted (Bullock, Kravtsov & Weinberg 2000;

Ricotti, Gnedin & Shull 2002; Somerville 2002). Moreover, as sug-

gested by Benson & Madau (2003), winds from pre-galactic star-

bursts and mini-quasars may pollute the intergalactic medium (IGM)

with metals and raise its temperature to a much higher level than ex-

pected from the photoionization and so inhibit the formation of early

galaxies.

A detailed study of the impact of the reionization on the formation

of dwarf galaxies in hydrodynamic simulation will be presented in a

forthcoming paper (Macciò et al. 2005b), where we show that with

an appropriate choice of the reionization parameters and modelling,

it is possible to reconcile observational data with the steep mass

function of haloes and subhaloes within the CDM model.

In the second part of this work, we have explored the conse-

quences of the increased number of satellites for multiply lensed

quasar images by foreground galactic mass haloes, in particular the

signatures on the violation of the so-called cusp relation. Previous

work has reached different conclusions on this issue: Bradač et al.

(2004) found an agreement between simulations and observations,

but their results were limited by the low resolution of their simu-

lations. Amara et al. (2004) (see also Mao et al. 2004) have shown

that it is hard to reconcile the observed high number of cusp rela-

tion violation with results from simulations. Moreover, they have

also shown that the shot noise due to the discreteness of the simu-

lation (where every particle is in principle a substructure) plays an

important role in changing the properties of the lens map. In order

to disentangle the effect of substructures from the effect of having

an intrinsic discrete distribution of matter, we compared results be-

tween haloes with and without any substructure present. We have

developed a new technique to remove the satellites from the simula-

tion without changing the overall matter distribution of the primary

lens. This analysis demonstrates that the impact of subhaloes on

lensing in the mass range 107–1010 M� is very small. Also, hav-

ing a number of subhaloes which is about eight times higher than

that of the observed one in this mass range, the number of multiple

lensed QSO that shows a violation of the cusp relation (defined as

in equation 9) is less than 24 per cent, in contrast with an observed

one of about 60 per cent. Our results extend down to subhaloes of

mass 107 M� due to the resolution limit of our simulations. Even

considering the impact of smaller masses on subhaloes using an an-

alytic approach does not help in solving the cusp relation problem

(Macciò & Miranda 2005). A possible explanation could be that

more variables must be taken into account in the lensing analysis,

such as all the (sub)haloes that lie along the line of sight between

us and the lens (see Chen et al. 2003; Metcalf 2005).
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