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S U M M A R Y
Due to uncertainties in data and in forward modelling, the inherent limitations in data cover-
age and the non-linearity of the governing equation, earthquake source imaging is a problem
with multiple solutions. The multiplicity of solutions can be conveniently expressed using a
Bayesian approach, which allow to state inferences on model parameters in terms of proba-
bility density functions. The estimation of the posterior state of information, expressing the
combination of the a priori knowledge on model parameters with the information contained
in the data, is achieved in two steps. First, we explore the model space using an evolutionary
algorithm to identify good data fitting regions. Secondly, using a neighbourhood algorithm
and considering the entire ensemble of models found during the search stage, we compute a
geometric approximation of the true posterior that is used to generate a second ensemble of
models from which Bayesian inference can be performed. We apply this methodology to infer
kinematic parameters of a synthetic fault rupture through fitting of strong motion data. We
show how multiple rupture models are able to reproduce the observed waveforms within the
same level of fit, suggesting therefore that the solution of the inversion cannot be expressed
in terms of a single model but rather as a set of models which show certain statistical prop-
erties. For all model parameters we compute the posterior marginal distribution. We show
how for some parameters the posterior do not follow a Gaussian distribution rendering the
usual characterization in terms of mean value and standard deviation not correct. We compare
the posterior marginal distributions with the ‘raw’ marginal distributions computed from the
ensemble of models generated by the evolutionary algorithm. We show how they are systemat-
ically different proving therefore that the search algorithm we adopt cannot be directly used to
estimate uncertainties. We also analyse the stability of our inferences comparing the posterior
marginals computed by different independent ensembles. The solutions provided by indepen-
dent explorations are similar but not identical because each ensemble searches the model space
differently resulting in different reconstructed posteriors. Our study illustrates how uncertainty
estimates derive from the topology of the objective function, and how accurate and reliable
resolution analysis is limited by the intrinsic difficulty of mapping the ‘true’ structure of the
objective function.
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1 I N T RO D U C T I O N

Current earthquake source imaging studies use different data sets

(strong motion, teleseimic, GPS and InSAR) and inference methods

(linear or linearized data inversions, direct search techniques) in or-

der to retrieve kinematic rupture parameters. A fault rupture can be

described, kinematically, as a shear dislocation propagating along

a surface within an elastic medium. Using seismic data the dislo-

cation process at each point on the fault is usually parametrized in

terms of slip (or slip-velocity), rake angle (direction of slip), rupture

time (time at which the slip process starts) and rise time (duration

of slip). These parameters enter in the slip function which in turn

determines the ground motion through the representation theorem

(Aki & Richards 2002).

The mathematical parametrization of the slip function is not

unique in inverse modelling studies, although the chosen functional

form has important implications from the dynamic point of view.

It determines in fact the traction evolution over the fault surface

(Piatanesi et al. 2004). Two main methods are used for representing

the slip function: the multitime window and the single time-window

approach. In the former, the slip function is not prescribed a priori
but is expanded into a number of basis functions (Olson & Apsel
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1982; Wald & Heaton 1994; Ide et al. 1996; Sekiguchi et al. 2000;

Delouis et al. 2002; Salichon et al. 2003). In the latter the slip func-

tion is forced to assume a predefined functional form, like a triangle

(Hartzell & Heaton 1983), a boxcar (Emolo & Zollo 2005) or a more

complex form involving, for instance, trigonometric (Hartzell et al.
1996) or power (Liu & Archuleta 2004) functions.

Fixing, for each location on the fault, rise time and rupture time

(for a multi time-window approach, rise time and rupture time for

each basis function), the relation between slip and ground motion be-

comes linear. A solution can then be obtained using the linear least-

square method (Olson & Apsel 1982; Hartzell & Heaton 1983; Wald

et al. 1991; Ide et al. 1996; Sekiguchi et al. 2000; Sekiguchi & Iwata

2002). This methodology requires the inversion of the forward mod-

elling operator. Because of uncertainties in both data and theory and

limited data coverage, this is often an ill-posed and ill-conditioned

problem (multiple solutions may exist due to the presence of a null

space in the model space and small change in the data may lead to

large variations in the parameter estimates). Damping parameters

are therefore additionally required in order to get a unique solution.

Possible constrains are: moment minimization, smoothing of slip

and filtering of singular values (Hartzell & Heaton 1983).

Relaxing the assumptions on rupture time and rise time render the

inversion non-linear. Under these conditions a linearized inversion

can be used to infer, together with slip, rupture time (Beroza &

Spudich 1988) and also rise time values (Cotton & Campillo 1995).

The main drawback of this approach is that the inversion results

depend on the starting model and, requiring the computation of the

generalized inverse, damping parameters are again needed.

As computational resources improved, optimization methods like

simulated annealing (Hartzell et al. 1996; Bouchon et al. 2000;

Delouis et al. 2002; Salichon et al. 2003; Liu & Archuleta 2004),

neighbourhood (Vallee & Bouchon 2004) and genetic (Emolo &

Zollo 2005) algorithms started to be adopted in earthquake source

imaging studies. With such methods no assumptions on the objective

function are made and good data-fitting models are found by directly

searching the model space. Only the forward modelling operator is

computed and no matrix inversion is needed (hence no damping pa-

rameters are required). Despite these benefits, all these randomized

search techniques require a certain number of tuning parameters in

order to guide the search, but no general theories are available that

help to chose optimal values (Mosegaard & Sambridge 2002). Each

problem often requires its own tuning parameters values. Moreover,

even if some algorithms are guaranteed to converge to the global

minimum (like some simulated annealing algorithms with certain

cooling schedules, Sen & Stoffa 1995), this convergence is only

asymptotic, that is, the true global minimum is found only after an

infinite number of iterations. Practically, finite computational re-

sources limit our ability in searching the model space so that the

solution found can never be proved to be optimal.

A key issue in any parameter-estimation technique is the assess-

ment of uncertainties which affect the inferred model parameters.

In linear or linearized least-square inversions the objective function

is a quadratic function with a single minimum. Uncertainties on

model parameters can be obtained by computing the curvature of

this function around the minimum (Menke 1989).

In non-linear inversions the structure of the objective function

is actually unknown and it may presents multiple (and even de-

generate valley-like) minima. Using optimization algorithms we

can efficiently identify good data-fitting models but we cannot di-

rectly estimate uncertainties. For this purpose different strategies

have been proposed. Emolo & Zollo (2005) used a genetic algo-

rithm to search the model space and estimated resolution making a

Gaussian approximation of the objective function around the best-

fitting model. In this approach uncertainties are estimated only lo-

cally, in the neighbourhood of the best-fitting model, forcing the ob-

jective function to be Gaussian around it. Other approaches estimate

uncertainties by statistically analysing the set of models visited dur-

ing the search of the model space. From the set of models produced

by a neighbourhood algorithm, Peyrat & Olsen (2004) selected 19

models that fit the data almost equally well, and then computed

the standard deviation for each model parameter from this ensem-

ble. Piatanesi et al. (2007) computed weighted mean and standard

deviation for each model parameter considering the whole ensem-

ble of models produced by a simulated annealing algorithm. The

main limitation of these approaches is that they derive resolution

estimates by statistically analysing the ensemble (or subensemble)

of models produced by an optimization algorithm without taking

into account that this ensemble does not reflect in general the actual

uncertainties, that is the topology of the misfit function, but rather

the operators adopted by the search algorithm. Moreover, all these

techniques assume uncertainties to be Gaussian, which is generally

not true for non-linear problems.

The major goal of this paper is to estimate resolution on kinematic

earthquake rupture parameters taking into account the full non-

linearity of the problem, without invoking any approximation on

the objective function and hence allowing for possible non-Gaussian

uncertainties. We consider a synthetic test so that we can control un-

certainties in data and in forward modelling. In order to express

the multiplicity of the solutions we adopt a Bayesian approach

(Tarantola 2005). Inferences on inverted parameters are derived

from the posterior probability density function. It is obtained as

the conjunction of ‘states of information’ (expressed in terms of

probability densities) reflecting our prior information on model pa-

rameters, data and their correlation (the physical law governing the

forward modelling). We compute the posterior using the strategy

proposed by Sambridge (1999). First, using a direct search algo-

rithm, we explore the model space in order to discover the structure

of the posterior probability density function and to identify good

data fitting regions. In this study we use an evolutionary algorithm

(Beyer 2001) to perform this task. Secondly, using a neighbourhood

algorithm and considering the whole ensemble of models produced

during the search stage, we compute a geometric approximation of

the true posterior from which samples are generated and Bayesian

inference performed. Hence, the solution we provide for each model

parameter is stated in terms of a marginal probability density func-

tion from which uncertainty estimates can be derived.

2 T H E B AY E S I A N A P P ROA C H

The general idea of a Bayesian approach to inverse theory is that a

certain amount of information or knowledge about the physical sys-

tem under investigation (represented by the model parameter vector

m) and the data (d) is available before the inversion, and can be

expressed in terms of a probability density function. Together with

this ‘a priori’ knowledge, another source of information is given

by the correlation between model parameters and data expressed

by a physical law [d = g(m)]. The solution of the inverse problem

is then obtained by combining these two states of information. The

main difficulty in computing the solution is in extracting information

contained in the correlation between d and m, in particular when m
is defined in a large dimensional space and the forward modelling

operator g is computationally expensive. Under these conditions

computing the equation d = g(m) on a regular grid of points in

the model space is unfeasible and one is forced to use randomized
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techniques in order to evaluate the above equation in a limited num-

ber of points which should be representative of the most important

regions of the model space (where the correlation between d and

m is high). However, finite computation time and finite computing

resources will always limit our ability in extracting this information.

The consequence is that the solution of an inverse problem will be,

for any realistic large scale problem, incomplete and always subject

to a certain amount of variability that decreases as the exploration

of the model space becomes more and more extensive.

2.1 The posterior state of information

In presenting the Bayesian approach, we follow the theoretical for-

mulation of Tarantola (2005). We assume the M-dimensional model

space and D-dimensional data space, M and D, respectively, to be

linear spaces. Indicating with ρM (m) and ρD(d) the prior proba-

bility density functions on model parameters and data respectively,

while with θ (d |m) the conditional probability density representing

the correlation between d and m, the posterior state of information

on the model space is given by:

σM (m) = kρM (m)L(m), (1)

where k is a normalization constant and L(m) is the likelihood func-

tion:

L(m) =
∫

D
dd ρD(d)θ (d|m). (2)

Assuming that our a priori knowledge on model parameters consists

of the only information that each model parameter is strictly bounded

by two values mα
min and mα

max, where α ∈ I M , I M = {1, . . . , M}, we

write:

ρM (m) =
∏

αM ∈IM

ρα(mα), (3)

where

ρα(mα) =
{

1
mα

max−mα
min

for mα
min ≤ mα ≤ mα

max

0 otherwise

is the prior marginal for each model parameter (that is a uniform

probability density function).

In our synthetic test we add Gaussian noise to the seismograms

produced by the true model. Our prior information on the data can

therefore be expressed through a Gaussian probability density func-

tion. Defining r = d − dobs (where d are the actual data and dobs are

the observed data, that is, actual data contaminated with noise), we

write:

ρD(d) = ((2π )DdetCD)−1/2 exp

[
−1

2
rT C−1

D r

]
(4)

where detCD is the determinant of the data covariance matrix.

In our synthetic test we do not introduce any modelling uncertain-

ties; the correlation between data and model parameters is therefore

represented by a Dirac delta function:

θ (d|m) = δ[d − g(m)]. (5)

Substituting eqs (5) and (4) into eq. (2) and the result of the integra-

tion together with eq. (3) into eq. (1), we obtain:

σM (m) =
{

k exp
[− 1

2
rT C−1

D r
]

mα
min ≤ mα ≤ mα

max

0 otherwise,
(6)

where now r = g(m) − dobs. Eq. (6) represents, for our synthetic

test, the solution of the inverse problem. Being a multidimensional

probability density function it can be characterized in terms of its

properties in the model space. We can identify the maximum like-

lihood model (in our case corresponding to the best-fitting model).

We can also compute the mean model:

〈m〉 =
∫

M
dm mσM (m) (7)

and the covariance matrix:

CM =
∫

M
dm (m − 〈m〉)(m − 〈m〉)T σM (m) (8)

Eqs (7) and (8) give useful results only if σ M is Gaussian. In a

Bayesian approach this is possible only if ρ(m), ρ(d) and θ (d |m)

are Gaussian and the equation d = g(m) is linear. In the case these

conditions are not satisfied, we can still look at the information pro-

vided on a single parameter computing its corresponding marginal

probability density function:

M(mα) =
∫

...

∫
σM (m)

M∏
k=1
k �=α

dmk (9)

Eq. (9) involves computing the integral of the posterior probability

density function in all the dimensions of the model space except the

one corresponding to the parameter of interest.

If additional knowledge on model parameters is available, this

methodology allows to introduce more complex a priori distribu-

tions and if the Gaussian assumption for data uncertainties is not

valid also different norms can be used. We emphasize that eq. (6)

has been derived assuming no uncertainties in the forward mod-

elling. This may be valid for a synthetic test. For a real case where

uncertainties and approximations are present in the modelling, and

if these effects can be quantified, the correlation between model pa-

rameters and data can be represented in terms of a more complex

probabilistic correlation rather then a simple Dirac delta function.

2.2 Computing the posterior: searching and appraising

the ensemble

In practise, solving an inverse problem from a Bayesian viewpoint

implies computing integrals in a multidimensional space (eqs 7–9).

This can be done using Monte Carlo techniques which basically

require generating samples according to the posterior probability

density function. A variety of sampling methods can be used for

this purpose (for a review, see for instance, Tarantola 2005). The

applicability of each of these algorithms depends on the problem (if

a small or large model space is considered, if an analytical, explicit

expression of the posterior is available or not). Here, rather than di-

rectly using a sampling algorithm, we address the problem adopting

a two stage procedure (Sambridge 1999): first, using an optimiza-

tion algorithm, we explore the model space, possibly identifying

its good data fitting regions. Secondly, using the whole ensemble

of models found during the search stage, we compute a geomet-

ric approximation of the true posterior that is used for generating a

new ensemble of models from which Bayesian inference can be per-

formed. Sambridge (1999) validate this methodology using both a

neighbourhood and a genetic algorithm to perform the search of the

model space. Here we use an evolutionary algorithm (Beyer 2001).

In principle, any other direct search method can be used. Within this

approach we can exploit the efficiency of optimization algorithms

in identifying good data-fitting regions of the model space and com-

pute the forward modelling operator only during the search stage

and not during the sampling process which usually requires larger

number of evaluations (in this study 160 100 models have been vis-

ited during the search stage, whereas the sampling process required

generating 475 000 models).
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2.2.1 Searching the model space

The optimization algorithm we use to explore the model space is

an evolutionary algorithm (EA) (Beyer 2001). EA is the current

denomination used to identify all those population-based stochas-

tic optimization methods inspired by the Darwinian paradigm of

evolution. Among EAs there are genetic algorithms, evolutionary

strategies and evolutionary programming techniques. According to

these methods an optimization problem is considered similar to the

process of evolution of a population of individuals that, through an

evolutionary loop defined by a series of mechanisms like recombina-

tion, mutation and selection, improve their characteristics (fitness)

in order to better survive in the environment where they are located.

In our problem an individual is a model belonging to the model

space and its ‘fitness’ is given by the misfit value [g (m) − dobs]T

C−1
D [g(m) − dobs] expressing the discrepancy between predictions

and observations.

Among the many EAs available, we use, following the notation

of Beyer (2001), a (μ/μD, λ)—Evolutionary Strategy.1 According

to this algorithm, the exploration of the model space starts with

generating an initial population, corresponding to the generation

g = 0, of μ parent models P (0)
μ :

P (0)
μ := {

m(0)
1 , m(0)

2 , . . . , m(0)
μ

}
. (10)

This set of models, obtained through uniform random sampling of

the model space, then evolves through the subsequent repeated ap-

plication of three operators: Dominant μ-recombination, Gaussian
mutation and Truncation selection.

The aim of the first two operators is to generate, from the current

parent population, a new set of λ models, the offsprings popula-

tion. In the Dominant μ-recombination, every ith component of the

offspring m̃ is obtained by uniform random selection from the μ

i-components of the current parents. At each generation g we have:

m̃(g)
j :=

M∑
i=1

[
eT

i m(g)
ki

]
ei , j = 1, . . . , λ, (11)

where k i is an integer uniform random number between {1, ..., μ}
and the symbol ei stands for the unit vector in the ith direction of

the model space. The scalar product gives the ith component of the

uniformly random selected parent mki .

In the Gaussian mutation an additional perturbation is added us-

ing a normal distribution N with zero expectation value:

m̂(g)
j := m̃(g)

j + [σ1N (0, 1), . . . , σMN (0, 1)], (12)

where j = 1, . . . , λ andN (0, 1) represents a normal random number

with zero expectation value and unit standard deviation. The final

offspring m̂ is therefore obtained around the parental recombination

result m̃ through the addition of a Gaussian random vector. The

mutation can be isotropic, that is for all the parameters the standard

deviation is the same, or anisotropic (in case model parameters have

different physical meanings therefore requiring different standard

deviations).

The aim of the selection operator is to choose among the final

set of offsprings a new ensemble of models to be used as a parent

population for the next generation. In the Truncation selection this

1 In this notation μ denotes the number of parents and λ the number of

offsprings. The comma symbol ‘,’ indicates that the μ parents for the next

generation are selected among the only λ offsprings of the current generation.

Note that this implies λ≥μ. The notation μ/μD denotes that all the μ parents

are used for Dominant (D) recombination.

is done in a deterministic way. The new parent population is formed

by selecting the μ best-fitting models among the only λ offsprings.

This requires λ ≥ μ. This series of steps is repeated until a stop

criterion is reached (e.g. a stationary level of fit). Evidently, the last

step of the algorithm is the most expensive in terms of computation

time because it requires the calculation of the misfit function for

each offspring. Great improvement can be achieved parallelizing

the computation, that is, distributing the calculation of the misfit

over several processors and, once collected the results, performing

the selection.

The EA requires a certain number of parameters to be tuned.

The number of parents and offsprings, μ and λ, respectively, and

the standard deviations for the mutation operator. Unfortunately,

no general theory is available that helps to choose optimal values

for these parameters, essentially because the performance of the al-

gorithm is strictly dependent on the unknown ‘fitness landscape’.

However, some guidelines are available. The ratio μ/λ determines

the trade-off between exploration/exploitation. Clearly the condi-

tion μ = λ basically means pure exploration (no selection among

offsprings) and as the ratio μ/λ decreases the exploitation tendency

increases. For the mutation operator, the algorithm allows to choose

a different standard deviation for each model parameter. To limit the

number of tuning parameters, we choose to use different standard

deviations only for those parameters that represents different physi-

cal quantities. The ‘strength’ of the mutations (the magnitude of the

standard deviations) is another important factor. They should not be

too small, to ensure population diversity, and not too large, to allow

convergence towards good data fitting regions of the model space.

However, following these guidelines is not sufficient to properly set

the algorithm’s parameters, and additional trial and error work is

usually required.

2.2.2 Appraising the ensemble

The models produced by the evolutionary algorithm cannot be used

directly for Bayesian inference, because they are not generated ac-

cording to the posterior probability density function. However all

these models, together with their corresponding values of σ M (m)

(easily computed knowing the value of the misfit, eq. 6) constitute

an important source of information about the structure of the actual

posterior; this can be used to compute a geometric approximation

of it, from which samples can be drawn. This is the basic idea be-

hind the appraising methodology developed by Sambridge (1999).

The ensemble of models found during the search stage constitute

an irregular distribution of points in the model space. Around each

of these points a nearest-neighbour region can be calculated using

a geometrical construct known as Voronoi cell. For any distribution

of irregular points in any number of dimensions, Voronoi cells are

unique, space-filling, convex polyedra, whose size and shape are

automatically adapted to the distribution of the point set. This im-

plies that the size (volume) of each cell is inversely proportional

to the density of the points. A geometric approximation of the true

posterior is then calculated setting the known value of the posterior

of each model to be constant inside its Voronoi cell.

A new ensemble of models generated according to the approxi-

mated posterior is produced using a Gibbs sampler. A Gibbs sampler

generate samples performing a random walk in the model space.

From a given starting point, the algorithm sequentially performs a

step along each parameter axis generating a random deviate from the

conditional probability density function of the approximated poste-

rior along the considered direction. An iteration is completed when

all dimensions has been cycled through once, and a new model

C© 2008 The Authors, GJI, 173, 220–232

Journal compilation C© 2008 RAS



224 D. Monelli and P. M. Mai

has been generated. After many iterations, the random walk will

generate models with a distribution that tends towards the target

distribution, that is the approximated posterior.

The practical applicability of this methodology is limited by the

memory and computation time needed to perform this appraising

step. The storage S required by the algorithm is controlled by the

number of models constituting the ensemble N e and the number of

dimensions of the model space M :

S ∝ Ne M. (13)

Computation time T is additionally dependent on the resampled

ensemble N r, that is by the set of models sampled from the approx-

imated posterior:

T ∝ Nr Ne M. (14)

As in the in the search stage, computational time can be greatly

decreased distributing the resampling process on several processors.

For the synthetic test we present, the dimension of the model

space is M = 38, the number of models visited during the search is

N e = 160 100. The number of models constituting the resampled

ensemble is N r = 475 000. The resulting computation time (on a

20 CPUs Linux cluster) is T ∼ 1 day.

3 T H E S Y N T H E T I C T E S T

To control uncertainties in data and in forward modelling we con-

sider a synthetic test. The kinematic rupture model we use as ‘true’

model is shown in Fig. 1. We represent the fault as a 32 km long

and 12 km deep, vertically dipping, plane surface. The fault’s up-

per edge is at 2.75 km depth. The rupture process is characterized

by a heterogeneous distribution of peak slip-velocity, whereas rake

angle and rise time are constant (0◦, 0.8 s, respectively). Peak slip-

velocity values are defined on a 4 × 4 km grid (nodes represented by

black dots). The time evolution of the rupture process is prescribed

in terms of a circular front that propagates from the hypocentre

(12.5 km deep) with constant rupture velocity (V r = 2.7 km s−1).

The observational network we use for the inversion is depicted

in Fig. 2. The fault strikes at 150◦, station locations and veloc-

ity model are adapted from the 2000 Western Tottori earthquake

(Semmane et al. 2005). All stations are located within 60 km from

the epicentre.

We compute ground velocities using the frequency-domain rep-

resentation theorem (Spudich & Archuleta 1987):

along strike (km)

a
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n
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ip

 (
k
m

)

V
r
 (km/s): 2.7, τ

r
 (s): 0.8, M

0
 (Nm): 1.28e+019

 

 

0 5

4

6

8

10

12

14
0

200

400

600

1 2

cm/s

Figure 1. The ‘true’ kinematic rupture model. Only the maximum slip-rate

amplitude is heterogeneous. Rake angle is everywhere zero (pure left-lateral

strike slip event) and rise time is constant, τ r = 0.8 s. Rupture times are

given by the arrival times of a circular rupture front expanding from the

hypocentre (white star) with constant rupture velocity V r = 2.7 km s−1.

The corresponding seismic moment is M 0 = 1.28e19 Nm. Black dots rep-

resent locations where peak slip-velocity values are defined. Dashed white

rectangles delimit the two main large-slip regions characterizing the slip

distribution. In the article we will refer to them as asperity 1 (the one on the

left) and asperity 2 (the one on the right).
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Figure 2. The observational network. 19 stations (grey triangles) are located

near the fault strike (black solid line) within 60 km from the epicentre (white

star). Station locations and velocity model are adapted from the 2000 Western

Tottori earthquake (Semmane et al. 2005).

u̇m (y, ω) =
∫∫

�

ṡ (x, ω) · Tm (x, ω; y, 0) d�, (15)

where u̇m is the m component of ground velocity at the receiver

location y, ṡ is the slip-velocity function, Tm is the traction exerted

across the fault surface � at point x generated by an impulsive force

applied in the mth direction at the receiver and ω = 2π f is the

angular frequency.

Tractions Tm are computed, up to a frequency of 2 Hz, using

a Discrete Wavenumber / Finite Element method (Compsyn pack-

age, (Spudich & Xu 2002)), for a 1-D flat layered Earth model

without attenuation. A trapezoidal-rule quadrature of the product

ṡ · Tm is performed separately for each frequency, with the quadra-

ture points being the sample points where Tm have been computed.

Peak slip-velocity values at integration points are derived through

bilinear interpolation of values of surrounding grid nodes. The slip-

velocity function is assumed to be an isosceles triangle. With this

parametrization, the maximum slip-rate corresponds to the hight

of the isosceles triangle and the rise time to the base length. Each

computed synthetic seismogram contains 4096 data points, from 0

to 40.95 s, with a time sampling of 0.01 s.

We do not introduce any uncertainties in the forward modelling

but we perturb synthetic seismograms produced by the true model

with Gaussian noise so that a data covariance matrix CD can be

computed. We assume noise statistics to be the same for each wave-

form and without correlation between different stations and between

different components of the same station. Thus the covariance ma-

trix for the whole set of data reduces to a block diagonal matrix

where each block matrix represent the covariance matrix for each

single waveform. To compute the covariance matrix we follow the

approach of Gouveia & Scales (1998). We treat each synthetic seis-

mogram produced by our true model as a ‘mean’ seismogram smean.

We then compute several realizations of noisy seismograms snoise

simply adding to the mean seismogram a Gaussian time-series sgauss

with zero mean and fixed standard deviation (snoise = smean + sgauss).

If N is the number of realization done, an estimate of the covariance

matrix for each waveform is given by:

ĈD = 1

N

N∑
i=1

(
snoise

i − smean
)(

snoise
i − smean

)T = sgauss
i (sgauss

i )T (16)

from which we see that ĈD is the same for all inverted seismograms

depending on the Gaussian time-series only. For our synthetic test
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Figure 3. The noise covariance function. The correlation is almost zero

after 10 s. This is consistent with the fact that the covariance matrix has been

estimated considering Gaussian time-series filtered in the frequency range

[0.1 0.5] Hz, containing therefore periods between 2 and 10 s.

we generate Gaussian time-series with zero mean and standard de-

viation equal to 1 cm s−1 which are then filtered in the frequency

range 0.1–0.5 Hz. The resulting standard deviation of the noise is

very small, about 0.01 cm s−1. The corresponding signal-to-noise

ratio (SNR) (calculated as the ratio between the maximum value of

the signal and the maximum value of noise) varies depending on the

waveforms. The minimum SNR observed is about 7. We performed

N = 500 noise realizations and the resulting ĈD was smoothed by

replacing each element with the average of its diagonal. In Fig. 3, we

show the resulting noise covariance function (i.e. the cross-diagonal

terms). Note how the filtering has introduced a certain level of

correlation in the noise that almost disappears after 10 s, consis-

tent with the fact that noise below 0.1 Hz has been filtered out.

We invert all components for all stations in order to retrieve peak

slip-velocity values at gridpoints, rupture velocity and rise time.

Rake angle and hypocentre location are fixed to their true values. We

define peak slip-velocity values on the same grid used for calculating

the true seismograms. As we mentioned in Section 2.1, for each

model parameter the prior marginal is uniform, inside a predefined

range of values. Model parameter ranges are [0 600] cm s−1 for peak

slip-velocity, [2 3] km s−1 for rupture velocity and [0.5 1.5] s for rise

time. The total number of model parameter we invert for is therefore

38.

The fitness function used during the search is calculated as the

reduced χ 2
ν value of the data fit, where ν is the number of degrees

of freedom (number of data minus number of parameters):

χ 2
ν = 1

ν
(g(m) − dobs)T C−1

D (g(m) − dobs). (17)

Eq. (17) contains the inverse of the covariance matrix C−1
D . In our

case each waveform contains 4096 data points so that the covariance

matrix for each waveforms is a 4096 × 4096 matrix. As a first order

approximation we consider, in the calculation of the misfit, only the

main diagonal (i.e. the variance of the noise).

From equation (17) we also see that the misfit value depends,

through dobs, on the particular noise realization added to the ‘mean’

seismograms. In this study we present results obtained using a single

data realization. Clearly a different data realization would produce,

for the same model, a different value of fit. However is out of the

scope of this paper investigating the effect of different noise real-

izations in the computed posterior.

4 I N V E R S I O N R E S U LT S

4.1 The maximum likelihood model

As explained in Section 2.2 the first step in our inversion consists

of searching the parameter space. After several trial inversions the

evolutionary algorithm parameters have been fixed to the following

values: μ = 100, λ = 4000. The standard deviations for the mutation

operator, for peak slip-velocity, rupture velocity and rise time are,

respectively: σAmax = 10 cm s−1, σVr = 0.3 km s−1 and στr = 0.3 s.

We do not expect these values to be optimal (in rendering the search

the most efficient) and as already stated in Section 2.2.1, even if some

guidelines are available trial and error work is usually required to

set these parameters.

In Fig. 4, we show the best-fitness function value for each gener-

ation versus the generation number. After about the 20th generation

the misfit reaches an approximately stationary level that lasts until

the search is stopped. The total number of models visited is 160 100.

On a 20-CPU Linux cluster the search required about 1 day of com-

putation time.

The first result of the search we may look at is the maximum

likelihood model (corresponding to the best-fitting model in our

problem, the one with the lowest χ2
ν value). We show it in Fig. 5.

Comparing with the true model (Fig. 1) we can see that the general

characteristics of the rupture process are retrieved. The locations of

the two slip patches are correctly imaged and also rupture velocity

and rise time values are close to the true ones. These similarities

produce also a corresponding seismic moment near the true value.

However, we can also see that even if the large scale features are

correctly imaged, the details are not, for example, at the bottom of the

fault the peak slip-velocity is significantly overestimated. Despite
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Figure 4. χ2
ν reduction during the search. The best-fitness function value

for each generation versus generation number is shown. After about the 20th

generation the misfit reaches an approximately stationary level.
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Figure 5. The maximum likelihood model (corresponding to the lowest χ2
ν

value). The general shape of the slip distribution is correctly retrieved and

rupture velocity, rise time and seismic moment values are close to the true

ones. However the maximum slip-rate is overestimated at the bottom of the

fault.
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Figure 6. Data fit between data-prediction (solid black) and observed data (dash–dotted red) for the maximum likelihood model. For each waveform the

maximum amplitude (cm s−1) of the observed ground velocity is shown.

these differences the corresponding level of fit is visually very good

(Fig. 6). Numerically it corresponds to χ2
ν � 118. This high value

(for uncorrelated noise χ2
ν > 1 means that predicted data are not

able to reproduce, in average, the observed data whitin the assumed

standard deviation) is basically due to the very small uncertainties

we consider in measuring the data-fit (we recall that the standard

deviation of noise is ∼0.01 cm s−1).

4.2 Uncertainties estimates

The need for estimating uncertainties comes from the fact that the

maximum-likelihood model is not the only model that produces a

good level of fit to the data. In Fig. 7, we show peak-slip velocity dis-

tribtuions for 40 models, found during the search, with a χ 2
ν ≤ 1000.

The visual analysis of the peak slip-velocity distributions shows that

all these models share some large scale features also present in the

best-fitting solution: low slip-rate at the top, right and left borders

of the fault and near the hypocentre; a major slip patch located be-

tween −20 and −10 km along strike; and a second slip patch above

the hypocentre. Despite this common characteristics, the details of

each peak slip-velocity distribution varies from model to model. In

Fig. 8, we show the level of fit produced by all these models. They

all generate waveforms very similar to the observed ones. From this

example it can be seen that, within a certain level of fit, the inverted

data cannot constrain a single model but rather a set of models which

are different one from another but share some common properties.

Quantifying and expressing these common properties is the ultimate

goal of the inversion.

Following the methodology described in Section 2.2 we compute

for each model parameter its corresponding 1-D posterior marginal

probability density function. In Fig. 9(a), we show the posterior and

the prior marginals for the peak slip-velocity, together with the true

value, for each grid node on the fault surface. We also plot the raw

marginals computed from the ensemble of models generated by the

evolutionary algorithm.

Comparing raw and posterior marginals we can see that they are

in general different, that is, they do not follow the same distribution.

The raw marginals often present a much better defined peak then

the posterior suggesting therefore better resolution then the actual

one [see, for instance, posteriors at (−20.75, 2.5), (−16.75, 2.5)].

This shows that the statistical properties of the ensemble of models

produced by the evolutionary algorithm do not represents the actual

uncertainties affecting model parameters.

We also notice that in general posteriors do not show a Gaussian

shape (especially for those parameters for which the true value is

close to 0 or to the maximum boundary value, like the posteriors
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Figure 7. Peak slip-velocity distributions (cm s−1) for a set of models, found during the search, with χ2
ν ≤ 1e3. Simple visual analysis shows that all models

share some large scale features. Low slip-rates at top, left- and right-hand borders of the fault and near the hypocentre. Two main slip patches, the one on the

left characterized by higher values (between 400 and 600 cm s−1).

at (−24.75, 2.5) and (−12.75, 10.5)). For these cases, the stan-

dard characterization in terms of mean value and standard deviation

is not really meaningful: the mean value would not correspond to

the maximum likelihood value and the standard deviation cannot

be interpreted as a symmetric error bar on the mean value. For

these parameters we therefore cannot use the Gaussian uncertainty

hypothesis.

Without the support of the Gaussian assumption resolution on

model parameters can be better understood by looking at the differ-

ence between priors and posteriors. At some fault locations a single

well-defined peak in the posterior can be identified (at the right and

left sides of the fault surface, for instance), at some others loca-

tions there is little difference with respect to the uniform prior [see

posteriors at (−20.75, 2.5), (−16.75, 2.5), (−20.75, 10.5), (16.75,

10.5) for instance], suggesting therefore poor resolution. We can

also see that at the lower edge of the fault (nodes at (−12.75, 14.75),

(−8.75, 14.75)) and at node (−0.75, 10.75) the true value is located

on the tail of the computed marginal posterior. For these parameters

the posterior seems to miss the true value. A tentative explanation

for these results can be that for these parameters the search algo-

rithm did not reach the true values but got locked into a solution

prematurely. Assuming these parameters to be very poorly resolved

(something that we can expect for nodes located in the bottom part

of the fault) the ‘fitness’ landscape for those parameters will be

something similar to a valley. If then the search is stopped before

exploring all the valley and therefore without reaching the true val-

ues, the reconstructed posterior will be incomplete and will contain

that valley only partially. Therefore, even if the true posterior is

constant for these parameters, the approximated posterior will be

peaked only around the best-fitting models found during the search.

This is important to bear in mind. The reconstructed posterior re-

flects only what the search algorithm illuminated. This implies that

the reconstructed posterior may not completely reflect the true, data-

determined posterior. A similar behaviour can also be found in the

results provided by Sambridge (1999). In the synthetic receiver func-

tion problem he considers, the marginal posterior for the thickness

of the bottom layer completely misses the true value (fig. 7, p. 738).

We present also the 1-D marginals for rise time and rupture veloc-

ity (9b and c). Again, a well-defined single peak of the raw marginals

contrasts with a smoother and broader a posteriori distribution. For

these two parameters the posteriors shows approximately a Gaus-

sian shape so that they can be characterized in terms of mean value

and standard deviation. The mean rise time underestimates the true

value of about 0.1 s. The true rupture velocity is inside one standard

deviation (about 0.1 km s−1) from the estimated mean rupture value.

Besides single model parameters, we can also analyse resolution

on combination of model parameters. As we have noticed before

often much more resolution is achieved on the large scale features

of the slip distribution rather then on the local details. In Figs 9(d)

and (e), we present 1-D marginals for the average peak slip-velocity

on the two main asperity regions characterizing the true model (as-

perities extensions are: 7 by 6 km for asperity 1 and 10 by 6 km for

asperity 2). Here we see that our a priori marginal is not uniform

anymore because it represents information on a combination of the

original parameters. In both cases the true values are correctly re-

trieved with a good resolution (standard deviations of the order of

50 cm s−1, corresponding to relative error of 14 per cent). Good res-

olution is achieved also for the seismic moment (standard deviation

equal to 2.44e18 Nm, relative error 18 per cent) (Fig. 9f).

5 R E C O N S T RU C T I N G T H E P O S T E R I O R

Our resolution analysis derives from the reconstructed posterior

computed from the ensemble of models visited during the search

stage. This implies that our uncertainty estimates depend on the way

the search developed in the model space. To further elucidate this

point we perform three independent searches, with the same settings

for the evolutionary algorithm parameters, but with different seeds
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Figure 8. The level of fit produced by the rupture models shown in Fig. 7 (black data-predictions, red observed). For each waveform the maximum observed

ground velocity (cm s−1) is shown.

for the random number generator. We carry out the searches for the

same number of generation. In Fig. 10, we show posterior marginals

for all the original parameters investigated in this study considering

the three independent ensembles produced. We can see some vari-

ability affecting especially the marginal probability densities for

local peak slip-velocity parameters, but the general features of the

inverse solution are maintained. The variability we observe comes

from the fact that these three ensembles search the model space in

different ways so that each of them provides different approxima-

tion of the actual posterior. This is an inherent difficulty because

an exhaustive search is unfeasible and we are forced to explore the

parameter space only in a limited number of points. This is espe-

cially true for large dimensional model spaces. Merging the set of

models produced by independent searches into one single ensemble

can be a good strategy to increase the results’ stability. However one

has to bear in mind that, for this kind of analysis, memory require-

ment and computation time scale with the size of the ensemble (see

eqs 13 and 14).

6 D I S C U S S I O N

Accurate estimates of uncertainties are needed in order to asses

the reliability of the inverted solutions. As it has been pointed out

by different authors (Cohee & Beroza 1994; Beresnev 2003; Ide

et al. 2005) and is also represented in the online database of earth-

quake rupture models (http://www.seismo.ethz.ch/srcmod), for the

same earthquake, acceptable fit to the data can be provided by

different rupture models. The discrepancies between models may

be due to the different choices adopted during the inversion con-

cerning the forward modelling, the model parametrization, the in-

version methodology, the type of data set and processing used.

However, independently of the particular approach, intrinsic reasons

render imaging the earthquake source a problem with multiple solu-

tions: uncertainties in data and in forward modelling (which allow

multiple models to be considered acceptable) and lack of resolution

(due to the always limited data coverage). For a linear or linearized

inversion, these factors render the problem ill-conditioned and ill-

posed. For instance, Graves & Wald (2001), considering a linear slip

inversion, explicitly showed that uncertainties in Green’s funtions

increase ill-conditioness of the problem, requiring increasing value

of damping parameter (smoothing of slip in their case) to stabilize

the matrix inversion.

In the context of earthquake source inversions real data are con-

taminated with ambient noise and also by uncertainties in the align-

ment of the recording sensors. More important, in our opinion, are

the uncertainties due to approximations in the forward modelling.
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Figure 9. (a) 1-D posterior (black solid line) and prior (black dashed line) marginal probability density functions for peak slip-velocity at grid nodes on the

fault surface. Each subplot corresponds to a node position. For each subplot we indicate node’s coordinates (along strike, along dip) in km, with respect to a

reference system centred at the epicentre, located at (0,0), and pointing towards southeast. In this reference system the hypocentre is at (0,12.5). True values

are represented by vertical grey bars. For each posterior we compute the mean value μ and standard deviation σ although most of them do not show a Gaussian

distribution but rather a skewed one. For comparison we plot also ‘raw’ marginals produced by the evolutionary algorithm (white histograms). All marginals

are normalized to unit area so that relative information can be compared. (b), (c), (d), (e) and (f) present the same quantities for rise time, rupture velocity,

average peak-slip velocity on asperities 1 and 2 and seismic moment, respectively.
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Figure 10. (a), (b) and (c) represent 1-D posterior and prior marginal probability density functions for peak slip-velocity at grid’s nodes, rise time and rupture

velocity, computed considering three independent ensembles.

Real waveforms often show complexities (due to source, path and

site effects) which the adopted modelling is not able to explain. The

best-fitting model (the model which provides the best-numerical fit

to the data) is therefore not so meaningful because we do not know

precisely to what extent the best-fitting model is reproducing the

modelled part of the data rather than the unmodelled one. Provid-

ing the best-fitting model as an image of the earthquake source can

be therefore misleading. We suggest therefore that a better way to

show results of an earthquake source estimation is to provide mul-

tiple models which are able to reproduce the data within a certain

level of fit (determined by the accuracy of our data and modelling).

In such a way we can visually identify what are the main features of

the inverted solutions without trying to draw conclusions from the

unstable details.

Lack of resolution is another important factor to bear in mind.

The fact that linear inversions practically always require damping

parameters implies the presence of a null space in the model space

(or in other words of very close-to-zero singular values). In physical

terms what happens is that the data we consider may contain very

little information about certain parameters we want to invert for. In

our methodology, which does not require any matrix inversion, we

try to measure this lack of resolution rather than reducing it through

the addition of damping parameters.

Considering a simple synthetic test, we point out that imaging

the earthquake source implies a process of extraction of informa-

tion from a set of data (in our case waveforms) which cannot be

reduced to simply providing a best-fitting model. Efforts should be

put in estimating resolution on inverted parameters. Multiple rup-

ture models may in fact produce very similar waveforms. We want

to stress that uncertainty analysis should be carried out using an ap-

propriate theoretical framework in order to get meaningful results.

We have shown how the use of an optimization algorithm to estimate
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uncertainties is not suitable. We suggest that a Bayesian approach

instead provides a possible way to face this problem.

The main consequence in using this approach is that our knowl-

edge of the earthquake rupture process, as derived by the fitting of

some kind of data, can be only probabilistic. In other words, avail-

able data and theoretical knowledge do not allow us to identify a

single model but rather a set of models which share certain statistical

properties. Identifying and quantifying these statistical properties

should be the real aim of any inversion.

We used this approach considering only strong motion data.

Clearly, this methodology can be applied also to investigate resolu-

tion on model parameters considering different data sets (teleseis-

mic data, geodetic data) which all together can improve the quality

of our inferences. Wald & Graves (2001) showed, for a linear slip

inversion, that adding geodetic data to seismic data has a significant

contribution. They found that features imaged by inversion of indi-

vidual data sets alone may not be recognized when using combined

data.

7 C O N C L U S I O N S

In this paper, we address the problem of inferring kinematic earth-

quake rupture parameters following a Bayesian approach. Imaging

the earthquake source is seen as a problem of combination of in-

formation: a priori information (available before the inversion) and

information contained in the data. This combination gives the poste-

rior state of information, represented by a probability density func-

tion over the model space. We compute the posterior using a two step

procedure. First we explore the model space through an evolutionary

algorithm. The search of the parameter space reveals that within the

same level of fit the observed waveforms can be reproduced by mul-

tiple models. All of them, though being different one from another,

share some similarities. Quantifying and expressing these similari-

ties is the aim of the second step. We use the ensemble of models

found during the search to compute a geometric approximation of

the true posterior and we use it to compute marginal probability

density functions for each model parameter. Each marginal repre-

sents the combination of the prior information with the information

that we have been able to extract from the data. From each marginal

we can derive uncertainty estimates. We point out how this second

step of the procedure is particularly important in order to correctly

compute resolution on inverted parameters. The search algorithm

alone, though being effective in finding good data fitting models,

does not provide direct information about uncertainties. Misleading

results can be obtained if simple statistical analysis of the ensemble

of models is used to estimate resolution. We also point out how the

information structure on the inverted parameters cannot be always

represented in terms of Gaussian probability density functions. We

show explicitly how for some parameters the posterior marginal

does not follow a Gaussian shape: for these parameters the standard

characterization in terms of mean value and standard deviation is

not meaningful. The fact that Gaussian uncertainty hypothesis is not

valid for non-linear problems is widely known but still current non-

linear source estimations adopt this approximation. We also point

out how estimating resolution can be limited by our ability in re-

constructing the true structure of the posterior. This is an intrinsic

difficulty due to the fact that exhaustive search is unfeasible and

that we are always forced to explore the model space on a limited

number of points. The consequence is that uncertainties estimates

will be always subject to a certain amount of variability which de-

creases as the exploration of the model space becomes more and

more extensive.
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